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Fatigue Failure of an Oval Cross Section Prismatic Bar at Pulsating Torsion

L.Kh. Talybly and N.M. Nagiyeva

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences

Abstract: The numbers of pulsating torsions, at which the first damages and fatigue failure of an oval cross
section prismatic bar happen, are determined. The bar's material has no strengthening and the plastic area
entirely covers the section's contour. At the initial elastico-plastic torsion of the bar from the natural state,
V.V.Sokolovski's solution was used. Intensity of residual deformations is accepted for a determining fatigue
failure parameter.

Key words: Oval section bar  Pulsating torsion  Damage  Fatigue failure

INTRODUCTION

Here,  under  fatigue or cyclic durability it is
commonly understood discontinuities of the material of where  is a slope tangential to the section contour, a >
construction under consideration under cyclic change of 3b Herewith, the semi-axes of the oval (ellipse) will be: a
plastic deformation [1-3]. At some experimental + b, a - b. A quarter of the considered oval cross section
investigations [4] carried out by infrared spectroscopy is given in Fig. 1.
and acoustic emission it is noted the fact that first fatigue Let the considered bar in the natural state be
damages of structural elements appear after certain subjected to the torque M . Under the action of the torque
number of cycles after the start of cyclic deformation M  in the bar there appear the stresses ,  strains ,
process. The number of cycles of loading, preceding to  and displacements u , u , u . The coordinate system
formation of first damages and to failure are x y z, whose origin coincides with the center of the oval,
commensurable  values.  Here,  by  using  the start of the axis x with the axis of the bar, the axis z with great
cyclic  damage  conditions  and  cyclic  strength obtained small semi- axis, the axis y with small semi-axis, is used.
in  [5], a  problem of fatigue failure of an oval cross The problem is in determination of stress, strain and
section prismatic bar at pulsating torsion is solved. displacements fields in elastic and plastic domains and
Herewith,  the  strengthening of the bar material is also in establishment of boundaries between these
excluded (ideally elastico- plastic deformable material is domains. The given problem, the problem of initial elastico
considered) and it is assumed that the plastic area entirely - plastic torsion of a bar under suppositions that the bar
covers the bar contour the known solution of material has no strengthening and the plastic area entirely
V.V.Sokolovskii [1] is used. In the unloading process covers the cross section, was solved by V.V. Sokolovsky
appearance of the area of secondary plastic deformations by the specific, so called the inverse method.
is allowed [3]. It is assumed that the hypothesis of plane cross

The residual stress and strains are found by using sections holds. Therewith the displacements u , u , u
the V.V. Moskvitin theorems on secondary plastic may be represented in the form.
deformations [3].

Statement and Solution of V.V. Sokolovsky Problem on
Initial Torsion of a Bar: Let as consider an oval cross where  is the twist angle of a unit length bar area, f(x, z)
section (almost elliptic) prismatic bar whose contour is is a torsion function characterizing the warping. Relative
determined by the following equations in the parametric torsion angle  is considered to be positive for
form [1]. definiteness.

xz yz xz

yz x y z

x y z

(1)



0xx yy zz xy′ ′ ′ ′= = = =
0xx yy zz xy′ ′ ′ ′= = = =

0,yzxz
x y

′∂′∂
+ =

∂ ∂

.yz xz
x y
′∂ ′∂ ′+ =

∂ ∂

1 1;
2 2

y yx z
x z y z

u uu u
y x z y

′ ′∂ ∂   ′ ′∂ ∂′ ′= + = +   ∂ ∂ ∂ ∂   

yz

xz

dy tg
dx

′
= =

′

( ) ,yz xz
F

x y dF M′ ′ ′− =∫∫

2 2 ,xz x z yz y zG G′ ′ ′ ′= =

1/ 22 2 ,xz yz s ′ ′+ = 

/ 3 .s s=

12 4

4 2 4
2 511 5

8
b b M

G a a a

− 
′ ′= − + 

  

2 4 4

2 4
511 5 ,
8 2

b b G aM
a a

 
′ ′= − +   

( ), 2 ,bf x y xy
a

= −

( ) ( )2 2
; ,xz yz

G a b G a b
y x

a a
+ −′ ′ ′ ′= − =

2 2; .
2 2xz yz

a b a by x
a a

+ −′ ′ ′ ′= − = −

( )1/ 22 22 .
3t x z y z′ ′ ′= +

( ) ( )
1/ 22 22 22 2 .

3t a b y a b x
a
′  ′ = + + −  

( )( )
.

2
s

s
a

G a b a b
=

− +

( )( )
52 4

2 4
511 5 .
8 2 2

s
s

ab bM
a b a ba a

 
= − +   − + 

2 2

2 2 1x y
c d

+ =
′

World Eng. & Appl. Sci. J., 6 (4): 207-214, 2015

208

Since the stresses  and (9)
strains , then the equilibrium
equalities and conditions of strain compatibility accept
the form: (10)

(2)

(3)

The Cauchy kinematic relations should be fulfilled:

(4) formulas (1) taking into account (8) and (10).

Since the lateral surface of the bar is stress free, on intensity of the strain  is expressed by the formula: 
the cross section contour the tangential stress vector
should be directed along the tangent to the contour: (13)

By using (12) in formula (13) the intensity of elastic

The principal momentum of tangential stresses acting
on the bar cross section equals the torque M : (14)

(5)

Here F is the area of bar cross section. contour first the plastic deformations appear. It is clear

In the elastic domain, the Hook’s law holds: = 0, y = ± (a - b). At this point, the yield condition (7) has

(6) get:

where G is a shear modulus? (15)
In the plastic domain, the von Mises yield criterion is

fulfilled: The torque M  at which plastic deformations appear,

(7) formula:

where  is the yield point in shear expressed by the yields

point in tension  by the relation? (16)s

Furthermore, the continuity condition of tangential
stress and axial displacement components when passing For M  > M , in the cross section of the bar there
through the boundary of elastic and plastic domains is arises a plastic deformation area. In the case when the
fulfilled. plastic area entirely covers the cross section, it holds the

According to [1], the solution of the elastic problem V.V. Sokolovskii solution [1]. According to
has the form: V.V.Sokolovskii's inverse method, the elastico plastic

(8)

or

(11)

(12)

The displacement u , u , u  are determined fromx y z

In conformity to the considered problem, the
t

deformations will be:

Let for  =  on the boundary of the cross sections

that the twist  first will accept the value  at the point xs

the form | | = . Allowing for the first formula of (11) wexz s

s

based on relations (9) and (15) are expressed by the

s

boundary is given in the form of an ellipse
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Herewith, for the semi-axis c  and d  the following The stresses  and  have the following
formulas are obtained: expressions in the elastic area.

(17) (24)

Where the twist  and the torque M  are connected
with the formula:

(18) equation [6]:

In the elastic area (inside the ellipse) the displacement ysin  + x cos  = 2b sin 2
u  is represented by the formula:

(19)

In the plastic area by the formula:

Residual Stresses and Strains of the Oval Bar: Define

(20) that in the unloading process in the bar there arise the

In the elastic area, the deformations  and  are will use the V.V.Moskvitin theorem on secondary plasticxz yz

expressed by the following formula: deformations [3]. According to this theorem, the residual

u  of the twist  may be determined by the formulas:

(21)

(22) (27)

In the plastic area we have stresses, strains, displacements, twists, respectively

The quantities  are the
(23) stresses, strains, displacements twists that hold in

xz yz

(25)

In the plastic area 

(26)

Herewith, along all the cross section it holds the

Note that the solution of (19)–(26) was obtained by
V.V. Sokolovski [1] and is true provided c a + b, or.

now residual stresses and strains that are preserved in the
oval bar after removing the torque. and we will consider

areas of secondary plastic deformations. To this end, we

stresses ,  strains ,  and displacements u , u ,0 0 0 0 0 0
xz yz xz yz x y

0
z

Here  are the

before  the  beginning  of unloading, that are determined
by  the  formulas (24), (25), (21)–(23), (1),(19), (20), (18).
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fictitious, oval bar at elasticoplastic torsion by the same We define the residual twist (M ) by the formula
torque M . Unlike the considered bar the yield point at the . Herewith the
shear of material of the fictitious bar is 2 . Between the quantity  is found from the equation (18), the quantitys

quantities M  and * it holds the relation (18) by changing * from (28). The ellipse separating the area of elastic
 by 2 : unloading and secondary plastic deformations ares s

determined by the semi-axes c  and d  coinciding with the

(28)

Herewith the elastic plastic boundary in the cross (36)
section of the fictitious, bar will be an ellipse with the
semi-axes c* and d*: Herewith the following condition should be fulfilled:

d a - b (37)

(29) happen elastic unloading. By decreasing the torque from

In the elastic domain, the cross sections of the extends from the point [0, ± (a - b)] to the centre of the
fictitious, bar will be: cross section of the considered bar. Herewith, the external

contours of the areas of secondary plastic deformations

(30) the semi-axes a + b, a - b the internal contours will be the

the relations (36) (Fig. 1).

(31) deformations [3] and formula (16), the second plastic

case if.

(32)

(33) plastic deformations at total unloading will be:

In the plastic domain of the cross section of the (38)
fictitious bar we have[7]:

(34) It is clear that subject to condition (38), the condition

At limit value M of the torque M , the plastic area at
(35) initial torsion fills all the cross section and elastic kernel

In elastic and plastic domains the expressions will be formula (17) will be 8b. For the quantity M  according to
written similarly for u* , u*  land u*. formula (18), we have:x y

0

0 0

semi-axes c* and d* respectively.

0

By decreasing the torque from M  to M , there willa

M  to zero, the area of secondary plastic deformationsa

will the parts of the contour of the oval cross section with

parts of the ellipse with the semi-axes c  and d , defined by

According to the theorem on secondary plastic

deformations in the unloading process will appear in the

Herewith, the condition of appearance of secondary

(37) will be fulfilled.
lim

degenerates into some section whose length according to
lim
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Fig. 1: Distribution of plastic deformations area in the quarter of an oval cross section bar at torsion and total unloading.

The area between the ellipses with semi-axes (c, d)
(39) and (c , d ). In this areas, according to formulas (26) and

Herewith, the value of the torque M  should be less
than of M . Subject to (39) and inequality (38), thelim

inequality M M  fulfilled in the case if the oval crosslim

section parameters a and b satisfies the condition:

(40) (43)

Condition  (40)  holds   subject   to   the  inequality:
[(a + b)/(a - b)]  5,65. Thus, in the bar made of ideally
plastic material with cross section in the form of an ellipse,
appearanc of secondary plastic deformations is possible
only the case if the ratio of its great semi-axis to the small (44)
one doesn't exceed 5,65. Subject to this condition, the
second plastic deformations at unloading will necessarily
arise if the value of torque will satisfy condition (38).

Calculate now the residual stresses and strains.
Herewith, we should bear in mind the existence of there (45)
different areas in the cross section (Fig. 2).

Area of secondary plastic deformations. According
to formula (26) and (40) and formulas (23) and (35), in this
area we have:

(41)

In this area, according to formulas (24), (25) and (30), (31)
(42) and also formulas (21), (22) and (32), (33) we have:

0 0

(30), (31) and also formulas (23) and (32), (33) we have:

(46)

The  area  inside  the  ellipse with semi-axes c and d.
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some fictitious bar of oval cross section at its elastic

expressions for  and :

(47)

(48)

* are determined through the torque M  by formulas (18)

(49)

(21), (22), (53), we have:

(50)

In the considered areas, the formulas of residual
replacements may be written in the similar way. Formulas
(41) – (50) are valid in the case when condition (38) and
(40) are fulfilled, i.e. if at total unloading there appear
secondary plastic deformations. But if one of the
conditions (38) and (40), is not fulfilled, then at removing
the torque there appears elastic unloading. Herewith, the
residual stresses and strains may be calculated by A.A.
Ilyushin’s elastic unloading theorem [5]. According to
this theorem, the residual sought-for values are
determined by formulas (27). Herewith, the quantities Fatigue Failure of Oval Bar at Pulsating Torsion: Now

are determined from (24) let’s consider a fatigue failure of the considered bar under
- (26), (21) – (23), (1), (19), (20), (18). pulsating torsion. We will use cyclic damage and the

. But the quantities are cyclic durability conditions. According to [5], the cyclic
the stresses, strains displacement s and twist existing in damage condition has the following form:

torsion by the torque that was applied to the considered
bar before unloading. According to whaps has been said
and on the base of formula (9) and (12) we write

(51)

(52)

(53)

The residual twist will be:  =   - * where  and0

and (51). The residual stresses and strains in the are a
outside the ellipse with the semi-axes c and d, according
to formulae (26), (52) and also formula (23), (53) will be:

In the area inside the ellipse with the semi-axes c and
d according to formulas (24), (25), (52) and also formulas
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Since  the  bar’s  material   is   ideally   plastic,  then

(54) unloading. This conclusion is valid also in the case if in

The cyclic durability condition is written as follows: deformations.

by the formula:

(55) (58)

In relations (54) and (55)  is the intensity of residual In the oval bar the section x = 0 is dangerous for0
t

deformations in the -the loading circle; N  is the number failure. From physical reasoning's it follows that failure of
of loading cycles at which in the material the damage the oval bar begins at the points (0, a - b); (0,-(a-b).
accumulation process begins for  is the Furthermore, existence of secondary plastic deformations
number of loading cycles to failure for at total unloading accelerates the metal failure process.

 and  are of the Proceeding  from  this  fact,  by  calculating the intensity
functions experimentally defined for each material, of residual deformations, we use formulas (42). For x = 0,
herewith N  and N  are the loading cycles before y = a - b, we have:1 0

appearance of damages in the experimental sample to
failure. In relations (54) and (55), N  and N  are the sought*

for quantities. 
The functions N  and N  may be approximated in the1 0

form: Taking into account the last relation in (58), we get:

(56)

When processing experimental data of the paper [4], (59)
for the steel of mark 45 the following values were
obtained: Formula  (59)  holds  in  any -th cycle of the

the number of pulsating torsion. Herewith from (57) it

Herewith N /N  = B = 0,4.5 In [5] it was mentioned quantities N  and BN , respectively. Consequently, we1 0

that the ratio N /N  = B = const holds for several materials. have:1 0

Proceeding from this fact, conditions (54) and (55) are
transformed to the form:

(57) At the above mentioned values , B, A  for the steel

Use conditions (57) for determining the amount of
pulsating torsion cycles to the first damage and failure of
the considered oval cross section bar. To this end, we
define the intensity of residual deformations (k), where0

t

 is the current amount of torsion.

the residual deformations for any –cycle of total
unloading  will  be  the  same  as in the first total

the first total unloading there arise secondary plastic

We calculate the intensity of residual deformations

pulsating torsion, i.e. the quantity  is independent of0
t

follows that the quantities N  and N  coincide with the*

0 0

0 0

of mark 45 and also at the values 

and  for the quantity N  and N  we get the*

following values: N  = 1,2. 10  cycle, N  = 2,67. 10  cycle.5 5
*
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