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Abstract: Frequent itemset mining is one of the most popular data mining tasks which has wide application
areas and is redefined in distributed environment. Computation and communication are two important factors
in distributed frequent itemset mining. In this paper two techniques have been exploited to reduce
communication and improve the running time in a distributed environment. These techniques were proposed
previously for centralized setting and here they are adopted in the FDM algorithm as one of the well-known
distributed association rules mining algorithm. The proposed algorithm uses Trie data structure for better
performance. Experimental evaluations on different sort of distributed data show the effect of using these
adopted techniques.
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INTRODUCTION Hipp et al. [4] provides a general survey on efficient

The association rule mining (ARM) is very important databases. AIS [5], SETM [6] and Apriori [7] can be
task within the area of data mining [1]. Given a set of considered as the first generation of association rule
transactions, where each transaction is a set of literals mining algorithms. Apriori algorithm is by far the most
(called items), an association rule is an expression of the well-known association rule mining algorithm. AprioriTID
form X _Y, where X and Y are sets of items. The intuitive [7] is an extension of the basic Apriori approach. Instead
meaning of such a rule is that transactions of the database of relying on the raw database, AprioriTID internally
which contain X tend to contain Y. An example of an represents each transaction by current candidates it
association rule is: “30% of transactions that contain beer contains. In AprioriHybrid both Apriori and AprioriTID
also contain diapers; 2% of all transactions contain both approaches are combined [].
of these items". Here 30% is called the confidence of the Many algorithms have been proposed to find
rule and 2% the support of the rule. The problem is to find frequent  itemsets  from  a very large database. The
all association rules that satisfy user-specified minimum number  of  database  scans  required  for  the  task  has
support and minimum confidence constraints. Frequent been reduced from a number equal to the size of the
patterns discovered via mining processes not only largest  itemset in Apriori [7], to typically just a single
themselves are interesting, but also are useful to other scan  in  modern  ARM  algorithms  such  as  Sampling
data analysis and mining tasks, including associative and DIC [8,9]. Efficient mining of association rules in
classification, clustering, cube computation and analysis transaction And/or relational databases has been studied
and gradient mining and multi-dimensional discriminant substantially [7-11].
analysis [2]. When data is saved in a distributed database, a

The main task of every ARM algorithm is to discover distributed data mining algorithm is needed to mine
the sets of items that frequently appear together, the association rules. Mining association rules in distributed
frequent itemsets. Finding frequent itemsets in transaction environment is a distributed problem and must be
databases has been demonstrated to be useful in several performed using a distributed algorithm that doesn’t need
business applications [3]. raw data exchange between participating sites. Distributed

mining of association rules in transaction and/or relational



World Appl. Sci. J., 9 (5): 546-552, 2010

547

association rules mining (DARM), has been addressed by large itemsets in DB and L  the globally large k-itemsets
some researches and number of distributed algorithms in L. The essential task of a distributed frequent itemset
have been proposed [12-16]. mining algorithm is to find the globally large itemsets L.

Apriori [7] is one of the most popular data mining
approaches for finding frequent itemsets from Previous Works: Since its introduction in 1993 [1], many
transactional  datasets.  The  Apriori  algorithm  is  the algorithms with different approaches have been
main basis of many other well-known algorithms and suggested for the ARM problem. Here we review some of
implementations. The main challenge faced by the the related work that forms a basis for our algorithm.
researchers in frequent itemset mining has been to reduce
the execution time. One of the best implementation of The Apriori Algorithm: The Apriori algorithm is
apriori algorithm is published by Bodon [11]. We use proposed by Agrewal in [7] and is the basis for many
Bodon sequential idea to provide a distributed algorithm. other FIM algorithms.
The main reason we adopted Bodon’s implementation for In the first pass, the occurrences of each item is being
parallel computing is because Bodon’s implementation counted and the items with insufficient support get
using the trie data structure outperforms the other removed to create L , the collection of large 1-itemsets.
implementations using hash tree [7,11,18].

In this paper we have exploited two techniques to A subsequent pass, say pass k, consists of two steps:
reduce communication and improve the run time in
distributed environment. These techniques were The large (k-1)-itemsets collection L  found in the
proposed previously for centralized setting [19] and we previous pass is used to generate C , the list of
have adopted them in the FDM [13] algorithm as one of candidate k-itemsets; which is a superset of the set
the well-known distributed association rule mining of all large k-itemsets. A candidate is generated from
algorithms. After implementation and running new every two large (k-1)-itemsets which are similar in
algorithm on different datasets and comparing them by their first k-2 items. Then, the candidates that have
classic FDM, the result shows some optimization. an infrequent subset are removed from the set of

Notation and Problem Definition: Let I = {i , i , …, i } be The database is scanned and the support count for1 2 n

the  items  in  a  certain domain. An itemset is a subset of each candidate itemset in C  is determined. Removing
I. A k-itemset is an itemset with k items from I. A database items with support counts less than the minimum
DB is a list of transactions where each transaction T is required gives us the large k-itemsets (L ).
also a subset of I.

Now assume that there are n sites S , S , …, S  in a The Trie-based Apriori: Bodon shows that using efficient1 2 n

distributed system, which communicate by message data structures and implementation is very important in
passing. Let DDB = {DB , DB , …, DB } be a “horizontal” improving  the  performance  of  Apriori  algorithm  [11].1 2 n

partition of DB into n parts. We allocate each DB  to the He proposed a fast Apriori implementation using the triei

site S . data structure instead of a hash tree which was used ini

For any itemset X and transaction T we say T the classical approaches.
contains X if and only if X T. For any itemset X and any A trie is a rooted, labeled tree. In the FIM setting
group of transactions A, Support(X, A) is the number of each label is an item. The root is defined to be at depth 0
transactions in A which contain X. We call Support(X, and a node at depth d can point to  nodes  at  depth d+1.
DB) the global support count of the itemset X in the A pointer is also referred to as edge or link. Each node
database DB and Support(X, DB ), the local support represents an item sequence that is the concatenation ofi

count of X at site i. For a given minimum support labels of the edges that are on the path from the root to
threshold s, X is globally large (or globally frequent) if the  node.  So  a  path from root to each node represents
Support(X, DB) = s × D, where D is the number of an  itemset.  In  this implementation, the value of each
transactions in database DB; correspondingly X is locally node is  the   support count for the itemset it represents.
large (or locally frequent) at site if Support(X, DB) = s × In Figure. 1a trie is displayed. The path to the node
D , where D  is the number of transactions in database representing itemset {A, B} is shown in blue. The supporti i

partition DB . In the following, L denotes the globally count for this itemset is 7.i
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Fig. 1: Candidate generation on a trie data structure

Fig. 2: An Example of transaction trimming

For each transaction record T in the database the trie from its polling site. This idea reduces communications
(containing the candidate itemsets) is recursively between processes. FDM’s main advantage over CD [12
traversed and the value of each leaf node will be is that it reduces the communication overhead.
incremented if T contains the itemset represented by that
node.  The  traverse  of  the  trie is driven by elements of Hash-Based Algorithm: As illustrated in section 1, in
T. At the end, nodes whit a support count less than the each pass we use the set of large itemset L , to create the
required minimum will be pruned. set of candidate large itemsets C , by joining L  with L

In the candidate generation phase, we just need to (i-1)-common items for the next pass. We then scan the
add a leaf node to its left siblings to create new valid database and count the support of each itemset in C in
candidates,  eliminating the need for further processing. order to determine L . In general, more number of
In Figure. 2 shows a trie structure before and after the new itemsets in C  cause higher computation time to determine
candidates are generated. L . Therefore, if the number of candidate itemsets can be

The FDM Algorithm: In each site, FDM [13] finds the be reduced. 
local support counts and prunes all infrequent local As proposed in [16], the DHP algorithm uses the
candidate sets. After completing local pruning, each site technique of hashing to filter out unnecessary itemset for
broadcasts messages containing all the remaining next candidate generation. When the support of candidate
candidate sets to all other sites to request for their k-itemset is counted by scanning the database, DHP store
support counts. It then decides whether large itemsets are some information about candidate (k+1)-itemsets in hash
globally frequent and generates the candidate itemsets table to prune unnecessary candidate itemsets. Each
from those globally frequent itemsets. This process bucket in hash table consists of a number to represent
continues until no globally frequent itemsets is generated how many itemsets have been hashed to this bucket thus
or no candidate set is produced. far. For every candidate k-itemsets present in a

To reduce message communication, algorithm uses transaction the count is incremented in corresponding
polling site method. In this method every itemset is assign transaction. Thus, at the end of iteration, we have an
to one local site and this site must calculate support count upper bound on the support count of every candidate of
of it. So if a site need support count of any itemset, ask the  next iteration. At the start of next iteration if the count

(i)

(i+1) (i) (i)

(i+1)

(i+1)

(i)

(i)

reduced, the run time of frequent itemsets counting would



In Ordinary style:

Do local_ apriori( )

Create hash table( )

For each hash_bucket H

     If (count (H)>local_min_sup)

          Send polling_request (Polling_Hash(X))

Receive all hash_Counts from their polling site

FDM_Apriori( ) //do ordinary FDM on dataset

Transaction_Trimming in local database

In Polling site Style:

If receive any_hash_request H

{

     Broadcast (hash_count_request H)

     Receive Sumerize (hash_count H) From all sites

          For all hash_Bucket H

         If (count(H))>global_min_sup

                    Broadcast(hash_count)

}

100  {A,B},{C,D},{C,E}
200  {A,C},{B,E},{C,D}
300  {B,E},{C,E}
400  {A,E},{B,C}

Min Sup = 2 

4 3 1 1 1
 0      1      2      4

500  {C,D},{C,E},{D,E}
600  {A,C},{B,C},{B,D}
700  {B,E},{C,D}
800  {A,E},{B,E},{D,E}

Min Sup = 2 

4 1 3 1 2
 0      1      2      4

Site 1 Site 1

Global Bucket
Min Sup = 4

8 4 4 2 3
  0       1      2       3

H{{X,Y}} = ((order of X) * 6 + (order of Y)) mod 5 
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Fig. 3: Pseudo Code of algorithm

Fig. 4: An Example of Distributed Hash Filtering

of a bucket is below the support threshold all of assigned sufficient condition. An example of transaction trimming
candidate itemsets of that bucket are deleted from list of is shown in Fig. 2.
candidates.

DHP reduce the database size by not only trimming Our Implementation: In this section, we describe our new
each individual transaction size but also pruning the algorithm that we used it. In 3.1 we show our distributed
number of transaction in database. Note that as observed hash filtering idea and in 3-2 we explain our distributed
in [7] on mining association rule, any subset of a large transaction trimming. In Fig. 4 a pseudo-code of our
itemset must be a large itemset by itself. This fact suggest algorithm is shown.
that a transaction be used to determine the set of large
(k+1)-itemset if it consist of (k+1) large k-itemset in Distributed Hash Filtering: Like the lemma about local
previous pass, otherwise the transaction prune from the and global frequent itemsets that presented in [13] we
database. restate the lemma about each bucket in hash table:

We now, take a closer look at how the transaction
size is trimmed by DHP. If a transaction contain some Lemma 1: if a bucket of candidate itemsets are not filter in
(k+1) large itemsets, any item contained in these (k+1)- a distributed database, the bucket must not be filtered in
itemsets will appear in at least K of the candidate k- at least one local database. 
itemsets in C . as a result, an item in transaction T can be At the end of iterations, in addition to support counts(k)

trimmed if does not appear in at least k of the candidate k- of candidate itemsets, information about hash table of
itemsets in T. this part is a necessary condition, not a each  local  database  must  be  exchanged  among  sites.
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In order to better perform of this operation, number of time of the DARM problem due to distributed database
polling sites are determine like the approach which the size reduction.
FDM uses to obtain global support of candidate itemsets.
We can assign number of bucket to each polling site. If in EXPERIMENTAL RESULTS
a local site the count of a bucket is larger than minimum
support threshold, the site sends the bucket to We have implemented all programs in C++ using
corresponding polling site. The polling site aggregate the Visual Studio 2005. The implementations have been tested
information about that bucket from other sites and on a workstation for which Windows XP is running on
determines weather that bucket must be filtered or no. every node. This workstation consists of eight 3.00GHz
Each polling site informs other sites about its results. Pentium IV PC with 512 MB of main memory, which are

In Fig. 4 there is a simple example about Distributed interconnected via 10M/100M hub. Parallel message
hash Filtering. In this example, there are 2 sites and passing software MPICH 2 (Net version) is used here [20].
minimum support threshold is 4 in whole database. To empirically evaluate the effect of using proposed
Therefore local support in each site is equal to 2. Bucket technique several tests are performed on the datasets
0 doesn’t be filtered, because count of this bucket in each kosarak and T40I10D100K. Both dataset are available on
of two sites is greater than minimum support. Bucket 1 is FIM repository.
satisfied by minimum support in site 1 and not in site 2, Both the FDM algorithm and a version of the FDM
but sum of this bucket in all of databases is equal to 4 and algorithm which uses the new technique are implemented.
satisfies minimum support due to keep of this bucket. To implementation of them, we use trie data structure. The
Values of Bucket 3 in each of two sites are not greater aim is to show the effect of using the new technique
than Minimum support, so we filter this bucket without inside of a DARM algorithm in terms of communication
any communication. But we filter bucket 4 by using its and computation. 
polling site. The communication and computation are measured

Distributed Database Transaction Trimming: In order to support values. In every experiment the original dataset is
improve the performance of FDM algorithm, transaction horizontally divided in a number of fragments, each of
trimming is also adopted. Each local site used the them is assigned on a node.
approach described in section 2.4. In this way the size and In Table 1 and 2 experimental results for two samples
the number of transactions of distributed database is database is shown. Each column shows the result of
reduced. Since each site autonomously and without algorithm for various numbers of sites and every row
communicating with other sites performs transaction illustrates one minimum support. "1 site" column
trimming,  this technique can significantly improve the run represents sequential results.

with various numbers of nodes and various minimum

Table 1: Execution times for database Kosarak
minimum support 1 site 2 sites 4 site 6 sites 8 sites
0.04848 17.75 10.93 5.01 3.59 2.41
0.00303 23.33 14.11 6.15 4.95 3.10
0.00202 35.43 20.13 10.3 7.73 5.6
0.00121 159.06 98.33 50.32 38.12 30.31
0.00091 538.64 310.03 169.33 140.12 101.12
0.00088 772 482.68 238.12 190.01 151.12
0.00085 1610.61 1283.3 590.12 483.81 400.78

Table 2: Execution times for database T40I10D100K
minimum support 1 site 2 sites 4 site 6 sites 8 sites
0.03000 10.13 5.78 3.23 2.30 1.63
0.01000 37.23 22.10 11.01 8.05 5.93
0.00800 143.12 88.34 43.92 32.89 25.51
0.00580 325.79 205.33 110.12 84.05 61.95
0.00370 528.04 307.12 165.12 127.40 99.21
0.00215 1535.65 1103.77 510.32 430.91 340.05
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Fig. 5: Execution times for database kosarak with minimum support threshold of 0.00121

Fig. 6: Execution times for database T40I10D100K with minimum support threshold of 0.00580
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