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Abstract: The notion of topologically free partial action of a group on a C*-algebra is generalized to a 
topological action of an inverse semigroup on a C*-algebra. Also, partial crossed product of a C*-algebra
and a group by a partial action is generalized to the crossed product A×αS in which α is the action of the 
unital inverse semigroup S on the C*-algebra A. Invariant ideal under the action of an inverse semigroup 
and its associated quotient action are discussed. 
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INTRODUCTION

In the last decade, the theory of crossed product of 
C*-algebras by semigroups of endomorphisms has been 
developing successfully. This theory is a generalization 
of the theory of crossed product of C*-algebras by 
groups of automorphisms, which is a well-established
area of operator algebras. Another variant of crossed 
product which is different from the group actions by 
automorphisms, involves partial actions by partial
automorphisms and was introduced by R. Exel [3] to 
study circle actions on C*-algebras. Crossed products 
by partial actions of discrete groups were treated by 
MacClanahan [8] and were subsequently characterized 
from differed perspectives by Quigg and Raeburn [10], 
Exel [5], Quigg [9] and Exel, Laca and Quigg [2].

The well-established notion of the crossed product 
of a C*-algebra by an action of a group uses a
homomorphism  into  the  automorphism  group  of  the 
C*-algebra. We know that, we can not talk about a 
homomorphism between an inverse semigroup and a 
group (automorphism group). The idea of a partial
action is to replace the automorphism group by the 
inverse semigroup of partial automorphisms. By using 
the above facts, the definition of action of an inverse 
semigroup on a C*-algebra is given by N. Sieben [13]. 
Also, invariant ideals of a partial action of a group, 
quotient partial actions and topological freeness for
group actions are considered in [2]. Following [2,13], 
we are going to replace the group G by a unital inverse 
semigroup S and to discuss the above items. 

The structure of the paper is as follows.
Action of an inverse semigroup on a C*-algebra

and its properties are considered in section 1. In section 

2 we study topological actions of an inverse semigroup 
on a C*-algebra. Also, we prove that for every s≠e in S 
there exists h in C0(X) such that 0≤h≤1 and ||h(ƒδs)h|| is 
too small for every ƒ in C0(Us).

Section 3 is devoted to consider the problem of 
invariant ideals, their associated quotient actions and 
the relation between ideals of A and ideals of A×αS.
Also, we prove that if c∈C0(X) ×αS, ε is given and E is 
the conditional expectation on C0(X)×αS then there 
exists h∈C0(X) such that 0≤h≤1 and ||hE(c)h-hch||<ε.

ACTION OF AN INVERSE SEMIGROUP

By a unital inverse semigroup we mean a
semigroup S with the unit element e such that for each s 
in S, there exists a unique element s* in S with the 
following properties:

(i) ss*s = s ;
(ii) s*s s * = s*.

Let A be a C*-algebra. A partial automorphism of 
A is a triple (α,I,J) where I and J are closed two-sided
ideals in A and α:I→J is a ∗-isomorphism.

For given partial automorphisms (α,I,J) and
(β,K,L) of A, their product αβ is nothing but the
composition of α and β with the largest possible
domain, that is, αβ:β−1(I)→A such that
(αβ)(a) = α(β(a)). Obviously, β−1(I) is a closed ideal of 
K and since ideals of ideals of a C*-algebra are,
themselves, ideals of that algebra, the product
(αβ, β−1(I), αβ (β−1(I))) is a  partial automorphism too. 
It is  not  hard  to  see   that   the  set  PAut(A) of partial
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automorphisms of Ais a unital inverse semigroup under 
the composition with  the  largest  possible  domain
with  the  identity (i,A,A), where i is the identity map 
on A  and    (α,I,J)* = (α−1,J,I).

Definition  1.1:  Let  A  be a C*-algebra and S be a 
unital  inverse  semigroup  with  the  identity e. An 
action   of   S  on  A  is  a  semigroup  homomorphism. 

)(:),,( * APAutSEEs sss →  with AEe = .
An element s of an inverse semigroup S is called 

idempotent if s2 = s. And S is called an idempotent 
semigroup if s2 = s for all s in S. Our general reference 
on semigroups is [7]. 

Lemma 1.2: Let S be an inverse semigroup, α an 
action of S on a C*-algebra A and s∈S, then

ess ,1−=∗  is the identity map on A and if s is an 

idempotent, then αs is the identity map on Es* = Es.

Proof: Since α is a homomorphism, we have 

ssss sssssss ∗==== ∗∗ )()()()()(

on the other hand ssss
1−=  So, by the uniqueness

of inverses in inverse semigroups, we conclude that 
1−=∗ ss .

Moreover
essesesse ====

therefore αe = iA. If s is an idempotent, since s2 = s we 
have sss = s2 = s and ss*s = s so by uniqueness of
inverse of s we conclude that s = s* and αs = αs*. On 
the other hand 

iesssss ==== ∗
2)(

Therefore αs is the identity map on Es = Es*.

Lemma 1.3: If α is an action of the unital inverse 
semigroup S on A, then αt (Et* Es) = Ets for all s,t in S. 

Proof: Since Eτ* and Es are ideals in the C*-algebra A 
we have Et* Es = Et* ∩ Es. So 
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Definition 1.4: By a semipartial dynamical system we 
mean a triple (A,S,α), in which A is a C*-algebra, S is a 
unital inverse semigroup and α is an action of  S on A. 
The following definition is pivotal for our purposes. 

Definition 1.5: Let (A,S,α) be semipartial dynamical 
system. By a covariant representation of (A,S,α) we 
mean a triple (π,ν,H) in which, π:A→B(H) is a non-
degenerate representation of A on the Hilbert space H 
and ν:S→B(H) is a multiplicative map such that
 (i) νsπ(a)νs* = π (αs(a)) for all a∈Es* ;
(ii) νs is a partial isometry with initial space π(Es*)H

and final space π(Es)H.

It is not hard to show that νe = 1H, the identity map 
on H and νs* = (νs)*.

Let (A,S,α) be a semipartial dynamical system.
Consider

})(:),({ 1
sA EsxASxL ∈∈=  ,

the closed subspace of 1(S,A) . Define multiplication 
and involution on LA by

∑ = ∗=∗ srt rr tyrxsyx )]())(([))((
and,

])([)( ∗∗∗ = sxsx s

Note that LA is closed with respect to the above 
operations, simply because by the Lemma 1.3 we see 
that (x∗y)(s)∈Es for every s∈S and as a consequence 
x∗y∈LA. Also, for given x in LA since x(s*)∈Es* and Es*

is an ideal of A we have (x(s*))*∈Es*. Therefore
αs(x(s*)*)∈Es, that is x*∈LA. Simple computations show 
that ||x∗y|| ≤ ||x||||y|| and ||x*|| = ||x|| where ||⋅|| denotes the
norm of LA inherited from 1(S,A) .

         The fact that LA is a Banach ∗-algebra is proved in 
[13, Prop. 4.1]. If (π,ν,H) is a covariant representation 
of (A,S,α), as defined by N. Sieben in [13], section 3, 
then π×ν   is   a   non-degenerate  representation  of
LA ([13, Prop. 4.3]). 

Definition 1.6: Let A be a C*-algebra and α be an 
action of the unital inverse semigroup S on A. Define a 
seminorm ||⋅||c on  LA by ||x||c =sup{||(π×ν)(x)||:(π,ν,H) is 
a covariant representation of (A,S,α)}. Let 

}0||:||{ =∈= cA xLxI

The crossed product A×αS is the C*-algebra
obtained  by  completing  the  quotient  LA/I  with 
respect to ||⋅||c.

Example: The set of all pairs with complex coordinate, 
C2, is a C*-algebra with norm, multiplication and 
involution defined as follows: 
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The group of integers, Z, is a unital inverse
semigroup.

Take A = C2 and S = Z. Define ideals E0 = A,

}:),0{(
}:)0,{(

1

1

AaaE
AaaE

∈=
∈=−

and En = {(0,0)} for all n, except for n = -1,0,1. Let α0

be the identity map on A. Also, α1((a,0)) = (0,a) is the 
forward  shift  and n

n 1=   for  all  n≠0. Obviously, 
(αn, E−n, En) is a partial automorphism of A and A×αS is 
isomorphic to the matrix algebra M2.

TOPOLOGICALLY FREE ACTIONS 
OF A UNITAL INVERSE SEMIGROUP

Topologically free partial actions of groups are
considered in section 2 of [2]. Following that we will 
introduce the notion of topological action of an inverse 
semigroup on a locally compact Hausdorff space. Also 
we will consider those actions of an inverse semigroup 
on the C*-algebra C0(X) which are corresponding to the 
above topological action.

The major new results of this section are theorems 
2.4, 2.6 and 2.9. 

In this section we will mostly be concerned with 
(C0(X),A,α) where X is a locally compact Hausdorff 
space and α is that action of S on C0(X) which arises 
from partial homeomorphisms of X. That is, for every 
s∈S there is an open subset Us of X and a
homeomorphism θs:Us*→Us such that Ue = X and θe is 
the identity map on X. The action α of S on C0(X)
corresponding  to  the  partial  homeomorphism θ is 
given by 

))(())(( xfxf ss ∗=

for s∈S and ƒ∈C0(Us*).
Now we can summarize the above facts in the

following definition. 

Definition 2.1: Let S be a unital inverse semigroup and 
X  be  a  locally  compact Hausdorff space a topological
action of S on X is a pair θ = ({Us}s∈S, {θs}s∈S), where 
for each s in S, Us is an open subset of X,θs:Us*→Us is a 
homeomorphism,  Ue  =  X  and θe is the identity map 
on X.

Given a topological action ({Us}s∈S, {θs}s∈S) of  S 
on a locally compact Hausdorff space X, let Es = C0(Us)

be identified, in the usual way, with the ideal of
functions in C0(X) vanishing off Us. Therefore we have 
the following definition. 

Definition 2.2. The action α of S on C0(X)
corresponding to the topological action  is given by 

)(,))((:))(( 0 ∗∗ ∈= sss UCfxfxf
for each s in S. 

Definition 2.3: The topological action θ of S on X is 
topologically free if for every s∈S-{e} the set 

})(:{: xxUxF sss =∈= ∗

has empty interior.
Although Fs need not be closed in X, we will show 

that it is closed in Us*. For this, let x be a limit point of 
Fs and x∈Us*. There exists a net {xi}i of elements of Fs

such that xi→x. Since θs is a homeomorphism we have 
θs(xi)→θs(x). From θs(xi) = (xi) we see that xi→θs(x).
Uniqueness of the limit of a net shows that θs(x) = x, 
that is, x∈Fs. This shows that Fs is closed in the domain 
of θs.

A set A in a topological space X is called nowhere
dense if its closure has empty interior, in particular a 
closed set is nowhere dense if and only if its interior is 
empty. To say that A has empty interior is to say that A 
contains no open subset of X other than the empty set. 
The union of any finite set of nowhere dense sets is 
nowhere dense ([6], Sec. 1.10). 

Theorem 2.4: The topological action θ of a unital
inverse semigroup S on X is topologically free if and 
only if for every s∈S-{e}, the set Fs is nowhere dense. 

Proof: The “if ” part is trivial. For the “only if ” let θ be 
topologically free. We know that Fs is closed relative to 
Us*. As a consequence Fs = C∩Us* in which C is a 
closed subset of  X. If V is open and sFV ⊂ , then

.

)(

sss

sssss

FUCUC

UUCUFUV

=∩=∩⊆

∩∩=∩⊂∩

∗∗

∗∗∗∗

Since Fs has empty interior and V∩Us* is open we 
see that V∩Us* = ∅. So the open sets Us* and V are 
separated. Now, since 

∗∗∗ ⊆∩⊆∩=⊂ ssss UUCUCFV

we see that V = ∅. That is Fs is nowhere dense. 
The following equivalent version of topological 

freeness is more appropriate for our purposes. 
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Corollary 2.5: The topological action θ of S on X is 
topologically  free  if  and  only  if  for  every finite 

subset {s1, s2,…,sn} of S-{e}, the set 
n

i
si

F
1=

 has empty 

interior.

Proof: Any finite union of nowhere dense sets is 
nowhere dense. 

In the remainder of this work we denote by δs(s∈S)
the function in L which takes the value 1 at s and zero 
at every other element of S. 

Theorem 2.6: Let )(,}{ 0 ss UCEfeSs =∈−∈  and

x0∉Fs. For every ε>0 there exists h∈C0(X) such that:
(i) 1)( 0 =xh ;
(ii) ≤||)(|| hfh s  and
(iii) 10 ≤≤ h .

Proof: Since x0∉Fs let us separate the proof into two 
cases according to x0 being in the domain Us of θs* or 
not. Let x0∉Us. From ƒ∈Es we see that the set 

})(:{: ≥∈= xfUxK s

is a closed subset of Us and x0∉K. So by the Urysohn's 
lemma there exists h in C0(X) such that 0≤h≤1,h(K) = 0 
and h (x0) = 1.

Now since the restriction of the function h to the 
set Us implies that hƒ∈Es, we conclude that
(hƒ)δs∈ C0(X) ×αS. So that

≤

−∈∪

∈=

∈=≤

}):)()({

}:)()(sup({

}:)()(sup{))()((

KUxxfxh

Kxxfxh

Uxxfxhhfhhf

s

ses

This shows that (ii) holds.
If x0∈Us then θs*(x0)≠x, since X is Hausdorff, there 

are disjoint open sets V1 and V2 such that x0∈V1⊂Us

and θs*(x0)∈V2⊂Us*.
If V: = θs(V2)∩V1, then x0∈V1 and θs*(V)⊂V2.

Since V1∩V2 = ∅ we have θs*(V) ∩V = ∅. Now there 
exists   h   in  C0(X)  such  that  0≤h≤1,  h (x0)  =  1  and
h (X-V) = 0. Obviously, (i) and (iii) hold. To show (ii) 
holds, we know that 

0))(())()(( === ∗ sessess hhfhhfhhf

simply because the support of αs*(hƒ) is contained in 
θs*(V), the support of h is in V and θs*(V)∩ V = ∅.

Definition  2.7:  If  A  is  a  C*-algebra  and  if  B  is  a 

C*-subalgebra of A, then by a conditional expectation
from A to B we mean a continuous positive projection 
of A onto B which satisfies the conditional expectation 
property

P(ba) = b P(a) and P(ab) = P(a) b
for b∈B and a∈A.

Note that if P is a positive map on A, then it is
easily seen that P(a*) = (P(a))* for all a∈A and from this 
it follows easily that the conditional expectation
property from right multiplication by elements of B is a 
consequence of that for left multiplication and
conversely ([12, Def. 1.3.]).

By  [11, 6.2.1]  we  can  consider  C0(X)  as
C*-subalgebra of the partial crossed product C0(X)×αS.
Therefore the conditional expectation from C0(X)×αS
onto C0(X) which is denoted by E is meaningful. 

Definition 2.8: A semipartial dynamical system
(A,S,α) is said to be topologically free if the set of fixed 
points for the partial homeomorphism associated to 
each non-trivial semigroup element has empty interior. 

Since the conditional expectation E: C0(X)×αS→
C0(X) is contractive we can state and prove the
following theorem. 

Theorem 2.9: If (C0(X), S, α) is a topologically free 
semipartial  dynamical  system then for every
c∈C0(X)×αS and every ε>0 there exists h∈C0(X) such 
that:

 (i) −≥ )()( cEhchE ,

(ii) ≤− hchhchE )(  and
(iii) 10 ≤≤ h .

Proof: Let c be a finite linear combination of the form 
Σt∈T αt δt , where T denotes a finite subset of S. Define 
E(c) = ae if e∈T and E(c) = 0 if e∉T. Since 

}:)(sup{ Xxxaa ee ∈= ,

for given ε>0, the set 
})(:{ −≥∈= ee axaXxV

which is, clearly open, is nonempty. Since the
topological action α is topologically free by Corollary 
2.5 there exists x0∈V such that x0∉Ft for every t∈T.
Take ƒt =  atδt∈Dt, for ε/|T| by Theorem 2.6 there exist 
functions ht such that 

||
)(,1)( 0 T
hahxh ttttt ≤=  and 10 ≤≤ th .
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Let h = ∏t∈T-{e}ht. Obviously 0≤||h||≤1, that is, (iii) 
holds. Also (i) holds, simply because x0∈V and 

−>=
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In order to prove (ii), we have
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For  arbitrary  element c, since c is the limit of a 
net in C0(X)×αS and E is contractive, a standard
approximation argument finishes the proof. 

PROPERTIES OF INVARIANT IDEALS

Throughout this section, S is a unital inverse
semigroup, X is a locally compact Hausdorff space, θ is 
a topological action of S on X and α is the action of S 
on C0(X) which is corresponding to θ.

The major new results of this section are Lemma 
3.3, Corollary 3.4, Theorem 3.5 and Conjecture 3.6. 

Definition  3.1:  An  ideal  I  in  C0(X) is Called 
invariant  under   the   corresponding  action α  on 
C0(X)  or  simply α-invariant  if αs(I∩Es*)⊆I  for 
every s in S. 

Lemma  3.2:  If α  is  an  action  of S on a C*-algebra
A = C0(X) and I is an α-invariant ideal of A then 

IEIE ttt ∩=∩∗ )( .

Proof: Obviously, αt(Es*∩I)⊆Et∩I. Now let y∈Et∩I.
Since y∈Et, there exists x in Et* such that y = αt(x). We 
claim that x∈I and as a consequence 

)()( IExy ttt ∩∈= ∗

If x∉I then x∉ Es*∩I and IIExy ttt ⊂∩∉= ∗ )()(

That is, y∉I and it contradicts to the hypothesis. 
Let α be an action of  S on A = C0(X). For each 

invariant ideal I of A there is a restriction of α to an 

action of  S on I. That is, if Stttt EE ∈∗= )},,{(

is an action of S on A and αt:Et*→Et is a partial 
automorphism of A, then 

Stttt IEIE ∈∩∩=Θ ∗ )},,{(

in which θt = αt|I and
)( IEIE ttt ∩=∩ ∗

is an action of  S on I, by Lemma 3.2. Also,

Stttt EE ∈∗= )},,{( 

in which
}:{ ∗∗ ∈∈+= tt EaIAIaE

and,
IEEE ttttt +=→ ∗∗ )(: 

defined by 
IaIa tt +=+ )()(

is a quotient action modulo I of S on A/I. 
Now we make an attempt to investigate the relation 

between the quotient of the crossed product A×αS
modulo the ideal generated by I and the Crossed 
product of A/I by the quotient action modulo I. That is, 

the relation between 
〉〈

×
I

SA
 and .SIA ×

Lemma 3.3: Let α be an action of S on a C*-algebra A 
and I be an α-invariant ideal of A, then the map from 

1(S,I)  to 1(S,A)  induces an injection from I×αS to 
A×αS.

Proof: Let 
})(:),({ 1

sA EsxASxL ∈∈= 
and,

})(:),({ 1
sI EsxISxL ∈∈= 

where in LA the ideal Es is an ideal of A but in LI, the 
ideal Es is an ideal of I. As we showed in [14], LA and 
LI are closed subalgebra of 1(S,A) . The inclusion map 
from 1(S,I)  into 1(S,A)  maps LI into LA simply
because if 1b (S,I)∈ , i.e., b = Σs∈S asδs where each 
as∈Es, then 1i(b) b (S,A)= ∈ . Note that we used the fact 
that, ideals of ideals of a C*-algebra are, themselves, 
ideals of that algebra. Thus the inclusion map induces 
inclusion map i from I×αS to A×αS. In order to prove 
that i is injective it is enough to show that every 
covariant representation of (I,S,α) extends to a
covariant representation of (A,S,α). Therefore, let
(π,ν,H) be an arbitrary covariant representation of
(I,S,α). Since (π,H) is a representation of I  without loss 
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of generality we can assume that π:I→B(H) is
nondegenerate. By using [1, Prop. 2.10.4] there exists a 
unique extension π′ of π to a representation of A on H 
and we have ))(()( aa sss ′=′ ∗ for all a∈Es*. That 

is, (π′,ν,H) is a covariant representation of (A,S,α).

Corollary 3.4: If I is an α-invariant closed two-sided
ideal of A then I×αS is a closed proper two-sided ideal 
of A×αS.

We will denote by <J> the ideal generated by a 
subset J of a C*-algebra B. 

Theorem 3.5: Suppose α is an action of S on A and 
assume I is an α-invariant ideal of A. Then the map 

SAaSIa ss ×∈→×∈

extends to an injection of I×αS onto the ideal <I> 
generated by I in A×αS and <I>∩A = I. 

Proof: Obviously, Lemma 3.3 and Corollary 3.4 show 
that I×αS injects as an ideal in A×αS. Therefore we can 
identify I×αS with 

}.,:{ SsEaasapn ss ∈∈

Also, we can identify I with its canonical image Iδe

in A×α S. Since <I> is the smallest ideal containing I
we have <I>⊆I×αS. In order to prove the reverse
inclusion it suffices to show that aδs∈<I> for every 
a∈Es∩I and s∈S. Therefore let a∈Es∩I and let bλ be an 
approximate unit for the ideal Es. Since 

〉〈∈= Ibaab ses ))((
and,

〉〈∈=
∞→

Iaba slim

we have I×αS⊂<I>. That is, I×αS=<I> and as a
consequence I = <I>∩A.

Since      the      map      aδs→(a+I)δs     induces   a 
∗-homomorphism from 1(S,A)  onto 1(S,A/I)  we have 
the following conjecture.

Conjecture 3.6: Under the assumptions of Theorem 3.5 
we have the following exact sequence. 

.0)(0 →×→×→×→ SIASASI 
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