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Abstract: The aim of this work is the development of an intelligent system for the detection of plant 
viruses, using biosensors and Artificial Neural Networks. The system is based on the Bioelectric
Recognition Assay (BERA) method for the detection of viruses, developed by our team. BERA sensors 
detect the electric response of culture cells suspended in a gel matrix, as a result to their interaction with 
virus’s cells, rendering thus feasible its identification. Currently this is achieved empirically by examining 
the biosensor’s response data curve. In this paper, we used specialized Artificial Neural Networks that were 
trained to recognize plant viruses according to biosensors’ responses. Moreover, in order to increase the 
stability and the generalization capability of the classification model we applied a smoothing technique of 
the data. In addition, we used an advanced energy function for the training of the ANN network to reduce 
the complexity of the model. 
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INTRODUCTION

The powerful tools of biotechnology are replacing 
the guesswork of early 20th Century medicine with 21st 
Century diagnostic skills that increasingly rely on
knowledge of physiology at the molecular level. In the 
last two decades, medical diagnostics have been shaped 
by breakthroughs in immunology-fueled development 
of Enzyme-Linked Immunosorbent Antibody (ELISA) 
and other tests that use antibodies and chemical tags to 
find evidence of microorganisms in diagnostic samples. 
Although they are used as standard routine assays, these 
methods have a relative reliability (which rarely
exceeds 70%) and a moderate sensitivity [1].

More recently, Reverse Transcriptase-Polymerase
Chain Reaction (RT-PCR) evolved from a profound 
understanding of the structure and function of DNA and 
RNA. These last techniques are very sensitive and 
selective, although they are associated with risks for the 
persons working with them, due to the frequent use of 
radioactive labels. Generally, the equipment required 
for conducting determinations by conventional methods 
is expensive and space-consuming, while there is an 
additional requirement for trained personnel and
laboratory infrastructure [2]. Moreover, the time needed 
for running a complete analysis varies from a few hours 
to several weeks, thus hindering the application of these 

methods to routine analysis. Therefore, conventional 
methods of determination have considerable
disadvantages as far as the issues of practicality; time 
and cost of each analysis are concerned [3]. 

The extraordinary evolution of analytical
technology now promises to make available an
especially sensitive and accurate biosensor called the 
Bioelectric Response Assay (BERA) system. Indeed, it 
was evolution itself that provided the basic assay
system at the core of biosensors--living cells.

BIOELECTRIC RECOGNITION ASSAY

A biosensor can be defined as a device
incorporating a biological sensing element connected to 
a transducer [4]. Biosensors can play an important role 
to biosecurity, homeland security, food safety,
environmental monitoring and medical diagnostics. Cell 
biosensors are based on the measurement of cellular 
responses to various compounds, such as measuring the 
cellular electrophysiological properties, in particular the 
electric potential, which reflects changes of a network 
of inter-related metabolic reactions.

The Bioelectric Recognition Assay (BERA) is a
technology that detects the electric response of culture 
cells, suspended in a gel matrix, to various ligands, 
which  bind  to  the  cell  and/or affect its physiology. In 
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previous studies [5-8] the potential application of the 
method for ultra rapid (some minutes) and ultra cheap 
tests for the detection of human and plant viruses has 
been demonstrated. Assays have been carried in an 
entirely crude sample and a high sensitivity of the
method (0.1 ng) has been indicated, making it an
attractive option for routine sample screening that could 
help reduce the exceeding use of advanced and costly 
molecular techniques, such as the Reverse
Transcription Polymerase Chain Reaction (RT-PCR).

After producing a series of different biosensor
generations, BERA biosensors were radically
redesigned in order to produce the fifth generation 
which is optimal for diagnostic applications. Fifth
generation biosensors are extremely miniaturized,
consisting of a disposable array of gel beads loaded 
with cells. They are characterized by a very high degree 
of reproducibility (>99.9%), extremely low cost and
high speed of manufacturing (with a production
performance of approx. 1000 sensors per technician per 
hour). A further variation of the method, called the “6th

sensor generation” employs 5th generation sensors 
which contain engineered cells expressing target-
specific antibodies on their membrane [9-11].

The major applications of BERA technology are 
for detection of viruses and metabolic changes linked to 
disease; and for screening candidate molecules for use 
as commercial pharmaceutical agents [12]. The
combination of simplicity, reliability and sensitivity
make BERA the assay of choice for mass screening 
programs and environmental monitoring. Results are
fast and offer an invaluable first look at infection,
disease and contamination. In this work, BERA
biosensors are used to detect plant viruses, such as the 
Tobacco Rattle Virus (TRV) and the Cucumber Green 
Mottle Mosaic Virus (CGMMV), using appropriate
plant cells as the sensing elements. In respect to 
virology applications, each virus demonstrates a unique 
pattern of biosensor response over a specific range of 
concentrations, like a ‘signature.’ That is, individual 
viruses leave each one a characteristic “signature”,
which can be read as a graphical curve.

In order to develop an intelligent system for the 
detection of plant viruses, we applied Artificial Neural 
Networks (ANN) with different architecture. Next, we 
describe Artificial Neural Networks and more
specifically Multilayer perceptrons which are the most 
popular feedforward classification models. 

ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks or simply Neural
Networks refer to a group of algorithms that typically 
operate  on   a  large  number of  simple  interconnected 

Fig. 1: The structure of an artificial neural network

components (or neurons). This networking enables the 
entire algorithm to perform much more powerful
computations by combining the limited processing
power of the separate components [13, 14]. The body of 
literature on Artificial Neural Networks (ANN) is
intractably vast, so here only some very general
comments will be made. An illustration of the structure 
of an Artificial Neural Network is illustrated in Fig. 1. 
Input data enter into the neural network from the input 
layer. The hidden layer associates the input with the 
output at the output layer.

The development of a neural network can be
distinguished into two phases. The first phase is the 
training or learning one. A neural network learns in a 
way that is specified by the training method, the
neurons’ behaviour and neurons’ interconnections.
Many examples pairs of inputs and outputs are given to 
the neural network for training. For each pair of input-
output, as a response to presented inputs, the synaptic 
weights change until the neural network learns to
associate the inputs with the given output. The second 
phase of the neural network development is called 
‘testing’, when it generates an output signal as a
response to previously unknown inputs, i.e. it
generalizes. The effectiveness of generalization can be 
expressed as the ratio of the correctly recognized input 
patterns to the total number of presented patterns during 
the test phase.

The generalization property as well as the
convergence of the empirical risk to its expected value 
depend on the Vapnik-Chervonenkis (VC) dimension h 
of the machine. The VC dimension of a set of indicator 
functions is the maximum number of patterns that can 
be shattered by the set of functions.

The VC dimension of a set of real functions f(x,w)
is the VC dimension of the set of indicator functions

I(x,w, ) H(g(x,w) ), w W, (A,B),β = − β ∈ β∈

Output layer
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Where, A g(x,w) B,w W≤ ≤ ∈  and A,B∈ℜ  and H
is the step function

0 x 0
H(x) .

1 x 0
<

=  ≥

In any case however, the results show that the 
generalization  error  Rgene is lower than a guaranteed 
risk [15] 

guarant emp empR R C(n,h,R , )= + η

where n is the number of training examples and the 
confidence interval C is a measure of the complexity of 
the machine and goes to zero as n→∞.

Thus, given a fixed number of training examples n, 
in order to minimize the generalization error we have to 
match  the  network  complexity  to  the training set. 
This can be done by defining a structure of nested 
network   families   with  increasing  VC-dimension
and then choosing the Sopt for which Rgene is minimized 
and subsequently minimize Remp. The two questions 
rising  are  how  to  define  a  good  structure  and  how 
to select Sopt.

The two most popular ways of defining structures 
are either by the architecture of the network or by the 
learning process. In the first case we vary the number of 
neurons of one of the hidden layers. We can start with a 
small number of neurons and add new ones when a 
certain criterion is met (growing algorithms) or
conversely we can start with a large number of nodes 
and delete some of them under certain conditions
(pruning algorithms). There is a large number of such 
algorithms [16-21]. In general all of them use some
criterion of the saliency of the weights and prune the 
ones with small saliency. In addition, they use some 
information theoretic or statistical quantity to measure 
the increase in complexity that adding a node causes, in 
order to decide whether to add a node or not.

In the case of defining the structure by the learning 
process we use regularization techniques, i.e. an extra 
term is added to the error function. This type of
function is designed to penalize the mappings that are 
not smooth and thus result in approximations with small 
variance. The error function then becomes

emp empR (w) R (w)= +λΩ

where the parameter λ controls the effect of the 
regularization on training. Large values of λ result in 
decreased variance and increased bias and visa versa. 

There  are  a  lot  of  other  regularizers proposed 
[22-25], many times derived from the nature of the
problems the network has to solve, always with success.

Neural networks offer several advantages over
conventional computing architectures. In this paper we 
present an extensive comparison among several
feedforward neural network models in the context of 
the detection of different type of plant viruses. We
present results from the application of Multilayer
Perceptrons (MLP).

Multilayer perceptrons: The most popular
feedforward neural network models  are the Multilayer
perceptrons which are trained with the Back-
Propagation (BP) algorithm. This algorithm is a
gradient descent procedure which minimizes the value
of the Energy (Cost) function

2
pj pj

p j
E(w) (t o )= −∑∑

where tpj is the desirable output of node j
corresponding to the p-th input pattern and opj the actual
output of node j for the same input. The cost is 
minimized by iteratively updating the weights
according to the following learning rule:

ij ijw (n 1) w (n) E(w)+ = −η∇

The transfer functions of network's nodes can be
either continuously differentiable sigmoid functions
saturating at 0/1 (or-1/1) or hard limiters. In order to 
improve the training speed and as well as the
effectiveness of the neural network, we employed the 
BFGS quasi-Newton optimization algorithm [26]. As 
termination criteria we considered the:

• Maximum number of iterations or 
• Mean square training error less than 0.01. 

Once the neural network has been trained (i.e. its 
internal parameters are fine-tuned), it can accept new 
inputs (not previously seen) and attempt to compute an 
appropriate output. To produce an output, the trained 
network simply performs function evaluation. To assess 
the generalisation performance, a separate test is
presented to the MLP after the completion of training. 
The ratio of correct recognitions to the total number of 
test patterns indicates the generalization capability of 
the MLP. 

EXPERIMENTAL EVALUATION

Collection of the training data: The focus of our study 
is on the prediction of the presence of a virus. In our 
experiments, the measurements produced from the
sensors are time series data. We used three types of 
BERA   biosensors,  one  with  antibodies  of  the  TRV
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Fig. 2: Graphical representation of a part from the training data for the CGMMV

virus, one with antibodies of the CGMMV virus and 
one with no antibody. Each experiment contained the 
recording of the response of each one of the mentioned 
biosensors to a specific virus. That means a sample of 
an already known virus was tested by the three
biosensors producing three different measurements for 
the same virus. 

In our case 300 experiments per virus were
performed producing 900 timeseries per virus which 
were used as training patterns for the neural network.

For any, given sequence of measurements for each 
experiment, we subtracted the value of the first
measurement from each measurement of the sample. So 
the first measurement was always zero. A part of the 
training data set concerning CGMMV produced by a 
biosensor with antibodies against CGMMV is
illustrated in Fig. 2.

We trained the first neural networks using as an 
input vector the whole time series (331 inputs). Several
network topologies were applied with one hidden layer 
consisted of 10-40 hidden units. Unfortunately the
performance of the trained neural networks was low. 
Then, we applied a resampling technique in order to
extract the necessary features and reduce the input 
vector. According to the resampling rate we defined the 
number of the produced features and also the
dimensionality of the problem. In addition, noise
accompanies almost every real measurement and the 
presence of noise also affects the similarity
significantly. Using smoothing techniques like a good 
resampling rate we could produce better quality of data 
without a considerable loss of information. 

The system: The BERA biosensor diagnostic system 
was available as a desktop, laboratory-scale prototype 
that could be operated by expert users only. Further 
dissemination and/or commercialization of the device 
required refinements and engineering for a more
compact, user-friendly unit. An essential element of this
work was the development of a user-friendly software 
that will allow for a rapid and reliable recognition of the 
signature-like response of a BERA sensor against a 
sample containing a virus under detection.

Each biosensor was connected to an electrode
made from 80% CuCopper, electrochemically coated 
with Silver an Ag/AgCl layer and having a diameter of 
0.75 mm. Electrodes were connected to the data
acquisition device, which comprised the PMD-1608FS
A/D card (Measurement Computing, Middleboro, MA). 
The acquisition device was connected to a computer via 
USB port. So the signal (pattern) produced by the
biosensor was stored in a computer file. This file may 
contain several signals (patterns) each of them
composed of 331 records (data measurements). Each 
measurement of the record of this file contained the 
average voltage that the biosensor produced in a
second. After the data recording was completed, we 
used an especially developed software, based on
Artificial Neural Networks, for the identification of the
virus. This software was developed using the Matlab 
package and it is trained to detect the CGMMV and 
TRV plant viruses. In this program (Fig. 3a) the user 
enters the name of the file to be examined. The program 
reads the data file and provides the user with an answer 
for  virus  identification  (Fig.  3b). If  the  file  contains
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Fig. 3: The developed software for the identification of plant viruses (a) Entering the file name to be examined (b) 
The program reads the data file and provides the user with an answer for virus identification

Table 1: Average results using BFGS quasi-Newton algorithm for 

training MLP

Network architecture* Resampling rate

Number of units in --------------------------------------------

the hidden layer 2 4 6 8

10 75.8% 84.3% 86.3% 78.9%

15 80.1% 86.1% 87.7% 81.2%

20 85.9% 87.2% 90.3% 81.7%

only one pattern the answer is directly given on the 
screen of the program.

The user, after the classification procedure, can 
save in a new file the examined data and for each 
pattern there is an extra label indicating the virus
identification. This is necessary in case the file contains 
more than one pattern.

In our experimental study we wanted to discover 
the appropriate resampling rate and the MLP
architecture (number of hidden units) that gives us the 
best results. To accomplish that we trained and tested 
several neural networks with different architectures and 
we also used several resampling rates to produce
training data sets with different dimensionality. We
considered MLP architectures consisting of the input 
layer (number of units according to the resampling 
rate), one hidden layer (10 to 20 sigmoid hidden units) 
and one output unit. Weights were randomly initialised 
in the range [-1, 1].

To compare the different network architectures,
several series of experiments had to be conducted. For 
each type of MLP, we employed the 10-cross-validation
method, in particular, ten experiments were performed 
with splits of data into training and test sets of fixed 

size. The average results were calculated from these ten 
trials and the best results are summarized in Table 1. 

The experimental results in Table 1 indicate that 
increasing the resampling rate we got better results, by 
smoothing the data, until we have had a considerable 
loss of information, with resampling rate = 8, that leads 
to a poor performance.

The proposed energy function: Moreover, in order to 
increase the classification stability of the method and 
the generalisation performance, we used an advanced 
energy function [27] for the training algorithm of the 
neural network. The energy function to be minimized is 
the following:

1 c 2 o 3 w
2

2o ip
w iji

1 p 2 32 2
p p ip o 1 ij w 2

i

E c E c E c E

n o n w
c E c c

o n k w n k

= + +

⋅ ⋅
= ⋅ + ⋅ + ⋅

+ ⋅ + ⋅

∑ ∑∑ ∑∑ ∑

Where, wij is the weight of the connection from 
node j to node i, oip is the output of node i and c1, c2, k1,
k2, no, nw are appropriate constants.

The extra terms added in order to increase the
stability of the algorithm and the generalization
capability of the network by reducing the number of 
active weights and nodes (i.e. weights and nodes with 
values not practically equal to zero). The average
results using the proposed energy function are
summarized in Table 2. 

Comparing the results in Table 1 with Table 2, we 
observe that using the proposed energy function in the 
training algorithm we can get more robust classification
models with better generalization performance. 
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Fig. 4: A part of the data file produced by the system after the classification procedure

Table 2: Average results using BFGS quasi-Newton algorithm with 
the proposed energy function for training MLP

Network architecture * Resampling rate
Number of units in ---------------------------------------------
the hidden layer 2 4 6 8
10 81.98% 87.90% 90.30% 83.90%
15 84.61% 90.68% 93.90% 85.80%
20 92.96% 93.41% 96.03% 93.61%

CONCLUSIONS

In this work, we applied Artificial Neural
Networks (ANN) with different architecture in order to 
develop an intelligent system using biosensors for the 
detection of plant viruses. The system is based on 
already developed by the team method for detection of 
viruses named BERA. The main drawback of this
method was the employment of an empiric way to 
detect the presence of a virus by examining the
biosensor’s response data curve. To overcome this 
problem, we used Artificial Neural Networks that are 
trained and specialized so that they recognize plant 
viruses in a selective pattern. In order to increase the 
classification stability of the method and the
generalisation performance, we proposed an advanced 
energy function for the training algorithm of the neural

network. We also used resampling as a smoothing 
technique to produce better quality of data without a 
considerable loss of information. 

An important strength of the proposed
classification approach is that it does not depend on the 
type of the classifier; therefore, it is quite general and 
applicable to a wide class of models including neural 
networks and other classification techniques. The next 
target of our work will be to develop a new neural 
network able to identify more than two viruses. Also,
we will try to identify the concentration of the
corresponding virus. Furthermore, we will train the
system to classify human viruses.
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