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Abstract: Horndeski showed that in arbitrary 2-Riemannian space the Gaussian curvature is an exact
divergence, then we employ this fact to exhibit an elementary proof of the local Gauss-Bonnet theorem.
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INTRODUCTION

Horndeski [1] proved that the Gaussian curvature of a surface [2, 3] is an exact divergence:

(1)

where A  is an arbitrary unitary vector field.r

In Sec. 2 we employ (1) to give a simple proof of the important local Gauss-Bonnet theorem [2, 3]:

(2)

such that C is any smooth closed contour on the 2-surface, S is its interior, with s and  the arc-length and the geodesic
curvature of C, respectively. 

Local Gauss-Bonnet Theorem: The expression (1) leads to the analysis of A  as a previous step to the proof of (2). Onr

C the vector A  can be written as:j

(3)

in terms of the unitary tangent and normal vectors of C, verifying the Frenet formulae of the curve C relative to the
surface:

(4)

where  is the absolute derivative on C. Hence from (3) and (4) are immediate the relations:

(5)

besides, the metric tensor of the surface can be written on C in the form:



 .a a a
ab a b a b b b bg t t n n t t n n= + ∴ = +

 ; ,ab c d
s c b cd aK dS n A A ds∫ ∫ = − ∫
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(6)

On the other hand, from (1) and the Green theorem [2, 3]:

(7)

then now we study the integrand of (7) on C:

(8)

such that  is the angle between A  and t , that is p = cos  and q = sin .r r

Finally, the application of (8) in (7) implies the local Gauss-Bonnet theorem expressed in (2), where the sense the
sense of integration on C is counterclockwise.
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