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Abstract: The notion of topologically free partial action of a group on a C*—algebra is generalized to a
topological action of an inverse semigroup on a C*—algebra. Also, partial crossed product of a C*—algebra
and a group by a partial action is generalized to the crossed product Ax,S in which a is the action of the
unital mverse semigroup S on the C*-algebra A. Invariant ideal under the action of an inverse semigroup

and its associated quotient action are discussed.
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INTRODUCTION

In the last decade, the theory of crossed product of
C*-algebras by semigroups of endomorphisms has been
developing successfully. This theory is a generalization
of the theory of crossed product of C*-algebras by
groups of automorphisms, which is a well-established
area of operator algebras. Another variant of crossed
product which is different from the group actions by
automorphisms, involves partial actions by partial
automorphisms and was introduced by R. Exel [3] to
study circle actions on C*—algebras. Crossed products
by partial actions of discrete groups were treated by
MacClanahan [8] and were subsequently characterized
from differed perspectives by Quigg and Raeburn [10],
Exel [5], Quigg [9] and Exel, Laca and Quigg [2].

The well-established notion of the crossed product
of a C'-algebra by an action of a group uses a
homomorphism into the automorphism group of the
C"-algebra. We know that, we can not talk about a
homomorphism between an inverse semigroup and a
group (automorphism group). The idea of a partial
action is to replace the automorphism group by the
inverse semigroup of partial automorphisms. By using
the above facts, the definition of action of an inverse
semigroup on a C*-algebra is given by N. Sieben [13].
Also, invariant ideals of a partial action of a group,
quotient partial actions and topological freeness for
group actions are considered in [2]. Following [2,13],
we are going to replace the group G by a unital inverse
semigroup S and to discuss the above items.

The structure of the paper is as follows.

Action of an inverse semigroup on a d-algebra
and its properties are considered in section 1. In section

2 we study topological actions of an inverse semigroup
ona C*-algebra. Also, we prove that for every s#e in S
there exists h in Cy(X) such that 0<h<1 and ||h(f&)h]| is
too small for every f in Co(Us).

Section 3 is devoted to consider the problem of
invariant ideals, their associated quotient actions and

the relation between ideals of A and ideals of AxS.
Also, we prove that if ceCy(X) xS, € is given and E is
the conditional expectation on Cy(X)x,S then there
exists h e Cy(X) such that 0<h<1 and ||hE(c)h-hch||<e.

ACTION OF AN INVERSE SEMIGROUP

By a unital inverse semigroup we mean a
semigroup S with the unit element e such that for each s
in S, there exists a unique element s in S with the
following properties:

. *
(1) $$ =5,
(i) sss =s.

Let A bea C*-algebra. A partial automorphism of
A 1is a triple (@,I,J) where I and J are closed two-sided
ideals in A and a:.I—>J is a *-isomorphism.

For given partial automorphisms (a,l,J) and
(B,K,L) of A, their product af is nothing but the
composition of o and B with the largest possible
domain,  that is, (xB:B_l(I)—>A such  that
(ap)(@) = a(B(a)). Obviously, [3_1(1) is a closed ideal of
K and since ideals of ideals of a C*-algebra are,
themselves, ideals of that algebra, the product
(ap, [3_1(1), ofy (B_I(I))) is a partial automorphism too.
Itis not hard to see that the set PAut(A) of partial
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automorphisms of Ais a unital inverse semigroup under
the composition with the largest possible domain
with the identity (i,A,A), where i is the identity map
on A and ((x,I,J)* =(a "))

Definition 1.1: Let A be a C*-algebra and S be a
unital inverse semigroup with the identity e. An
action of S on A is a semigroup homomorphism.
s (o, E o, Ey) S — PAul(A) with E, = 4.

An element s of an inverse semigroup S is called
idempotent if § =s. And S is called an idempotent
semigroup if s =s for all s in S. Our general reference
on semigroups is [7].

Lemma 1.2: Let S be an inverse semigroup, o an
action of S on a C*-algebra A and seS, then

a. =a;1,ae is the identity map on A and if s is an
s :

idempotent, then o is the identity map on Eg« = E;.

Proof: Since o is a homomorphism, we have
o, =a(s)=ofss"s) = a(s)a(so(s) = a0 .

on the other hand ¢, = asas_las So, by the uniqueness
of inverses in inverse semigroups, we conclude that
oL =0 I
Moreover

o0, =0, =0, =0, =00,

. . . . 2

therefore o, = is. If s is an idempotent, since s* = s we
* .

have sss = & = s and ss’s = s so by uniqueness of

inverse of s we conclude that s = s* and o5 = og+. On
the other hand

2 .
(o) =05 =00 =01, =i

Therefore oy is the identity map on Eg = E+.

Lemma 1.3: If o is an action of the unital inverse
semigroup S on A, then o (Ex Eg) = E for all s,t in S.

Proof: Since E+ and E are ideals in the C*-algebra A
we have Ei E, = E« N E;. So
Ott(Et* E) =0, (E,* NE,)=image (a0 )

= image(o(t)o(s))

= image(o(ts))

= image(ats) = Ets’

Definition 1.4: By a semipartial dynamical system we
mean a triple (A,S,a), in which A is a c’ -algebra, Sisa
unital inverse semigroup and o is an action of S on A.
The following definition is pivotal for our purposes.
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Definition 1.5: Let (A,S,a) be semipartial dynamical
system. By a covariant representation of (A,S,a) we
mean a triple @v,H) in vhich, mA—B(H) is a non-
degenerate representation of A on the Hilbert space H
and v:S—B(H) is a multiplicative map such that

(1) vsm(a)vs+ = (0s(a)) for all acEg+;

(ii) v is a partial isometry with initial space m(Es+)H

and final space m(Es)H.

It is not hard to show that v, = 1y, the identity map
on H and vg+ = (vs)*.
Let (A,S,a) be a semipartial dynamical system.
Consider
L,={xel'(S,4):x(s) e E,},
the closed subspace of ¢'(S,A). Define multiplication
and involution on L, by

(x*))(s) = 2, 0, [, (x(r)y(D)]
and,
x*(s) = o [x(s™)"]

Note that I, is closed with respect to the above
operations, simply because by the Lemma 1.3 we see
that (x*y)(s)eEs for every seS and as a consequence
xxyeLa. Also, for given x in Ly since x(s*)eES* and Eg«
is an ideal of A we have (x(s)) €Eg. Therefore
ocs(x(s*)*)eES, that is X eL4. Simple computations show
that |jx*xy| < |Ix/llly|| and ||X*H = |Ix|| where ||| denotes the
norm of L, inherited from ¢'(S,A) .

The fact that L, is a Banach *-algebra is proved in
[13, Prop. 4.1]. If @v,H) is a covariant representation
of (A,S,0), as defined by N. Sieben in [13], section 3,
then mxv is a non-degenerate representation of
La ([13, Prop. 4.3]).

Definition 1.6: Let A be a é-algebra and o be an
action of the unital inverse semigroup S on A. Define a

seminorm |- on Lx by [X]le =sup{[|(mxv)x)[:(mv.H) is
a covariant representation of (A,S,a)}. Let

I={xelL, | x|.=0}

The crossed product Ax4S is the C*-algebra
obtained by completing the quotient I,/ with

respect to ||[|c.

Example: The set of all pairs with complex coordinate,
Cisa C*-algebra with norm, multiplication and
involution defined as follows:
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ICerse ) = max ey | Jes |
(Cl »C2 )(C{ > Cé ) = (Clcl’ > CZCZ' );

(¢1,6,)" =(€,¢)).

The group of integers, Z, is a unital inverse
semigroup.
Take A = C? and S = Z. Define ideals Ey =A,
E;={a0):aecd}
E, ={(0,a):a € 4}

and E, = {(0,0)} for all n, except for n = -1,0,1. Let ay
be the identity map on A. Also, a;((a,0)) = (0,a) is the
forward shift and o, =o' for all n=0. Obviously,

(o, Eon, E,) is a partial automorphism of A and A x,S is
isomorphic to the matrix algebra M.

TOPOLOGICALLY FREE ACTIONS
OF A UNITAL INVERSE SEMIGROUP

Topologically free partial actions of groups are
considered in section 2 of [2]. Following that we will
introduce the notion of topological action of an inverse
semigroup on a locally compact Hausdorff space. Also
we will consider those actions of an inverse semigroup
on the C*-algebra Co(X) which are corresponding to the
above topological action.

The major new results of this section are theorems
2.4,2.6and2.9.

In this section we will mostly be concerned with
(Co(X),A,0) where X is a locally compact Hausdorff
space and a is that action of S on Cy(X) which arises
from partial homeomorphisms of X. That is, for every
seS there is an open subset Us of X and a
homeomorphism 6:Us+—Ug such that U, = X and 6, is
the identity map on X. The action a of S on G(X)
corresponding to the partial homeomorphism 6 is
given by

o () =f(0,.(x))

for seS and feCy(Us+).
Now we can summarize the above facts in the
following definition.

Definition 2.1: Let S be a unital inverse semigroup and
X be a locally compact Hausdorff space a topological
action of S on Xis a pair 0 = ({Us}ses, {0s}ses), Where
for each s in S, Uy is an open subset of X,04:Usx—Us is a
homeomorphism, U, = X and 6, is the identity map
on X.

Given a topological action ({Us}ses, {0s}ses) of S
on a locally compact Hausdorff space X, let E; = Cy(Us)
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be identified, in the usual way, with the ideal of
functions in Gy(X) vanishing off U Therefore we have
the following definition.

Definition 2.2. The action o of S on CyX)
corresponding to the topological action 0 is given by

o, ()= f(6: (%), f e CoU.)

for each s in S.

Definition 2.3: The topological action 6 of S on X is

topologically free if for every s €S-{e} the set
Fy={xeU. :0,(x)=x}

has empty interior.

Although F need not be closed in X, we will show
that it is closed in Ug. For this, let x be a limit point of
Fs and xeUs=+. There exists a net {x;}; of elements of F;
such that x—x. Since 05 is a homeomorphism we have
05(x)—05(x). From 05(x) = (x) we see that x—>0,(x).
Uniqueness of the limit of a net shows that 04(x) = x,
that is, xeF;. This shows that F; is closed in the domain
of 0.

A set A in a topological space X is called nowhere
dense if its closure has empty interior, in particular a
closed set is nowhere dense if and only if its interior is
empty. To say that A has empty interior is to say that A
contains no open subset of X other than the empty set.
The union of any finite set of nowhere dense sets is
nowhere dense ([6], Sec. 1.10).

Theorem 2.4: The topological action O of a unital
inverse semigroup S on X is topologically free if and

only if for every s €S-{e}, the set F is nowhere dense.

Proof: The “if ” part is trivial. For the “only if ” let 6 be
topologically free. We know that F; is closed relative to

Us+. As a consequence F = Cn U« in which C is a
closed subset of X.If Vis openand V' C F ,then

VaU.cF,nU.=(CnU.)NU .
cCnU.=CnU_.=F,.

Since F has empty interior and VN Ui+ is open we
see that VU« = . So the open sets U+ and V are
separated. Now, since

VeF,=CAU.cCnU,. cU,_.
we see that V = J. That is F, is nowhere dense.

The following equivalent version of topological
freeness is more appropriate for our purposes.
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Corollary 2.5: The topological action 0 of S on X is
topologically free if and only if for every finite

n

subset {sy, $2,...,8x} of S-{e}, the set | JF, has empty
i=1

interior.

Proof: Any finite union of nowhere dense sets is
nowhere dense.

In the remainder of this work we denote by &(s€S)
the function in L which takes the value 1 at s and zero
at every other element of S.

Theorem 2.6: Let seS—{e},feE =Cy(U,;) and
x2F;. For every >0 there exists h e Cy(X) such that:

(@) hlxy)=1;

i) | 4(f8,)h|<e and

@) 0<A<1.

Proof: Since x¢F; let us separate the proof into two

cases according to xy being in the domain Us of 65+ or

not. Let xo 2 Us. From feE we see that the set
K={xeU,:|f(x)=¢e}

is a closed subset of U and xo£K. So by the Urysohn's

lemma there exists h in Cy(X) such that 0<h<1,h(K) =0

and h (x9)=1.
Now since the restriction of the function h to the
set U; implies that hfeE;, we conclude that

(hf)d e Co(X) x4S. So that

<|#f| = suppe) f)|: x €U}
= sup({i(x) f (x)|: x e K}
Uilh(x)f(x): xe U, - K})
<eg

This shows that (ii) holds.

If xpeUs then 6,+(X))#x, since X is Hausdorff, there
are disjoint open sets V; and V, such that xeV,;cU;
and O+(Xy) € Vo Us+.

If V: = 04(V2)nVy, then xeV; and 04(V)V,.
Since ViNV, = & we have 0,+(V) NV = J. Now there
exists h in Cy(X) such that 0<h<Il, h(xy)) = 1 and
h (X-V) = 0. Obviously, (i) and (iii) hold. To show (ii)
holds, we know that

hf&sh = ((hf)6,)(hd,) = o, (@ (hf )h)d,, = 0
simply because the support of ogsx(hf) is contained in
05+(V), the support of his in V and 0,«(V) " V=.

|, né,)

Definition 2.7: If A is a C*-algebra and if B is a
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C"-subalgebra of A, then by a conditional expectation
from A to B we mean a continuous positive projection
of A onto B which satisfies the conditional expectation

property

P(ba) =b P(a) and P(ab) =P(a) b
forbeB and acA.

Note that if P is a positive map on A, then it is
easily seen that P(a*) = (P(a))* for all ac A and from this
it follows easily that the conditional expectation
property from right multiplication by elements of B is a
consequence of that for left multiplication and
conversely ([12, Def. 1.3.]).

By [11, 6.2.1] we can consider G(X) as
C*-subalgebra of the partial crossed product Cy(X)x,S.

Therefore the conditional expectation from G(X)x,S
onto Co(X) which is denoted by E is meaningful.

Definition 2.8: A semipartial dynamical system
(A,S,0) is said to be topologically free if the set of fixed
points for the partial homeomorphism associated to
each non-trivial semigroup element has empty interior.

Since the conditional expectation E: G(X)x,S—
Co(X) is contractive we can state and prove the
following theorem.

Theorem 2.9: If (Cy(X), S, a) is a topologically free
semipartial dynamical system then for every

ceCy(X)x,S and every €>0 there exists heCy(X) such
that:

0 |rEC@H|=|E@)|-¢ .
(i) |rE@)h—hcH|<e and
(i) 0<h<l.

Proof: Let ¢ be a finite linear combination of the form

ZieT 0t & , where T denotes a finite subset of S. Define
E(c)=a.ifeeT and E(c)=0ifegT. Since

=sup{]ae(x)| 1xe X},
for given >0, the set

V={xeX:
clearly open,

e

a,

a, ()] =[a |- €}
is nonempty. Since the

which
topological action a is topologically free by Corollary
2.5 there exists %€V such that x¢F, for every teT.

Take f; = adeD,, for &|T| by Theorem 2.6 there exist
functions h; such that

hi(xo) =1, ||ht(at5t)ht|| =

is,

£ and 0<h <I.
| T
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Let h =] Ier-ge;hi. Obviously 0<||h||<1, that is, (iii)
holds. Also (i) holds, simply because xoeV and

"haeh” = sup«ﬂh(x)ae(x)h(x)| 1x € X}
> |h(xy)a, (xo)h(xy)|

=l G| >l |- €
In order to prove (ii), we have
lha h—heh) = |hah =, ha 8,4

= ||zt€T_ a8,
<X rer—eilra 8.

&€
<‘T‘m=8

For arbitrary element c, since c is the limit of a

net in Cy(X)x,S and E is contractive, a standard
approximation argument finishes the proof.

PROPERTIES OF INVARIANT IDEALS

Throughout this section, S is a unital inverse
semigroup, X is a locally compact Hausdorff space, 0 is
a topological action of S on X and a is the action of S

on Cy(X) which is corresponding to 6.
The major new results of this section are Lemma
3.3, Corollary 3.4, Theorem 3.5 and Conjecture 3.6.

Definition 3.1:
invariant under
Co(X) or
every s in S.

An
the
simply o-invariant

ideal T in G(X) is Called
corresponding action o on
if os(INEgx)cl for

Lemma 3.2: If a is an action of S on a C -algebra
A =Cy(X) and I is an a-invariant ideal of A then

o (E. nI)=E NI.

Proof: Obviously, o(EsgxnI)cEnIl. Now let yeEnlI.
Since yeF,, there exists x in Ex such that y = ay(x). We
claim that xel and as a consequence

y=o,(x)ea,(E.NI)

Ifxgl then x¢ Esnland y =0, (x)g o (E. N 1) [

That is, y 1 and it contradicts to the hypothesis.
Let a be an action of S on A = Cy(X). For each
invariant ideal I of A there is a restriction of o to an
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action of Sonl. Thatis, if o ={(¢t,E.,E,)}.s

is an action of S on A and o :Ei+—F, is a partial
automorphism of A, then

© ={(6,,E. N1,E, "]},

in which 6; = o,y and
E,NI=6,(E.NI)

is an action of S on I, by Lemma 3.2. Also,

o= {(dpEt* sEt)}teS

in which

E. ={a+IeA/I:ae E.}
and,

a, :Et* —>E, =o,(E.)+1
defined by

o, (a+1)=0,(a)+1
is a quotient action modulo I of S on A/I.

Now we make an attempt to investigate the relation
between the quotient of the crossed product Ax,S
modulo the ideal generated by I and the Crossed
product of A/I by the quotient action modulo I. That is,

) Xy S
the relation between —%

and A[Ix, S.

Lemma 3.3: Let o be an action of S on a C -algebra A
and I be an a-invariant ideal of A, then the map from
£'(S,) to ¢'(S,A) induces an injection from kS to
Ax,S.

Proof: Let
L,={xel'(S,4):x(s)€E,}
and,
L ={xel(S,1):x(s)€E,}

where in [, the ideal E is an ideal of A but in Iy, the
ideal E is an ideal of I. As we showed in [14], L, and
L; are closed subalgebra of ¢'(S,A). The inclusion map
from ¢'(S,I) into /¢'(S,A) maps L; into L, simply
because if bel'(S)]), ie, b = X5 a8 where each
as<E;, then i(b)=be ¢'(S,A) . Note that we used the fact

that, ideals of ideals of a ¢ -algebra are, themselves,
ideals of that algebra. Thus the inclusion map induces

inclusion map i from Ix,S to Ax,S. In order to prove
that i is injective it is enough to show that every
covariant representation of (I,S,a) extends to a
covariant representation of (A,S,o). Therefore, let
(m,v,H) be an arbitrary covariant representation of
(I,S,0). Since (m,H) is a representation of I without loss
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of generality we can assume that wI—>B(H) is
nondegenerate. By using [1, Prop. 2.10.4] there exists a

unique extension ' of mwto a representation of A on H
and we have v '(ay . =n'(c,(a)) for all aeE«. That

is, (',v,H) is a covariant representation of (A,S,).

Corollary 3.4: If I is an o-invariant closed two-sided
ideal of A then Ix,S is a closed proper two-sided ideal
of Ax,S.

We will denote by <J> the ideal generated by a
subset J of a C"-algebra B.

Theorem 3.5: Suppose o is an action of S on A and
assume I is an o-invariant ideal of A. Then the map

ad, elx, S—>ad e Ax,S
extends to an injection of Ix,S onto the ideal <I>
generated by I in Ax,S and <I>NA =1.

Proof: Obviously, Lemma 3.3 and Corollary 3.4 show
that Ix,S injects as an ideal in Ax,S. Therefore we can
identify Ix,S with
sapn{ad, :acE, s €S}.

Also, we can identify I with its canonical image 15
in Ax, S. Since <I> is the smallest ideal containing I
we have <I>clIx,S. In order to prove the reverse
inclusion it suffices to show that & e<I> for every

aeE,NI and seS. Therefore let acE;NI and let by be an
approximate unit for the ideal E;. Since

ab,6, = (ad,)(b,6,)e(l)
and,
ad; = /%im aby 8, (1)

we have Ix,Sc<I>. That is, Ix,S=<I> and as a
consequence [ = <[>NA.

Since the map ad—(at])d, induces a
*-homomorphism from ¢'(S,A) onto ¢'(S,A/I) we have
the following conjecture.

Conjecture 3.6: Under the assumptions of Theorem 3.5
we have the following exact sequence.

0>1Ix,8—>Ax,S— (A)x; S—>0.
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