Local Gauss-Bonnet Theorem

${ }^{1}$ G. Ovando, ${ }^{2}$ J. López-Bonilla and ${ }^{2} S$. Vidal-Beltrán

${ }^{1}$ CBI-Área de Física Atómica Molecular Aplicada, Univ. Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas CP 02200, CDMX, México
${ }^{2}$ ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México

Abstract

Horndeski showed that in arbitrary 2-Riemannian space the Gaussian curvature is an exact divergence, then we employ this fact to exhibit an elementary proof of the local Gauss-Bonnet theorem.

Key words: Gauss-Bonnet theorem • Differential geometry of surfaces • Green theorem

INTRODUCTION

Horndeski [1] proved that the Gaussian curvature of a surface [2, 3] is an exact divergence:
$K=\left(\delta_{c d}^{a b} A c A^{d}{ }_{; a}\right)_{; b}, \quad \delta_{c d}^{a b}=\delta_{c}^{a} \delta_{a}^{b}-\delta_{a}^{a} \delta_{c}^{b}$,
where A^{r} is an arbitrary unitary vector field.

In Sec. 2 we employ (1) to give a simple proof of the important local Gauss-Bonnet theorem [2, 3]:
$\iint_{s} K d S+\int_{c} \sigma d s=2 \pi$,
such that C is any smooth closed contour on the 2 -surface, S is its interior, with s and σ the arc-length and the geodesic curvature of C, respectively.

Local Gauss-Bonnet Theorem: The expression (1) leads to the analysis of A^{r} as a previous step to the proof of (2). On C the vector A^{j} can be written as:
$A^{i}=p t^{i}+q n^{i}, \quad t^{r} n_{r}=0, p^{2}+q^{2}=1$,
in terms of the unitary tangent and normal vectors of C, verifying the Frenet formulae of the curve C relative to the surface:
$\frac{\delta}{\delta s} t^{r}=\sigma n^{r}, \quad \frac{\delta}{\delta s} n^{r}=-\sigma t^{r}$,
where $\frac{\delta}{\delta s}$ is the absolute derivative on C. Hence from (3) and (4) are immediate the relations:
$t_{i} \frac{\delta A^{i}}{\delta_{s}}=\frac{d p}{d s}-q \sigma, n_{i} \frac{\delta A^{i}}{d s}+p \sigma$,
besides, the metric tensor of the surface can be written on C in the form:
$\begin{array}{ll}\text { Corresponding Author: } & \text { J. López-Bonilla, ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista } \\ & \text { CP 07738, CDMX, México. }\end{array}$

$$
\begin{equation*}
g_{a b}=t_{a} t_{b}+n_{a} n_{b} \quad \therefore \delta_{b}^{a}=t^{a} t_{b}+n^{a} n_{b} . \tag{6}
\end{equation*}
$$

On the other hand, from (1) and the Green theorem [2, 3]:
$\iint_{S} K d S=-\int_{c} n_{b} \delta_{c d}^{a b} A^{c} A^{d} ;_{a} d s$,
then now we study the integrand of (7) on C :

> (2)
(3)
$n_{b} \delta_{c d}^{a b} A^{c} A^{d}{ }_{; a}=n_{b}\left(A^{a} A^{b}{ }_{; a}-A^{b} A_{; a}^{a}\right)=n_{b}\left(p t^{a}+q n^{a}\right) A_{; a}^{b}-q A_{; a}^{a}$,

$$
\begin{align*}
& \text { (6) } \tag{6}\\
& =p n_{b} \frac{\delta A^{b}}{\delta s}+q\left(\delta_{b}^{a}-t^{a} t_{b}\right) A_{; a}^{b}-q A_{; a}^{a} \stackrel{(3),(5)}{=} p \frac{d q}{d s}-q \frac{d p}{d s}+\sigma=p^{2} \frac{d}{d s}\left(\frac{q}{p}\right)+\sigma=\frac{d \varphi}{d s}+\sigma \tag{8}
\end{align*}
$$

such that φ is the angle between A^{r} and t^{r}, that is $p=\cos \varphi$ and $q=\sin \varphi$.
Finally, the application of (8) in (7) implies the local Gauss-Bonnet theorem expressed in (2), where the sense the sense of integration on C is counterclockwise.

REFERENCES

1. Horndeski, G.W., 1972. Dimensionally dependent divergences, Proc. Camb. Phil. Soc., 72(1): 77-82.
2. McConnell, A.J.M., 1957. Applications of tensor analysis, Dover, New York.
3. Dirk J. Struik, 1988. Lectures on classical differential geometry, Dover, New York.
