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Abstract: In this paper, the Optimal Homotopy Asymptotic Method (OHAM) applied to derive solution of
fourth order linear and nonlinear boundary value problems. Tt 1s observed that OHAM 1s independent of the
free parameter and we get better accuracy. Moreover we can easily adjust the convergence domain and control
the convergence region .As a result it is concluded that OHAM show fast convergence, simple applicability

and efficiency of the new technique.
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INTRODUCTION

Differential equations can be solved analytically by
various perturbation techniques [1-3]. These techniques
are very simple in calculating the solutions, but the
limitations of these methods are based on the assumption
of small parameter and there is no proper way of its
selection. The researchers were looking for some new
techniques which are independent of the small parameter.

In the last decade, the idea of homotopy was
combined with perturbation. The fundamental work was
done by S.JLiao and Ji-Huan He. Liao proposed
Homotopy Analysis Method (HAM) in his PhD
dissertations [4]. This method involves a free parameter
h, whose suitable choice results into fast convergence.
Ji-Huan He introduced Homotopy Perturbation Method
(HPM) [4-10]. These methods are independent of the
assumption of small parameter as well as they cover all
the advantages of the perturbation method. The
comprehensive comparison between HAM and HPM is
studied in [7].

In this race of research very recently Vasile
Marinca et al. mtroduced OHAM [13-16] for the solution
of nonlinear problems of thin film flow of a fourth grade
fluid down a vertical cylinder and for the study of the
behavior of nonlinear mechamcal vibration of electrical
machine. The same author [13-16] used this method for
the solution of nonlinear equations arising in the steady
state flow of a fourth-grade fluid past a porous plate and
for the solution of nonlinear equation arising in heat

transfer. Moreover it is observed [13-16] that HPM and
HAM are the special cases of OHAM.

In this paper we use OHAM to study the. The paper
1s orgamized as follows, in Section 2, the basics equations
are derived. Section 4 is reserved for the basic
mathematical theory of OHAM. In Section 5 OHAM 1s
applied to the solution of given problem. In Section 6 the
convergence constant are determined and discussed.

BASIC IDEA OF OHAM

We apply OHAM to the following differential
equation [13-16]:

Ly +gx+ N =0, (1)
d
B[y,ay] =0

Where L 1s a linear operator, x denotes independent
variable, ¥(x) is an unknown function, g(x) is a known
function, & 1s a nonlinear operator and B 1s a boundary
operator.

According to OHAM a deformation equation is
constructed:

(1= pAL((x, p)+ glx)] = (2)
H{p)L{g(x, p)+ g(x)+ N(g(x, p2].

sy 2
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Where pe[0,1] is an embedding parameter, H(p) is a
nonzero auxiliary function for p#0 and H(0)=0,¢)(x,p) is an
unknown function. Obviously, when p=0 and p=1it
holds ¢(x,0) = y; (x) and ¢ (x,0) =y (x) espectively.

Thus, as p varies from Otol, the solution ¢p(x,p) varies
from y,(x) to the solution y(x), where y,(x) 1s obtained
from Eq (2) for p=0:

Ly, (x)}+ glx)=0, 3
s

We choose auxiliary function H(p) m the form
h(p)=pC, +p’C, + (h

Where C,C,,... are constants to be determined later.
For solution, expanding ¢x, p, C) in Taylor’s series
about p, we obtain:

¢(z,p.C (5

)=x(x)

+Z:y,c (x,C’l,Cz,...,

k=1

Ck)Pk

Now substituting Eq. (5) mto Eq. (2) and equating the
coefficient of like powers of p, we obtained the followimng
linear equations.

Zeroth order problem 1s given by Eq. (3) and the first
and second order problem are given by the Eqs. (6-7)
respectively:

L(yl(x))+g(x)ZQND (yu(x))= (©)
B[Ma Z}: J 0

L(J’Z (x))—L(yl (x)): G, (J’U (x)) )
G L3 () + ¥, (3 (x)i () ]

Yy

d
B[J’vg

J-o

The general goverming equations for y, (x) are given by

L3 ()= L{p, (2))= G N, (3, () (8)
< Ly (x)) ]

Z‘: LNk—r(yu(x)=J’1(x)='--=y;c-1(x))’

k=23, B(yk,{i‘};‘} 0

132

Where N, (y(x), y; (),..., ¥; (x)) is the coefficient of
p" in the expansion of M ¢@(x, p, C.)) about the embedding
parameter p.

W (805 p.C.)) =Ny (1 () ©

+2 N (s Vo Vs ¥ ) 2™

m=1

It has been observed that the Convergence of the
series (5) depends upon the auxiliary constants C\, C,,....
If it 18 convergent at p = 1, one has

(
+IZ=1:yi(

x,C.C (10)

et Rt PEEEEY

Ca)=3(x)

x,C . C

P E R EY :C )

Substituting Eq. (10) into Eq. (general problem) it
results the following residual:
(1)

R(x,C,CpnnsCy ) =

L(3(x,C.C,,...C ) + g(x)
TN (Hx,C.C,...C N

IfR=0. then ¥ will be the exact solution. Generally it
doesn’t happen, especially in nonlinear problems.

For the auxiliary constants of
C,I=1,2,... m, we choose ¢ and b in a manner which leads

determinations

to the optimum values of C,, s for the convergent solution
of the desired problem. There are many methods like
Galerkin’s Method, Ritz Method, Collocation Method
to find the optimal values of C., 7 =1,2,3,.... We apply the
Method of Least Squares as under:

)

R (x,C.C,....,

.

~

C

n

G.C (12)

FEIREY

C. )dx

[ I—

Where R 1s the residual, R =L({¥)+ g(x)+ N(y) and

S A
ac,

o
ac,

(13)

n

Where a and b are properly chosen numbers to locate
the desired C(i=1,2,...m). With these constants known,
the approximate solution (of order m1) 15 well-determined.

APPLICATION OF OHAM

Example 1: Consider the following fourth order nonlinear
boundary value problem [17]:
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Tl (x)+g(x)+(y"(x))2 =00=x<=1 (14a)
y(0)=0, y(1)=sin(1), (14b)
y'(O):l, y'(l) = cos(l)
and g(x)=—sin{x)-sin’(x).
Zeroth Order Problem:
yé”’) (.7()+ g(x) =0 (15a)
yD(O):O, yn(l):sin(lj, (15b)
¥ (0)=1, ,(1)=cos(1)
First Order Problem:
M(W) (.x,C’1 ) = (1 +C )yé"’) (x) (16a)
+(1+ g (x)+ (%))
y(0)=y ()= 5(0)=y(1)=0 (16b)
Second Order Problem:
W (xCLC)=(1+C " (x.C)) (17a)
+2C’1y'n'(x)y1"(x,cl)
+C2y§fv) (x) + ng(x)+ C, (yg (x))z
P2 (0)=y,(1)=,(0)=»,(1)=0 (17b)

Solving problems (15a)-(17b) in succession we
obtain the following the second order solution
=y (x)+ 3 (5.C)+ y,(x.C.C,)  C. C; can be easily
calculated by the method of least squares as mention in
the section 3. Result of examplel can be seen in Table 1
and Fig. 1.

Example 2: Consider the following linear problem [17]:
T (x) =3’ (x)f 2 ax - 4a (18a)
—4x" +8x" — dx* +120x— 48

»{(0)=y(0)=0, (18b)
y)=1 y(1)=1

Table 1:

X Exact OHAM Absolute Error
0.0 0.0 2.0961 10712 2.0961x107 2
0.1 0.0998334 0.0998335 3.44091 %1072
0.2 0.198669 0.198669 1.13845x1077
0.3 0.29552 0.29552 2.06689x1077
0.4 0.389418 0.389419 2.82662x1077
0.5 0.479426 0.479426 3.15173%1077
0.6 0.561642 0.564643 2.90029x1077
0.7 0.644218 0.644218 2.14158x1077
0.8 0.717356 0.717356 1.16136%1077
0.9 0.783327 0.783327 3.40555%10°%
1.0 0.841471 0.841471 1.44107=10713
Table 2:

X Exact OHAM Absolute Error
0.0 0.0 0.0 0.0

0.1 0.01981 0.019809 7.27908x107°
0.2 0.07712 0.0771198 2.45216x1077
0.3 0.16623 0.16623 4.48868x1077
0.4 0.27904 0.279039 6.18615%1077
0.5 0.40625 0.406249 6.99951=1077
0.6 0.53856 0.538559 6.6128<107"
0.7 0.66787 0.667869 5.07446x1077
0.8 0.78848 0.78848 2.87104=1077
0.9 0.89829 0.89829 8.56656x1078
1.0 1.0 1.0 0.0

Table 3:

X Exact OHAM Absolute Error
-1 0 0.0 0.0

-0.9 0.0201954 0.0201954 2.42861x107"
-0.8 0.0397693 0.0397693 4163341071
-0.7 0.0581837 0.0581837 4.85723=10717
-0.6 0.074985 0.074985 4.16334x107"7
-0.5 0.0897962 0.0897962 2.77556x10717
-0.4 0.102311 0.102311 0.0

-0.3 0.112286 0.112286 4.16334x107
-0.2 0.119538 0.119538 4.16334x107"
-0.1 0.12394 0.12394 4.16334x107"7
0.0 0.125416 0.125416 0.0

0.1 0.12394 0.12394 1.38778x1071¢
0.2 0.119538 0.119538 8.32667x10717
0.3 0.112286 0.112286 2.77556x107"
0.4 0.102311 0.102311 8.32667x10717
0.5 0.0897962 0.0897962 0.0

0.6 0.074985 0.074985 9.71445%10717
0.7 0.0581837 0.0581837 1.38778=x10717
0.8 0.0397693 0.0397693 7.63278x107Y
0.9 0.0201954 0.0201954 1.07553x%107%
.0 0. 3.96466E-17 3.96466x107"7
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Table 4: Table 5:

X Exact OHAM (Zero Order) Absolute Error X VIM OHAM
0.0 2.0 2.0 2.88658x1071° 0.0 0. 0.0

0.1 2.09982 2.09982 0.0 0.1 0.00150566 0.00151414
0.2 2.19852 2.19852 0. 0.2 0.00540549 0.00543754
0.3 2.29476 2.29476 2.66454x1071° 0.3 0.0108488 0.0109167
0.4 2.38692 2.38692 0. 0.4 0.0170848 0.017198
0.5 2.47308 2.47308 2.66454x10713 0.5 0.023463 0.0236281
0.6 2.55097 2.55097 1.77636x107" 0.6 0.0294325 0.0296535
0.7 2.61788 2.61788 3.55271x107% 0.7 0.0345429 0.03482060.8
0.8 2.67065 2.67065 3.55271x1071° 0.0384436 0.03877620.9
0.9 2.70556 2.70556 2.22045x1071° 0.0408841 0.0412669
1.0 2.71828 2.71828 4.44089x107"1° 1.0 0.0417144 0.0421394
1.1 2.70375 2.70375 2.22045x107"1° 1.1 0.0408841 0.0413405
1.2 2.65609 2.65609 8.88178x1071° 1.2 0.0384436 0.038917

1.3 2.56851 2.56851 3.10862x1071 1.3 0.0345429 0.0350157
1.4 2.43312 2.43312 0.0 1.4 0.0294325 0.0298836
1.5 2.24084 2.24084 1.33227x107" 1.5 0.023463 0.0238686
1.6 1.98121 1.98121 3.55271x107% 1.6 0.0170848 0.0174205
1.7 1.64218 1.64218 1.11022x107% 1.7 0.0108488 0.0110928
1.8 1.20993 1.20993 1.55431x107" 1.8 0.00540549 0.00554551
1.9 0.668589 0.668589 2.22045x1071° 1.9 0.00150566 0.00155084
2.0 0.0 1.23214E-15 1.23214x107% 2.0 -8.56316E-19 4.85017E-13

0.6

¥

0.4

0.2

--&- Exact

iy
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Fig. 5:
The Analytic Solution of this Problem Is:
y(x)=x"-2x"+2x°. (19)

Let
g(x) =x""—4x" + 4x* + 457
—8x% +4x* —120x + 48
»(x) —(y(x))2 +g(x)=0

Zeroth Order Problem:

W (x)+g(x)=0 (20a)
Yo (O) =0, y, (]) =sin (l )’ (20b)
v5(0)=1, ¥ (1) = cos(1)
First Order Problem
W (x.C)=(1+C) 5" (x) (21a)
+(1+C)g(x)-C (y('{ (x))2
¥1(0)=x(1)=»(0)=y{(1)=0 (22b)
Second Order Problem:
W(x,C.C)=(1+C )3 (x.C) (232)
—2Cy5 (%) ¥1(x.C,)
+C2y(()m (x) + ng(x) -G, (yo (3‘))2
¥,(0)=y,(1)=»,(0)=»,(1)=0 (23b)

Solving problems (20a)-(23b) in succession we
obtain the following the second order solution

V=2, (x)+ 3 (x.C)+y,(x.C.C,)  C,C, can be easily
calculated by the method of least squares as mention
in the section 3.

Example 3: First, we apply OHAM to the following linear
problem [18]

v (x)=1-4p(x), -1<x<1 (24a)
y(-1)=y(1)=0, (24b)
y'(=1)=y"(1)=0

Zeroth-Order Problem:
yo(N) (x) +4, (x) -1=0 (252)
yo(—])=y0(])=(), (25b)
yo” (_]) :yo” (]) =0

First-Order Problem:
2 ()43 ()= () C60)
-4y, (x) +1= C1y0(W) (x)
+4Cy, (x) -C,
b2 (—l) =y (l):O, (26b)
» (_l) =5 (]) =0

Second-Order Problem:
3, (x)+4»,(x)- 3, (x)—4y(x) (272)
= Clyl(w) (x) +4Cy, (x) + Czy()(w) (x)
—C, +4C,y,(x)
»(=1)=y(1)=0, (27b)

»'(-1)=x"(1)=0
and so on.
Thus the second order solution becomes

y= J/o(x)"' Y (x,C])+ V> (x>C1aC2)

C,, C, can easily calculated be the method of least
squares as mention in the section 3.
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Example 4:Consider the following linear problem [18]

Y (x) =y (x)+ 5" (%) (28a)
+xe"—4e", 0=x<2
7, (0)=0,1(0)=1, (28D)
7(2)=0,3(2)=—¢
Like m Examlel, We Have Calculated As:
Example 5: Consider the non-linear problem [18]
y(:v) (x) — y2 (x) i, (2921)
0=x<2
yU(O):y;(O):yU (2)2)}3(2):0 (29b)
Zeroth-Order Problem:
yu(”’) (x) -1=0, (30&)
yD(O):y'D(O):yD(E):y'D(Z):O (30b)
First-Order Problem:
3, (x) 3, (x)+1= C ™ (x) (3la)
G (n(x) -6
y1(0):y1r(0):y1(2) (32b)
=5(2)=0
Second-Order Problem:
yz(W) (x, .G )* yl(W) (x, G ) (332)
= 1Y1(W) (.x,Cl)— 20, (x)yl (x)
+C2yn(w) (x) -, -C, (yn (x))z
$(0)=5:(0)=2(2) (33b)

=3(2)=0

and so on.
Thus the second order solution becomes

y=xn (x)erl (x,C1)+ Y (xchcz)

C,, C; can easily calculated be the method of least
squares as mention in the section 3.
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This problem has no exact solution but from the plot
1t 18 clear that the solution given by OHAM is completely
agree with the analytic solution by VIM [18].

CONCLUSION

We applied a new powerful analytic method,
OHAM for linear and nonlinear boundary value problems.
We get highly accurate results by even first order
approximation. This method provides us a convenient
way to control the convergence and we can easily adjust
the desired convergence regions. This approach is simple
in applicability, as it does not require discretization or
perturbation like other numerical and approximate
methods. Moreover, this technique 1s fast converging to
the exact solution and requires less computational work.
This confirms our belief that the efficiency of the OHAM
gives it much wider applicability. Mathematica software 1s
used for symbolic derivations of some of the equations.
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