
World Engineering & Applied Sciences Journal 7 (4): 267-274, 2016
ISSN 2079-2204
© IDOSI Publications, 2016
DOI: 10.5829/idosi.weasj.2016.267.274

Corresponding Author: Sindhu, Department of Computer science and Engineering, 
Bharathiar University, Coimbatore, Tamil Nadu, India.

267

Efficient Knowledge Sharing and Fast Learning Agent Based
on Enhanced Dyna-QPC for Multi-Agent Systems

Sindhu and Dr. P. Thambidurai1 2

Department of Computer science and Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India1,2

Department of Computer science and Engineering, 2

Perunthalaivar Kamarajar Institute of Engineering & Technology, Nedungadu, Karaikal, India 

Abstract: In a multi agent system, the accuracy of the learning process is a major task between peers for the
access of agents’ capabilities for environmental modelling. It can relieve the liability of investigation for
invisible or unreached states. Meanwhile, in a limited period of time the development of accurate and effective
model is a major task, specifically for difficult atmospheres. In this paper, the enhanced reinforcement learning
method is proposed to have efficient modelling with reduced consumption of memory. The real time process
generates the essential capabilities in a model which reduce the learning elapsed time and appropriate for
sharing knowledge. The Enhanced Dyna-QPC (EDQPC) approach is proposed for efficient learning process and
its strategy integrates the aptitude of the learning model with less time for training than the existing approach
in real-world tasks. The learning agent involves the policy learning with the management of planning function
which update the status of the learning. In order to attain fast learning policy between the modes of virtual and
real is processed efficiently by the proposed approach. The simulation analysis is obtained to show better
performance in efficiency, speed and accuracy than the existing learning approach. 
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INTRODUCTION But Dyna  architecture  avoids  the  process of building

Reinforcement learning (RL) does an examination and up table methods. The  table  model  is  designed to
manipulation process to obtain the rewards from the decide the grid resolution in a continuous space. Though
evaluated results. The model with less time achieves less higher resolution it takes more time to obtain the output
accuracy when compared to the high accurate model. The model with more accurate than the model which takes less
RL agent attains an accurate model in the application time.
domain and the model can be used to perform the value RL algorithms are extended to multi agent systems by
iterations by indirect learning. It gives the same output in the recent approaches, where agent deals with the task
direct learning, but it takes simulated experiences using decentralized structures for solving more complex
generated by the model, instead of real experiences [1]. problems [4-17]. Though agents the experience are shared

Generally, RL agents do not have prior knowledge with partners, they usually evaluate their own
about an environment [2]. They learn the optimal policy sophistication levels of knowledge. Therefore, with less
from series of trial –and-error based concepts. Because of knowledge agents take advantage of the ones with more
this process, the time taken is longer to complete. experiences via sharing processes. The mechanism that
Therefore, sample efficiency is generally required for the purposely shares experiences to one another which are
RL applications to learn an effective policy [3]. realistic to the RL model is named as policy sharing [4],

The Dyna architecture is a model based method [15-16]. As well, the mechanism applied to model-based
which is extended from RL architectures [2] and also it RL for environmental modelling is referred to as model
includes policy learning and  an  internal  world  model. sharing [5, 9, 11]. 

internal  model  by  using  environmental  modelling  look



World Eng. & Appl. Sci. J., 7 (4): 267-274, 2016

268

There are two approaches in achieving this goal. whole decision tree to other agents [13]. This model is
They are: First approach, the state aggregation method presented to achieve sample efficiency in task domains
into model-free method, in which value function is learned with continuous state spaces. The main task is to
without using world model and generalizes the automatically generate various resolutions by using a
continuous state information that has a similar value decision tree and to approximate the transition probability
function [7,18, 19]. The Second method is model-based between two successive states. Based on this, several
algorithm, which forms the conversion function sharing methods for multi agent systems are proposed. If
possibility and rewards them by limiting the amount of the learning agents acquired sufficient experience, then
involvement with fewer environmental interactions [8]. they should share their experience with the others to
The model-free methods learn their policy very slowly construct their model [10]. 
than the model-based methods. The  rest  of  the  paper  is  organised  in a section

There are some challenges faced with extending the wise. In section II, the background of the learning and
model based RL on the applications of multi agent architecture  is  presented  with  the  approaches. In
systems. First, the properties of environments can be section  III,  the  proposed  approach  is  discussed  with
classified into deterministic and stochastic. When it is the flow work and the procedures. In section IV, the
under deterministic environment, the influence of simulation  results  of  the  proposed  approach  are
transition probability is ignored. But in a stochastic obtained to show the analysis of performances that the
environment, agents always transit onto next states with proposed approach is improved than the existing. The
some degree of uncertainty such that transition results demonstrate the applicability and effectiveness of
probability should be brought into model learning the algorithms. Finally, the conclusion is presented in
methods appropriately. Moreover, in order to have an Section V.
accurate virtual model of resembling the environment the
environment is discovered systematically and repeatedly Background: In this section, the process of learning
by the agents and it is essential. This process is quite methods and the model survey is presented with the
time-consuming and costs tremendous computational techniques. The following models are included in the
power. approach to have a better approach.

Sharing the knowledge between peers can decrease
the learning effort and have saved time. It is easy to Dyna  Architecture:  The  architecture  is  extended from
accomplish the agents having the same partition pattern the  RL  approach with the world model and policy
in the state space or state aggregations so as to share learning.  In  estimated model,the current stateis denoted
their model or policy information straight forwardly. If as s , the input actions as a , s  and r represented as
each individual model is held by a heterogeneous next state and rewards respectively as outputs. The
structure than the information sharing becomes a realexperiences are used to develop the model by
corresponding problem. updating the function and collecting information is

The sharing methods assume that the agents learn defined as a direct RL. The indirect RL describe the virtual
policies in a deterministic and stochastic environment. model with policy learning and it is also named as
They also share information between heterogeneous planning. The general architecture of the Dyna is shown
models. Tree structures are used to construct in Fig.1. 
environmental models and to share their experience by In that diagram the interaction between the
considering the leaf node information. So, alleviate the environment and the agent is represented as a bold arrow.
loads on data transfer between agents and save the The learning policy of the agent is represented as left
computational time of the sharing process [6]. As per dash arrow. From the interaction of direct RL the values
Chebyshev’s theorem the decision of interval is carried are updated and the process of experience retrieves from
out for data appearances [14]. model is indicated as control arrow of search. The final

This paper includes the model in the learning agents, outcomes are stored on the memory table and the policies
which are constructed by discrepant decision trees. The are updated from the experiences simulated. So this model
model sharing is treated technically as tree merging, so is based on a table. Dyna architecture organizes with the
that the proposed methods are to be merged with the Q-learning to have an efficient framework by including
whole tree; that is, the methods need to transplant the acting, direct RL, planning and learning model[19].

t s t+1 t+1
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Fig.1: General flow work of Dyna Architecture

Markov Decision Process (MDP): In RL, off-policy
method is processed with the strategy and uses the
function of the optimal value of the optimal policy. The
property of Markov is satisfied in the process of RL and
defines the action (a), state (s) and next state (s’) of the
environment[20].

The  probability  of   each   transition   is  p(s’| s, a)
and  the   reward   function   is  defined  as r(s, a, s’).  The
policy  is  determined  when  the  action  chosen  in  the
given state at the time (t) step and exploits the predictable Fig. 2: Basic CMAC Architecture
reduced upcoming accumulative return: r+ r + r +...,t t+1 t+2

2

or reward, where the discount rate factor is 0 1. Prioritized Sweeping: The interaction of the model

Reinforcement Learning: To solve the issues of during the interval of time. However, the value of Q
mathematical the machine learning is the science of represents the state-action effects. As per the
creating algorithms to solve mathematical problems. The measurement determination the updating of data is
issues are modelled as acting agent and the classic carried out with the usual prioritize and the algorithm is
environment is expressed in the learning machine as a implemented as per the flow of architecture. 
Markov decision process (MDP). Reinforcement learning
(RL) is a dynamic user interface design used to split the Q-Learning: The innovation of RL development is the
issues into sub part to have a quick solution. In RL, the reinforcement of the Q-learning algorithm and categorized
solutions  are  definable  by the trial-and-error and have as a model-free algorithm. Based on the estimation of the
the aspects like the function of the value function, Q* best value the optimization of pairs is processed with
environment  and  reinforcement  function.  The function the learned Q value andlearning rate ( ) [22]. The
of reinforcement is optimized basedon the value updating process is carried out as given below.However,
function[21]. the issue of this algorithm is taking more time to interact

The reinforcement function is well-definedwith the with the environment in order to resolve the issues.
exact function of upcoming rewards for maximizing the
agent seeks. The states value mapping is defined by the Q(s,a) = Q(s,a)+ (r+ max Q(s’-a’)-Q(s,a)) (1)
value function and based on policy the state selection is
processed by the action. Also, thereinforcement is Proposed  Work:   Enhanced Dyna  –  QPC   (EDQPC):
maximized and finds the optimal solution for the In this section, the explanation of the proposed technique
function[22]. with   its  model   and  the  implementation  is  discussed.

Cerebella Model Articulation Controllers (CMACs):
CMACs are used to estimate the functions outcomes by
mentioning the table of look-up which stores the
synapticweights. The corresponding output is derived by
summing up some of these synapticweights. The
functions relationship is processed by the fine-tuning
weight process and it can be approached by the CMAC.
The flow of mapping sequence is S C P O. O = h(S)
represents the overall mapping. The architecture of
CMAC is shown in Fig. 2.

considers the updating the values of Q which obtain

a’
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In proposing technique, the prioritized sweeping, CMAC w = (3)
and Improved Q-learning algorithm are combined to have
a minimum requirement of learning time. In the proposed
architecture the process of CMACs, learning process and
prioritized sweepingis implemented as same with the
function of training time estimation but modified in the
part of Q-Learning Algorithm. 

Fig. 3: Architecture of Dyna Agent

In Dyna architecture, the learning process of
reinforcement is carried out by using the proposed
approach of Enhanced Dyna – QPC (EDQPC). The EDQPC
approach processed with the improvement of Q-Learning
and policy for real-world tasks. As explained in the
section background the techniques are used with the
improvement. Fig.3 shows the Dyna agent architecture.

CMACs and Prioritized Sweeping: The properties of
output  superposition,  dynamic  computation and the
local generalization are in CMAC. The structure
simplifiesthe model estimate by gathering the real
involvementoverinterfacefor a virtual world model
development. The mapping sequence weight is updated
in the table as per the function of CMAC. The storage of
weight in the memory cell is represented as u ; W  asm mn

indexed cell of weight, which update the error minimization
between y  desired values.Fig. 4 shows the modeldn

architecture of CMAC and the cyclic path sequence is
carried out based on the interaction of agent act.

u =W x = (2)m m m

mn

Fig. 4: Flow of Proposed system CMAC Architecture

Algorithm: CMAC 
Clear memory, w (F) = 0, where s states, a  actions,s,a

F features
Do forever:

1.If model learning: (s, a)? environment
2.Else: (s, a) first(PQueue)
3.F= features(s, a)// CMAC hit memory
4.(s’, r) = sum(F) // output
5.If model learning: //update substances of hit memory
6.W (F) = w (F) + |c[desired(s’, a) – actual(s’, a)]s, a s, a

7.go to step 1;
8.Else Exit.

Improved Q-Learning Algorithm: In Q-learning process,
the environment knowledge is not needed and it is model-
free reinforcement learning. It combines and expands the
activitiesthrough error and trial process. In the framework
of reinforcement learningthe state choosesasuitable
action with instant reward (r) and maximizes the
challengesof the long-termrewards. The procedure
converges infinitely pairs visit with the probability.

In single-agent, it operates with the process of
Markov Decision in a finite-discrete-time. The
environment variations carried out based on the state
transition probability function. The reward (r) function is
determined based on the activities of travel length,
duration, start time, travel time and attraction degree.

The reinforcement learning tasks obtain
thevisualstrategy ( ) to achieve maximumaggregate*

reward ( )for every state. The accumulatedvalue??

( ) accomplishedfrom initial state by therandom??

policy .



World Eng. & Appl. Sci. J., 7 (4): 267-274, 2016

271

( )=r + r + r +… = r (4) Algorithm: Prioritized Sweeping?? t t+1 t+2 t+n’
2 2

=argmax V (s), (s) (5)*

The   maximum   reward   from  the   present   state by
the    optimal    policy    ( )    is    denoted   as  V (s).*

The  function  Q   value   is   determined   the  instant
reward    plusof    the    successive    state.    At    each
stage the   indexed   Q-value   is   updated   as  given
below.

Q(s,a)=(1- )Q(s,a)+ ( (r+ max Q(S’,a’)-Q(s,a)) (6)a’

Algorithm: Improved Q-Learning
Require: Initialize Q(s,a) with arbitrary values
For all episodes do
   1.Initialize s(0)
   2.t 0
   3.Repeat

a.Select action a(t) in state s(t), using a policy
derived from Q;
b.Execute action a(t), observe r(t+1) and s(t+1);
c.Q(s(t),a(t))=(1- )Q(s(t),a(t))+ ( (r(t+1)

+
)

d.t t+1
   4.Until s (t) being a terminal state
   End for

The procedure of the Q-Learning is given below:

The -values initialization
The starting state  is selected randomly, at least
with one promising action.
Choose one action and the possible action leads to
the next state
As per the policy the state-action pair Q-Value is
updated.
If possible actions available at the new state, then go
back to Step 3 
Else Step 2.

Prioritized Sweeping: In the proposed architecture,
prioritized   sweeping   is   implemented   with  the
improved  function  of  the  model.  It  is  used for
managing  the  system  of  Markov  with efficient
prediction and accurate process to have a real time
presentation.

Initialize Q(s, a), Model(s, a), for all s, a and PQueue to
empty
Do repeatedly:
   1.s  current (nonterminal) state
   2.a  policy(s, Q)
  3.Execute action  (a);  observe  resultant  state  (s’)  and
     reward (r)
   4.Model(s, a) s’, r 
   5.p |r +  max Q(s’, a’) – Q(s, a)|a’

   6.if p>, then insert s, a with priority p into Pqueue
   7.While PQueue is not empty,Repeat N time:

s, a  first(PQueue)
s’, r  models(s, a)
Q(a, s); // equation [6]

   8.Repeat, for all s,a predicted to lead to s:
r  predicted reward
p r+  max Q(s, a) – Q(s, a)|a

Go to Step 6;

The significant difficulty in prioritized sweeping is
that the discrete state assumption. If in any state any
changes occur, then the preceding state computation may
be affected. However, it is not clearlypointed about the
efficient process of identification.In this paper, CMAC
used an approximate model and resist with the effect of
variation of its Q value, from CMAC the affected states
are rescued. According to the procedure given below the
function of the model is carried out. 

Simulation Result: In this section, the performance of the
proposed approach is simulated and obtains the result of
analysis to show the improvement than the existing. The
simulated is carried out for the issues of mountain car,
maze and acrobot. Also, the performance of the proposed
approach Reinforcement Learning is illustrated. 

Fig.5: Simulation Results of Acrobot
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Fig. 6: Simulation Results of Maze

Fig. 7: Simulation Results of Mountain Car

The acrobot defines the arm of theunder actuated
robot and in machine learning the control process of it is
an issue. The performance of the learning method in
simulation of acrobot is shown in Fig. 5. The maximum
number of steps per episode for acrobot is 1000, the
discount factor is 1.0, the random selection of
actionprobability is 0.001 and the learning rate is 0.5. 

The issue of puzzles is referred in maze issues. It
processes the path collection to move from starting Fig. 9: Simulation Results of Cumulative Rewards Vs
position to the end position and some recent games are Episode
related to it. The simulation result of the maze is shown in
Fig.6. The maximum number of steps per episode for the The performance of the proposed reinforcement
maze is 2000, the learning rate is 0.1, the random selection learning approach Steps Vs Episode and Cumulative
of actionprobability is 0.1 and the discount factor is 0.95. Rewards Vs Episode is shown in Fig. 8 and Fig. 9

In Mountain Car simulation, the car in the valley has respectively. Finally the learning performance of the
to reach the peak directly. As per the technique the proposed RL approach is shown in Fig. 10. Table [1]
performance of the mountain car is carried out as shown shows the training time comparison of various methods.
in Fig. 7. The proposed agent can reduce the average The proposed EDQPC achieves 5 % faster than the Dyna-
steps and obtain its objective in the 5th episodes. Epsilon QPC and 46% faster than Table based Dyna-Q. 

10% andLambda 0.3 is obtained from the result. The
maximum number of steps per episode is 1000, the
discount factor is 0.8 and the learning rate is 0.7.

Fig.8: Simulation Results of Steps Vs Episode
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Fig.10: Simulation Results of Learning Performance

Table 1: Comparison of Various Methods for training time
Methods Training Time
Q-learning Unable to meet conditions
Table-basedDyna-Q 32193 seconds˜ 8.9 hours
Dyna-QPC 18618 seconds˜5.2 hours 
EDQPC 14895 seconds˜4.01 hours

CONCLUSION

In this paper, the Enhanced Dyna-QPC (EDQPC) is
proposed to have efficient performances and to resolve
the issues occurred in learning process. In EDQPC, the
input and output of the CMAC technique are estimated
according  to  the  process  and  provides  sequential
state-reward pair form the state-action pair. The function
searching control is processed to retrieve the
appropriatestate-action pairs by using prioritized
sweeping technique. The Q-Learning model is improved
by the Dyna agent process torecover the experiences
effective and updates the reinforcement learning between
agents as per the time period. The simulation and
researchoutcomesestablish the performance of EDQPC.
Also, the time required for training is reduced in the
proposed method than the existing methods. 
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