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Abstract: Bioremediation, the removal of environmental pollutants by living organisms, has become a viable
and promising means for restoring contaminated sites. It means giving nature a helping hand. Crude oil and its
derivatives are recalcitrant molecules toxic to biotic factors and persists in environments for many years
depending on the nature and quantity of oil spilled. This paper provided a review of the menace of petroleum
hydrocarbon pollution and its biodegradation in the environment with the view of understanding the
biodegradation processes for better exploitation in bioremediation challenges.
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INTRODUCTION atmosphere than leaded gasoline [ 3-6]. In terrestrial

Fossil fuels are the foundation of many world and petroleum seeps from underlying petroleum
economics and reliance on this energy source is unlikely reservoirs, accidental spills resulting from transportation
to wane in future decades. Oil accounts for about 31% of accidents, rupture of pipelines, blow-out, drilling activity,
India's total energy consumption. India produced total oil leaky joints, valves, faucets in oil refineries and deliberate
roughly 954 thousand barrels per day (bbl/d) in 2010, in disposal of petroleum wastes in soil. There are many sites
which approximately 86 thousand bbl/d was crude oil. In through exploration and production operations at which
2010, India consumed nearly 3.2 million bbl/d, making it soils have been negatively impacted by hydrocarbon
the fourth largest consumer of oil in the world [1]. Energy spills or leakage from wellheads and surface facilities. In
information administration expected approximately 100 the United States, law prohibits haphazard dumping of oil
thousand bbl/d annual consumption growth through on land [7]. Extensive damage to urban tree planting in the
2013. At present petroleum provides about 70% of the Netherlands was reported due to underground leakage
world's energy requirement and forms the source of 90% from natural gas distribution systems [8]. 
of world production of organic chemicals and plastics In marine environment oceans and estuaries are the
(Ref.??). The vast scale of the operations necessitated by largest sites of spills because most spilled petroleum
the above demands renders the petroleum industry a hydrocarbons ultimately will reach the sea. Oil spills due
potentially severe source of air, water and soil pollution to incidents involving tankers account for 41.6%, urban
[2]. and river run off for 27% and offshore oil production

The growing concerns and awareness of pollution contributes only about 1.3% of the total oil input in the
problems have prompted many researchers and reviewers ocean. A study conducted recently by N.I.O., Goa, has
to assess the impacts of pollutants on ecosystems, human revealed that over 80% of the oil pollution in the Arabian
health’s, agricultural produce and consequential losses Sea is due to tankers carrying oil from Gulf Sea to South
[1-3] Environmental air pollution occurs by smoke and East Asia [9]. The collision between MSC Chitra and MV
fumes from chimneys of industries. Auto emissions are Khalijia on 9  August 2010, caused the spillage of 400 to
generally considered to be the major source of 500 tons of oil and 31 containers of hazardous chemicals.
atmospheric hydrocarbons and unleaded gasoline. BNHS (Bombay Natural history Society) reported a
Unleaded gasoline has a relatively high aromatic content coastal area measuring 25-km radius is covered with oil,
and contributes more particulate carbon to the 1,273.24 hectares of mangrove cover was affected. 

ecosystem soil pollution may be caused by natural gas

th
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Bioremediation: The apparently inevitable spillages, Streptomyces, Vibrio and Xanthomonas [18-26].
which occur during routine operations and as a Pseudomonas is most frequently reported and, so far,
consequence of acute accidents, have maintained a high most studied hydrocarbon-degrading genus.
research interest in this field. Even though bioremediation Pseudomonas putida, Pseudomonas fluorescens and
has been in existence since the beginning of life, it is only Pseudomonas aeruginosa, were isolated from soil came
recently that scientists have begun to understand the from a sandpit heavily contaminated with oil refinery
complex nature of the process and the  usefulness  of a wastes [27]. Pseudomonas saccharophila and
specific strain of bacteria. The use of microorganisms to Pseudomonas stutzeri, strains were utilized for the
control and destroy contaminants is one of the fastest degradation of polyaromatic hydrocarbons [28]. Several
growing sectors of the U.S. market for hazardous waste Pseudomonas strains were isolated from the surface water
cleanup and it has become a $500 million per year industry of Sunderban Biosphere reserve situated at the Hooghly
in the year 2000 [10]. river mouth [29].

Bioremediation is a technique that enhances the The filamentous fungi can grow on hydrocarbons,
natural rate of biodegradation of pollutants through with Aspergillus and Penicillium species being the most
reactions carried out by selected microorganisms [11]. frequently reported [30-32]. Elshafiea et al. [33] showed
Bioremediation of agricultural land polluted with crude oil that Aspergillus and Penicillium species are more active
using microorganisms to help in regaining the land’s than the others. Molla et al. [34] reported that the
fertility can be achieved in two ways: by enhancing the strains/isolates Aspergillus niger, SS-T2008, WW-P1003
growth and activity of microorganisms already present at and RW-Pl 512 produce the highest dry biomass at higher
the site of pollution through nutrient addition sludge supplemented culture media from their respective
(biostimulation) and by adding more selected group (Aspergillus, Trichoderma, Penicillium and
microorganisms (Bioaugmentation) to the pollution site Basidiomycetes, respectively). April et al. [35] that
[12,13]. reported 22 species of Penicillium and 5 species of

Hydrocarbons Degrading Microbes: The history of and Southern Canada which show the ability to degrade
petroleum microbiology is more than a century old. hydrocarbons on solid medium amended with crude oil. 
Hydrocarbon using microorganisms have been known A number of actinomycetes also have been shown to
since Miyoshi [14] described the growth of the fungus have hydrocarbon-degrading abilities [36]. A unique
Botrytis cinera on paraffins at room temperature and group of hydrocarbon-degrading bacteria is
Sohngen [15] reported on the uptake of crude oil, gasoline methanotrophs. These organisms possess a highly
and kerosene by microorganisms. Zo-Bell [16] reviewed specialized C1 metabolism. Since methane is biogenically
the action of microorganisms on hydrocarbons. He generated, methanotrophs are quite ubiquitous in soil and
recognized that many microorganisms have the ability to play a vital role in the global carbon cycle [37]. A number
utilize hydrocarbons as sole sources of energy and of Cyanobacteria have been found to be capable of
carbon and that such microorganisms are widely hydrocarbon degradation [38]. 
distributed in nature. Soils contain tremendous number of
microorganism. Most uncontaminated soils contain Crude Oil: Petroleum in its natural form is commonly
microbes capable of degrading hydrocarbons. Once known as crude oil. In Latin, ‘Petra’ means rock while
hydrocarbons are applied to the soils, selective ‘oleum’ means oil. Petroleum is thus the oil of rock. On
enrichment of hydrocarbon degrading microbes occurs; molecular basis, petroleum is a complex mixture of
the number of hydrocarbon degrading microbes is greatly hydrocarbons plus organic compounds of S, O and N, as
increased [17]. well as compounds containing metallic constituents,

Bacteria and fungi are the principal agents of particularly Vn, Ni, Fe, Cu etc. [39]. Crude oils may contain
petroleum biodegradation in soil. The genera of hundreds of thousands of components [40]. 
hydrocarbon-degrading bacteria isolated are Petroleum hydrocarbons can be divided into four
Pseudomonas, Arthrobacter, Alcaligenes, classes; saturates, the aromatics, the asphaltenes
Corynebacterium, Flavobacterium, Achromobacter, (phenols, fatty acids, ketones, esters and porphyrins) and
Micrococcus, Nocardia, Mycobacterium, Acinetobacter, the resins (pyridines, quinolines, carbazoles, sulfoxides
Bacillus, Brevibacterium, Chromobacterium, Cytophaga, and amides) [41]. Hydrocarbons differ in their
Erwinia, Proteus, Sarcina, Serratia, Spirillum, susceptibility to microbial attack and, have generally been

Aspergillus isolated from the flare pit soils in Northern
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ranked in the following order of decreasing susceptibility: concentration and surfactant type. Surfactants achieve
n-alkanes > branched alkanes > low-molecular-weight this effect by acting as bridge between the two materials
aromatics > cyclic alkanes (42-43). However, this pattern meeting at the interface. Actually the term biosurfactant
is not universal. The n-alkanes biodegradation in the refers to compounds obtained from microorganisms that
sequence of C10 > C8> C7 > C6. Degradation of 100% C10, have some influence on interface. Thus it is also used for
97% C8, 74% C7 and 44% C6 has occurred in a mixture of emulsifying and dispersing agents. At low concentration
n-alkanes [44]. surfactants are present as individual molecules. However,

API Gravity: It is an expression of the density of concentration reached, where no further change takes
hydrocarbon. A high API gravity means a low density. place in interfacial properties. The amount of
American Institute of petroleum geologists has defined an biosurfactant needed to reach this concentration is called
equation for uniform presentation of the specific gravity critical micelle concentration (CMC). At the critical micelle
data. concentration surfactant molecules aggregate to form

the ability to encapsulate hydrocarbon molecule resulting

Light oil has an API gravity higher than 40 and heavy 51]. Biosurfactants have special advantage over their
oil has an API gravity of about 15-20 [45]. chemically manufactured counterparts because of their

Biological Markers in Petroleum: Alfred Treib's extreme temperature, pH and salinity and ease of
pioneering work of isolating porphyrins from crude oils in synthesis.
1934 was the first evidence of biological origin of oil (46). Taxonomic Diversity of Biosurfactant Producing
However, the impetus to such studies was provided by Microbes in Response to Hydrocarbon Degradation: A
the isolation and identification of pristane and phytane wide variety of microorganisms can produce
from crude oils. Pristane and phytane have chemical biosurfactants; mostly these are produced when
structures similar to the phytol side chain of the microorganisms are cultured on hydrocarbons. Most of
chlorophyll molecule because pristane and phytane the biosurfactants, so far reported, are found to be
originate from the phytol side chain of chlorophyll, during produced by bacteria, however, a good number of yeasts
digenesis under reducing and oxidizing environments, and few fungi also have been reported as biosurfactant
respectively [47]. These molecules exist because their producers [52]. In table 1, a list of the major types of
carbon skeletons survive through the processes of biosurfactants and the producing microorganisms was
digenesis and maturation. Such molecules are called given, where it is clear that the production of
"biological markers" [48]. biosurfactant is not limited to any specific group or class

Biosurfactants: Microbial degradation of hydrocarbon is microbial groups are capable of producing it.
generally associated with biosurfactant production.
Biosurfactants enhance emulsification of hydrocarbons Growth Associated Production of Biosurfactants: A co-
and therefore increase their availability for microbial relationship between the substrate utilization, growth and
degradation. Biosurfactants, the surface-active biosurfactant production can be observed in hydrocarbon
substances of microbial origin were reported as degradation. The carbon source plays an important role in
‘emulsifying factor’ or ‘pseudosolubilizing factor’ in some production of biosurfactants. In some cases the chain
of the earliest publications (49). length of the hydrocarbon substrates used had an effect

Biosurfactants possess both hydrophilic and on biosurfactant production. The normal production of
hydrophobic structural moieties, which imparts them cell-free ‘Emulsan’ by Acinetobacter calcoacetius RAG-1
properties to lower the surface tension of the water. At is a mixed growth associated and non-growth associated
room temperature, the surface tension of water is process [53]. Accumulation of emulsan like polymer on
approximately 72 dynes/cm and it results primarily from the cell surface during the early exponential phase of
the effects of hydrogen bonding [50]. Many surfactants growth has been reported and fermentative production of
can reduce surface tension of water from 72 to surface active agents from B.cereus IAF 346 and Bacillus
approximately 30+5 dynes/cm depending on sp. IAF-334 are found to be growth associated [54].

as the concentration of surfactants is increased a

monolayer (micelle) or bilayer (vesicle) structure that has

in either solubilization or emulsification of hydrocarbon

lower toxicity, biodegradable nature, effectiveness at

of microbes, rather, members of almost all saprophytic
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Table 1: Major types of biosurfactants and producing microorganisms reported

Biosurfactant Microorganisms Surface tension CMC Interfacial d/cm tension d/cm

(A) Glycolipds
Trehaloselipids R. erythropolis 32-26 400 14-17

N.erythropolis 30 20 3.5
Mycobacterium sp. 38 30 15

Rhamnolipids P. aeruginosa 29 - 0.25
Pseudomonas sps. 25-30 10-100 1

Sophorolipids T. bombicola 33 - 1.8
T.apicola 30 - 0.9

(B) Fatty Acids/Neutral Lipids
Fatty acids (FA) C.lepus 30 150 2
FA+Neutral lipids N.erythropolis 32 - 3
Peptide lipid B.licheniformis 27 20 0.1-0.3
Serrawettin S.marcescens 28-33 - -
Viscosin P.fluroescens 26.5 15 -
Surfactin B.subtilis 27-32 23-160 1

(D) Polymeric surfactants
Carbohydrate P. fluorescens 27 100 -
protein-lipids

Regulatory Mechanisms Related to Biosurfactant after the growth phase into a medium devoid of
Production: The growth of the microorganism and phosphate. So far ‘emalsan’ produced by Acinetobacter
production of biosurfactant, these two seem to proceed as spp., is the only biosurfactant that has been
separate events. In the exponential phase of growth of commercialized [62].
cells, there is often a very low rate of surfactant
production [55], over production of the biosurfactant then Biodegradation of Crude Oil: Simply defined,
occurs as the cells stop growing. In fact the amount of biodegradation is a natural process in which microbes
surfactant needed to stimulate alkane dissolution and (bacteria fungi, yeasts, algae) breakdown hydrocarbons
uptake is very small as the surfactant is not consumed by and produce biomass (cell growth), water, carbon dioxide
the producing cells in the uptake process. Once the signal and partially oxidized products. Oxygen is inserted into
to begin production of surfactant has been given by the the hydrocarbons (oxidation) so that the molecule can be
presence of the alkanes, then the surfactant production utilized in cellular metabolism [63]. Some hydrocarbons are
will continue in an unregulated manner until the signal to completely oxidized to carbondioxide and water, while
stop is received. The microbial cells can be harvested at others may only be partially oxidized and incorporated in
the surfactant producing state, maintained in the same to cell biomass. Partially oxygenated biodegradation inter-
state and can be employed for biosurfactant production. mediates of hydrocarbons are fatty acids and phenolic
Thus, they do not multiply but continue to utilize carbon substances [64]. This transformation is called
source for the synthesis of biosurfactants [56]. Siemann mineralization. A compound, which will not degrade in
and Wagner [57] have reported the production of laboratory, is called recalcitrant [65]. 
rhamnolipid by resting free and immobilized cells of
Pseudomonas sp. DSM-2847 []. There are many other Laboratory Efficacy Testing: Laboratory experiments
examples of biosurfactant production by resting cells by demonstrate the potential of a particular treatment, which
different microorganisms, like sophorolipid production by may have to stimulate the removal of petroleum pollutants
T. bombicola [58], trehalose tetraester production by from a contaminated site [66]. Laboratory experiments that
R.erythropolis etc [59]. Using resting cells of closely model real environmental conditions are most
Arthrobacter sp. DSM-2567 and various mono,-di, or likely to produce relevant results [67-69]. In many cases
terasaccharides as the carbon source, the production of this involves using samples collected in the field that
corresponding glycolipids are observed [60]. Ramana and contain the indigenous microbial populations. In such
Karanth [61] reported a two-fold increase in rhamnolipid experiments it is important to include appropriate controls,
production when P. aeruginosa CFTR-6 is transferred such  as  sterile  treatments,  to  separate  the  effects  of



World J. Envir. Pollut., 2 (2): 29-41, 2012

33

the  abiotic  weathering  of  oil  from  actual spill identification needs and specific site investigation
biodegradation.  Such  experiments  do  not  replace  the needs, attention has recently focused on the development
need for field demonstrations but are critical for of flexible, tiered analytical approaches that facilitate the
establishing the scientific credibility of specific detailed compositional analysis by, gas chromatography
bioremediation strategies. They are also useful for with flame ionization detection (GC-FID), high pressure
screening potential bioremediation treatments. liquid chromatography (HPLC) and other analytical

The parameters typically measured in laboratory tests techniques. Many EPA and ASTM methods have been
of bioremediation efficacy include enumeration of modified to improve specificity and sensitivity for
microbial populations, determination or fate of measuring spilled oil and petroleum products in soils,
hydrocarbon degradation (disappearance of individual waters and contaminated sites. A variety of diagnostic
hydrocarbons and/or total hydrocarbons) [70]. The ratios, especially ratios of polycyclic aromatic
methodologies employed in these measurements are hydrocarbons (PAH) and biomarker compounds have
critical. It is assumed for example, that bioremediation of been proposed for interpreting chemical analysis results
oil pollutants will result in elevated populations of from spill samples. These advanced fingerprinting and
hydrocarbon degraders. Undoubtedly, the most direct data interpretation techniques are a clear advance over
measure of bioremediation efficacy is the monitoring of standard EPA methods because they can provide far more
hydrocarbon disappearance rates. When using this information directly useful for characterization and
approach, the appropriate controls and the proper choice quantification of spilled oil hydrocarbons [77-81]. 
of analytical techniques become especially critical. The Successful oil fingerprinting involves appropriate
"disappearance" of hydrocarbons may occur not only by sampling, analytical approaches and data interpretation
biodegradation but also by evaporation, photo strategies. In the nonspecific methods, only groups of
degradation and leaching. In a laboratory setting, the later fractions of chemical hydrocarbons are determined [82].
two are easily controlled, but the accurate control of The data generated from these methods generally lack
evaporative losses is troublesome. Sealed incubation detailed individual component and petroleum source-
systems are incompatible with the high oxygen demand of specific information and therefore are of limited value in
hydrocarbon degradation. Poisoned controls in open many oil spill investigation cases. In general, the
systems notoriously underestimate biodegradation [71]. petroleum-specific marker compounds selected must have
Normally, biodegradation and evaporation compete for the attributes of uniquely identifying spilled petroleum
the same hydrocarbons. If biodegradation is suppressed hydrocarbons from other sources and resist weathering
by metabolic poisons (usually HgCl ), hydrocarbons that and degradation over time. The major potential target2

would otherwise be degraded eventually evaporate. analytes and hydrocarbon groups for biodegradation
Gravimetric determination of residual oil may environmental assessment of spilled oil include the

overestimate biodegradation when volatile components following.
are lost during evaporation of the extracting solvent.
Conversely, biodegradation may be underestimated when Individual saturated hydrocarbons including n-
nonhydrocarbon materials are co extracted by the solvent. alkanes (C8-C40) and selected isoprenoids pristane
Biodegradation intermediates that have incorporated and phytane [83].
oxygen also increase the residual weight and may PAHs including the petroleum-specific (C1-C4) PAH
contribute to the underestimation of biodegradative homologues (that is, alkylated naphthalene,
losses [2]. phenanthrene, dibenzothiophene, fluorine and

Because of the outlined problems with residual chrysene series) and other EPA priority parent PAHs.
weight, most studies have turned to more definitive These alkylated PAH homologues are the backbone
analytical procedures [73-75]. A wide verity of of chemical characterization and identification of oil
instrumental and noninstrumental techniques is currently spills.
used in the analysis of oil. Depending on
chemical/physical information needs, the point of Polycyclic Aromatic Hydrocarbons (PAHs): Polycyclic
application and the level of analytical detail, the methods aromatic hydrocarbons (PAHs) are fused ring aromatic
used for oil spill study can be in general, divided into 2 compounds whose presence in contaminated soils and
categories: nonspecific methods and  specific  methods sediments poses a significant risk to the environment and
for detailed component analysis [76]. In response to oil they have cytotoxic, mutagenic and in some cases
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carcinogenic effects on human tissue [84,85]. There are Polyaromatic hydrocarbons (PAHs) are relatively
more than 70 compounds classed as polynuclear aromatic insoluble in water. Banerjee [100] calculated the solubility
hydrocarbons (PAHs) and they have from 2 to 7 rings. of a wide range of PAHs and found them to vary greatly.
During the last three centuries a relationship between the For example, solubility in 25°C distilled water varies from
higher incidence of cancer in urban and industrial area 31.7mg/l for naphthalene to 0.002 mg/l for the four-ring
than in rural areas and the exposure of human to chrysene. In general PAHs solubility decreases with
polycyclic aromatic hydrocarbons (PAHs) has prompted increasing molecular weight or number of rings [101].
considerable research on the source, occurrence, Naphthalene has often been selected as a model
bioaccumulation, metabolism and deposition of these compound for the study of PAHs degradation because of
pollutants in atmospheric, aquatic and terrestrial its high aqueous solubility and the ease of isolation of
ecosystems [86]. Because of their health risks to animals, microbes capable of its degradation [102].
including humans, PAHs are listed as priority pollutants
by the Environmental Protection Agency (EPA) [87]. General Concept in the Bacterial Degradation of
Although the ability of microorganisms to degrade Polyaromatic Hydrocarbons (PAHs): The degradation of
various PAHs has been studied, chemical oxidation, PAHs containing up to four or five rings by bacteria has
photolysis and volatilization of PAHs has also been been well documented. The process involving
detected in nature [88]. biodegradation are inversely proportional to ring size of

Aromatic compounds are of special interest because the PAH molecule. The lower weight of PAHs is degraded
they are relatively resistant to biodegradation and can more rapidly than the higher weight PAHs containing
therefore accumulate to substantial level in the three or more fused rings. Normally the higher molecular
environment. The bacterial utilization of several aromatic weight PAHs do not serve as amenable substrates for
hydrocarbons with low water solubility’s has been bacterial metabolism. Bacteria initially oxidize aromatic
investigated. The microbial degradation of PAHs having hydrocarbons by incorporating two atoms of molecular
two or three rings is well documented [89,90]. Only within oxygen into the substrate to from a dihydrodiol by a cis-
the last decade have a number of bacteria that metabolize configuration [103]. This reaction is catalyzed by a
larger PAHs molecules been isolated. These include dioxygenase, which is a multicomponent enzyme system,
Alcaligenes denitrificans [91], Rhodococcus species strain consisting of a flavoprotein, an iron-sulfur protein and a
UW1 [92], several Pseudomonas species [93,94] and ferredoxin [104]. Further oxidation of cis-dihydrodiols
various Mycobacterium species [95,96]. For example a leads to the formation of catechols. Another highly
Beijerinckia species has been found to metabolize benzo- stereoselective reaction during bacterial oxidation is the
(a)-pyrene and benz(a)-anthracene to cis-dihydrodiols [97] rearomatization of the cis-dihydrodiol by dehydrogenases
and two different Mycobacterium strains have been to form a dihydroxylated intermediate [105] (Figure 1).
isolated which can mineralize the four-ring PAHs, pyrene Dihydroxylation of the benzene nucleus has been found
[98-99]. to be essential for cleavage of the aromatic ring [106].

Fig. 1: Microbial oxidation of PAHs via dioxygenase pathway, [107].
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Microcosm Study: There are many definitions of at ambient temperatures. The immobilized culture was put
'microcosm' a typical one is that of an intact, minimally into sterile polythene bags and sealed aseptically and
disturbed piece of an ecosystem brought into the transported to the place of requirement [116].
laboratory for study in its natural state [108]. Microcosms
can vary in complexity from simple static soil jars of CONCLUSION
contaminated soil to highly sophisticated systems
designed to enable variations in various environmental A variety of technologies are currently available to
parameters encountered on site to be more accurately treat soil contaminated with crude oil including excavation
simulated in the laboratory. and containment in secured landfills, vapor extraction,

To determine the rate of hydrocarbon stabilization and solidification, soil flushing, soil washing,
biodegradation, accurate and reliable analyses are critical. solvent extraction, thermal desorption, vitrification and
One of the recommended standard analyses for the total incineration. Many of these technologies, however, are
petroleum hydrocarbons (TPHs) is based on the either costly or do not result in completed destruction of
degradation in the treated soil was accompanied by contamination. On the other hand, biological treatment
significant reduction in the ratio, compared to little or no ‘bioremediation’ appears to be among the most promising
change in the control tests [109]. methods for dealing with oil spills, particularly petroleum

Bioremediation was made simpler and more practical hydrocarbon. The technology is also environmentally
in the late 1980s by a technique that induces colonies of sound, since it simulates natural processes and since it
oil-eating bacteria to enter a state of suspended can result in the complete destruction of hazardous
animation-an inactive mode that the microbes normally compounds into innocuous products.
adopt during extended periods of drought or freezing. In No national coordinated response plan for oil spill
this state, the bacteria can be air-dried, packaged and bioremediation currently exists. A subcommittee of the
stored as a high concentrate powder with 90 percent EPA’s Biotreatment Action Committee Task Force,
survival rate, to be used in the field as needed. The dried therefore, was formed in June 1990 to discuss the
bacteria can be quickly restored to normal function at development of a National Bioremediation Spill Response
polluted sites by adding liquid nutrients and biological Plan. Such a plan would attempt to maximize the potential
catalysts [110]. Many carrier materials, mostly agricultural for the biotreatment of oil spills by focusing and
byproducts, are used to transfer the bacterial consortium channeling the sundry research and development efforts
to the field effectively [111-112]. The carrier material into a single coordinated plan.
provides nutrients, moisture and physical support for the Bioremediation offers several major advantages over
increased aeration needed by the microorganisms and conventional remediation techniques. The costs of
also assists in extending the survival of the bioremediation of soils and sludges at refineries are nearly
microorganisms until they are applied in the field. half the costs of conventional land farming. In addition
Extended survival of the microorganisms under field bioremediation uses one-third to one-tenth the amount of
conditions is essential for efficient degradation of the land and is significantly faster. Another study showed
toxic hydrocarbons, especially of the multi-ringed that costs of bioremediation could be as little as 1 percent
aromatic hydrocarbons and the recalcitrant ones, because of off-site incineration. One of the major advantages of in-
they are not degraded during the early stage of the situ bioremediation is that it is nondestructive. In many
process [113-115]. For example: The microbial consortium cases excavation is impossible due to the presence of
named as oilzapper was developed by the Microbial buildings and other structures. Also, the extent of the
Biotechnology Laboratory at TERI in collaboration with contamination may make excavation unreasonable.
Indian Oil (R and D). This bacterial consortium was Former U.S. Environmental Protection Agency (EPA)
developed by mixing five bacterial strains, which could Director, William Reilly supports bioremediation and
degrade aliphatic, aromatic, asphaltene and NSO considersing it to be one of the most promising treatment
(Nitrogen, Sulphur and Oxygen compounds) fractions of options. The EPA regards bioremediation as an
crude oil and oily sludge. It was immobilized on a suitable innovative technology and is encouraging industry
carrier material namely powdered corncob; which is an participation. In fact, the EPA has created the
environment-friendly, biodegradable product. Bioremediation Action committee composed of 150
Survivability of the consortium in the immobilized leading biotreatment experts from government, industry
condition was determined and found to be three months and academia.
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During the past decade, the need to deal with oil 9. Rana, K.S., 1992. First impact on aquatic ecosystem.
spills of increasing frequency and magnitude created a In oil pollution: Environmental Management in
whole new field of engineering and technology. The Petroleum     Industry.     Wiley    Eastern   Limited,
proceeding of conferences on “Prevention and control of pp: 168-179. Make references like this study.
oil spills” (1969, 1971 and 1973, American Petroleum 10. Rogowsky, R.A., 2004. Solid and Hazardous waste
Institute, Washington, D.C.) record many of these services: An examination of US and foreign markets.
developments. The current wave of scientific and Investigation no. 332-455. United state International
commercial interest in this subject was heralded by a trade commission Publication, pp: 1-7.
feature article in chemical and engineering News. A 11. Providenti, M.A., H. Lee and J.T. Trevors, 1993.
literature study of the subject was commissioned by the Selected  factors  limiting  the microbial  degradation
U.S. coast guard and a workshop on “the microbial of    recalcitrant    compounds.   J.   Ind.   Microbiol.,
degradation of oil pollutants” was held (December 4-6, 12: 379-395.
1972, Atlanta, Georgia). Several research groups 12. Ted,  S.  and  M.K.  Udall,  1991.   The   use of
proceeded  to  isolate  and   study   highly  effective genetically engineered microorganisms, plants and
strains or mixed enrichments of hydrocarbon degraders. animals. In: Impacts of applied Genetics of
Various commercial inocula, such as “Petrodeg,” microorganisms, plant and animals. Congress of the
“Petrobac”, “Ekolo-Gest” and “DBC-Bacterial” appeared U.S.A., Office of Technology Assessment,
on the market and were promoted as being effective for oil Washington DC, 1: 117-132.
cleanup. 13. Andrew,   R.W.J.   and   J.M.   Jackson,   1996.
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