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Abstract: Since its introduction, Rate Monotonic Analysis (RMA) has frequently been promoted as a way of

attaining real time system predictability, vet RMA (in its exact form), exhibits pseudo-polynomial time

complexity and becomes mnpractical for larger task set to be analyzed online. To tune-up RMA for online

systems, researchers are attempting to lower the complexity of RMA m terms of reducing the number of

scheduling points. However, reducing number of scheduling points does not actually lower the number of

points, which will be tested in actual, at run time. In this paper, we tackle the ugh complexity associated with

current algorithms by identifying and propagating false points that arise during system feasibility analysis.

The contribution of thus paper 1s two-fold; first, 1t highlights an implicit drawback found in a recently proposed

technique and secondly, a novel exact feasibility test called enhanced time demand analysis is presented,

which significantly reduces the number of inequalities that would be tested otherwise.
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INTRODUCTION

A major issue in the design of real-time multitasking
systems 1s that of timing cormrectness 1e. they must
provide predictable behavior under all circumstances.
The solution lies in the optimal scheduling algorithm that
assigns priorities to task on the basis of some predefined
criteria such as activation rate or deadline etc. The most
commonly used approach to schedule real time tasks is
priority driven which falls into two types: fixed priority
and dynamic priority [1]. A fixed-priority algorithm
assigns the fixed/same priority to all jobs m each task,
which should be different from the priorities assigned
to jobs generated by other tasks mn the system. In
contrast, dynamic-priority scheduling algorithms place
no restrictions upon the mamer 1 which priorities are
assigned to jobs.  Although, dynamic
algorithms are considered better theoretically [2], they

individual

become unpredictable when transient overload
occurs [3]. This paper thus considers only fixed-priority
scheduling due to its applicability, reliability and
simplicity [2, 4-5].

The problem of scheduling periodic task under

fixed-priority scheme was first addressed by Liu and

Layland [6] in 1973 under simplified assumptions (for
details see [6]), they derived the optimal static priority
scheduling algorithm for implicit-deadline model
{(when deadlines comncide with respective periods) called
rate monotonic (RM) algorithm. RM assigns static
priorities on task activation rates (periods) such that for
any two tasks 1, and T, priority (7,)> pricrity (1, ) = period
(1) < period 1, while ties are broken arbitrarily. For
constrained deadline systems, where deadlines are not
greater than periods, an optimal priority ordering has
been shown in [7] to be Deadline-Monotome (DM)
scheduling, where priority assigned are mversely
proportional to relative deadlines. The RM and DM are
identical when relative deadlne of every task is
proportional to its period.

Let 7= {1....7,} denotes a periodic task system.
A task 1, is represented by its parameters, ¢, p;, and d,
where ¢, is the execution time, p, is the time period and 4,
1s the deadline of 7. For each task 7, its utilization is
defined as: , — % . We define a cumulative utilization
#,, of periodic task system Tas:

e (1)
P
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For  wvalidating timing constrains, feasibility
tests-given a task set and system model, determining
weather it is possible to meet all the deadlines-are
performed to achieve system predictability [4-5, 7-19].
The first feasibility test for RM was proposed by the
same authors in [6], called LL-bound; a periodic task
system 1s static-priority feasible if

<<
lot T

w, <nZ" -1 (2)
Where 7 denotes the number of tasks in T. The term
n(2" —1), decreases monotonically from 0.83 whenn = 2
to 1n(2) as as # + . This shows that any periodic task set
of any size 1s static priority feasible upon a preemptive
uniprocessor, if the RM scheduling is used and #,,, is not
greater than 0.693. This result gives a simple O(n)
procedure to test task feasibility online, where tasks can
arrive at run time, however, it 1s a sufficient condition
only; 1t 18 quite possible that an implicit-deadline
synchronous periodic task system which exceeding the
LL-bound be static-priority feasible. The classic work of
Livand Layland [6] is extended in [1, 13-15], however all
these tests are sufficient conditions (SC) only and trade
utilization for performance.
3%
performance proposed by LL-bound, necessary and
sufficient condition (NSC) based tests were proposed
mn literature [8-10, 12, 15-16]. These feasibility tests can
be divided into two schemes: straight forward approaches
[4-5, B, 16] and iterative techmques [9, 10]. The former
analyzes task feasibility only at times when tasks arrive,
called scheduling points, while the later answers the task

To overcome the theoretical difference in

feasibility by employing iterative technique. Whatever 1s
the implementation mechanism, their time complexity
remaims pseudo-polynomial [19]. Recently, authors in [4]
extended the work in [&] by proposing an exact feasibility
test that reduces the number of scheduling points.
However, we show m Section 3 that reducing the number
of scheduling point does not necessarily mean lowering
the number of points which are actually bemng utilized by
the test.

Unlike the previous work [4], this paper also extends
the work in [8] and presents a novel techmque to handle
the complexity of exact test by reducing the number of
points in actual that need to be tested otherwise for
determining system feasibility. Though the main idea of
this paper can be easily integrated into any fixed
priority-scheduling algorithm, however
align with previous results, we focus on RM here.

in  order to

Simulation results show that our techmque shows better

35

performance, when compared to other techniques lying in
the same category, without any modification to the
underlying scheduling. As a related worle, we report that
recursive technique such as the one proposed m [4],
involves recursive function calling and, in some cases
even needs more pomts for analyzing feasibility of a task
(details in Section 3).

The rest of paper is organized as follows. In Section
2, we mtroduce some basic notatiens to formulate our
problem. The exact test [8], which provides the basis
of our work, 13 presented in Section 3, i addition to
the critical evaluation of hyperplane exact test [4].
The main result of this paper is presented in Section 4,
where we derive a novel algorithm to determine the
feasibility of task set at run time. Experimental results are
discussed in Section 5 and finally, conclusion 1s drawn in
Section 6.

Problem Formulation and Notation: Our work 1s targeting
independent, preemptable and hard periodic task in which
the response of the tasks may be earlier than the ends of
their corresponding periods. Tn our model of a hard real-
time task set, each task 7, generates a job at each integer
multiple of pi and each such job has an execution
requirement of ¢, time units that must be completed by the
next mteger multiple of p. Moreover, all tasks immediately
get ready for execution on uniprocessor as soon as they
are released, deadlines are equal to periods, all tasks
overheads such as task swapping times are ignored and
the munber of priority levels 1s unlimited. Imtially all tasks
arrives simultaneously at £ = 0. To begin with, we describe
a pseudo-polynomial time exact schedulability test in
Section 3 for the feasibility of fixed priority systems,
where the response time of the jobs are smaller than or
equal to their respective periods. To determine whether a
task can meet all its deadlines, we compute the total
demand for processor time by a task 7, and check whether
this demand can be met by its deadline.

Before we describe exact test in Section 3, we
introduce some notations here, which will be needed latter
in this paper. The workload constituted by ¢, at time ¢
consists of its execution demand ¢, as well as the
interference it encounters due to higher priority tasks
from 1,_, to 1, and can be expressed mathematically as

w=a+S[1/p o &

A periodic task 1, is feasible if we find some # €[0, #]
satisfying
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Table 1: RM scheduling points for 3-tasks set

% o o 5
c, 3 3
[ 3,6,7

3 C3 20 3,6,7,9,12,14,15,18,20

L =min(W(t)<t)

0t p,

“4)

In other words, task 7; completes its computation
requirements at time ¢ €[0, £], if and only if the entire
request from the 7-1 higher priority tasks
computation time of 7, 13 completed at or before time ¢.

and

As {15 a continuous variable, there are infinite numbers of
points to be tested. The entire task set T 15 feasible iff

L =max{min 4AY) (%)

1Zign Dt p i

<1

Privious Results on Exact Tests

Time Demand Analysis: The first attempt to limit the
mfimte mumber of points in mterval £ €[0, £] 1s made m [8].
The authors’ show that W(f) 1s constant, except at fimte
number of pomts, where tasks are released, called RM
scheduling pomts. Consequently, to determine whether
T, 18 schedulable, ' (f) 13 computed only at multiples of
T, < 1, 1< j < i Specifically, let

S, :{apb |b:1,...,i;a:1,...,Lpi/pr} (6)
We have the following fundamental theorem to
determine whether an individual task is feasible or not.
Theorem 1: Given a set of n periodic tasks 7,...,7,, T can
be feasibly scheduled for all tasks phasings using RM iff

LAOPS ™

L =min— <
res t

With above theorem, L, is needed to be analyzed only
at a finite number of points. The time complexity of
Theorem 1 depends on both the number of tasks and
maximum task periodie. g2 [1]. Inrest of the paper,
we represent this technique by Time Demand Analysis
(TDA). We now apply results parented in Theorem 1 toa
set of three tasks with parameters given 1 Table 1.

In Algebraic Terms, We Have:

List. 1
1. Task 7, is RM-schedulable iff

¢, <3

(&)
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TI. Task 7, is RM-schedulable iff
¢t+e,<30R
2¢+0,<60R
3¢+te, <7

&)
III. Task ©; 18 RM-schedulable iff

¢te,+te,«30R
2¢,+tec, T, < 60R
3gte,te <7
3,+20,+t0, < 90R
deo+20,+e, < 120R
de+20,+tc,c140R
S5¢+3¢,tc,c150R
6¢+30,tc, c180R
Te+d0,+te, «c 200R

(10)

For any task t, the number of elements in set S, is of
particular interest. Every element of S, contributes a
RM scheduling point and constitutes one inequality
for 7, which can be seen in List 1. The number of elements
i S, becomes huge especially when ratio p,/p, 1s large [4].
To avoid confusion, by scheduling point we mean
every { € S, while the pomnt which 1s tested in actual
during analysis 1s denoted by actual-pomt, in rest of the
paper. Clearly, an efficient technique would be the one
which 1s capable of restricting the number of scheduling
points as well as the number of actual peints during
online feasibility analysis.

Hyper-Planes Exact Test: To reduce scheduling points,
E. Bimi and G.C. Buttaazo provided a formulation, called
Hyper-planes Exact Test (HET) recently in [4] that reduces
scheduling pownt for 7, from set S, to a reduced set H(f).
For any task ti, their test begins with p, and expands its
search space by

Hf(t)_H;—lﬂ‘IJPfJUH;—l(I)
pi

Where H; (1)={t}. Two mteresting observations can

(1)

be made here:

Observation 1: To offer a tradeoff between complexity
versus performance, the test can be tuned accordingly
through a parameter 8 in the range of 0.1 - 1.0. Giving a
lower value to 8 (up to 0.5), HET exhibits lower complexity
{comparable to LL-bound), however it becomes sufficient
condition only, in this case. Putting 8 = 1 makes HET both
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necessary and sufficient at the expense of high complexity
[4]. Though efficient when & has lower values, however,
care 18 required to use HET in exact form (= 1). In such
case, the cordiality of H(f) can reach 2' mn worst case,
thus, useless 1n exact form, when applied to a larger task
setie., 17— «
Observation 2: A convincing argument for the
superiority of any algorithm over exact test would be that
IS, reducedr. Stpeauceay © S+ On one hand, HET efficiently
provides a reduced set H_(p) < §,, while on the other,
this result has a potential drawback of testing the same
point repeatedly due to its recursive nature 1.e. because of
calling WorkLoad() function recursively.

Since this paper s focused on exact tests, therefore,
by HET we mean HET in its exact form (8 = 1). Below we
re-write the same pseudo code given in [4] for reference.

procedure Boolean RMTest (1,,)
inti;

forall (i=0; i<mi++)do

if(e, + WorkLoad (7 -1, p,) then
return fasle;

else

return true;

end if

end for

end procedure

/* Recursive function */

double last iy [BIG ENOUGH];

double lastWorkToad [BIG ENOUGH],
function double WorkLoad(int 1, double b)
{

int f.g;

double branch0,branchl;

if (i < 0) then

return 0

end if

if (p < last yr[{]) then

return lastWorkLoad [1];

end if

R

branch0 =b- f(p, - c)+WorkLoad(-1, f = p_);
branchl =g * ¢+WorkLoad( i-1, b);

last r[I] =&,

lastWorkToad(i]J=min{branch0O, branchl ),
return lastWorkLoad[1];}

end function
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Table 2: Construction of set .S and H;

T Cs g2 S H,

1 1 3 3 3

2 2 8 3,6,8 8.6

3 3 20 3,6,8, 12,158, 16, 18, 20 15, 16, 18, 20
Table 3: Actal points needed

TDA HET

Actual points Actual points

3 3

3 86 8

3,6,8 20, 16,15, 16, 20,18, 20

The above recursive function calling has implicit
tendency for manipulating a large sequence of points
{(up to 2' for 7,). To make the pomt clear, the feasibility of
a task set given in Table 2 is answered in the light of
TDA and HET respectively, where more actual-points are
needed to be evaluated by HET than TDA. The
advantage of TDA over HET is shown in Table 3.

Tllustrative Example: The RM scheduling points
constructed by both TDA and HET are given in Table 2,
where task feasibility has to be tested. At first
glance, the advantage of HET is clear, as H, c §,and
Y| <X|S).1 <k<n. However, the important results are
given in Table 3. Results can be compared on relaxed
task sets, where case L;J p, =t may happen, such
py | F

formulation does not contribute any point to the intended
search space [4]. In order to provide more appropriate
task set for HET, we deliberately use the task set
i Table 1 to avoid the case when L;TJPJ -

In our example this case never arises, as p; 18 not
integer multiple of p, or p;. The difference between the
of scheduling points constructed and the
actual-pomts for respective tasks, can be observed in
Table 2 and 3 respectively (more actual-points (multi-set)
for HET in Table 3 than set H, in Table 2). With TDA,
for task 7, 5; consist of a large number of scheduling

number

points, however only 3 actual-points tested during
analysis, as Wi(f<t 1s satisfied at ¢ = 8 (thurd point in
set S;). In contrast, for the same task (), though H,
consists of fewer pomts; it starts testing feasibility at
multiple points at run-time (Table 3). We graphically show
this behavior in Fig. 1.

From Eq.(11), we can see that for task 1, H
expanding it commences

is in descending order;

feasibility test with largest ¢ among all points in set /..
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Fig. 1: Inconsistency between scheduling points and
actual-points

The small circles in Fig. 1 reflects points which are
repeated due to recursive function calling (WorkLoad),
while filled circles shows ¢ € H;. As long as number of
scheduling points and actual-points are concerned, for
the referred 7, TDA offers 54% improvement over HET.
Eventually, for larger task set (n - «), we can conclude
that TDA suppress HET in terms of time complexity as
O(n) <0(2") -

Similarly, when p, = pV i# j |1<i, j < n multiple points
are contributed to search space produced by HET.
Another interesting case would be the feasibility
analysis of a low computation task set where

n
21:1 C‘- < pmin‘

In this case, applying HET, results in a large array of
scheduling points due to union operator involved,
which is shown in Eq. (11). For such task sets, it is
sufficient to test only » number of actual-points by
TDA, as feasibility is positively answered at

/ 14}
T, Hc/.L—’—‘ <p

holds true (p,, being the smallest 7 € S, is the first actual-
point to be tested for any task 7,).

Enhanced Time Demand Analysis: Using Theorem 1, itis
equally important for a low priority task to be tested in
interval [0, p,] despite the fact that there is a fair chance of
not fulfilling the cumulative workload constituted by
current task because interference from the higher
priority tasks (7,, to 1,) is also added to computation
demands of current task 7, e.g. any false inequality for
7, through Eq.(9) also remains false with Eq.(10) for 7.
We avoid this redundancy of points by proposing that
when the time demand for task 1, is not fulfilled at any
point 7, then it becomes unnecessary to test feasibility of
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the lower priority tasks (7., to 7,) at the same point 7, as
demand must remains unsatisfied at point ¢.

Lot
— 1€+ Cloper >t
=Py

is always true, where c,,., is the execution demand of
tasks whose priority is lower than 7, since ¢,,,., > 0 V ¢,,,..
€ [Cittsenns Cu].

To reduce the intended search space, we present
some definitions and theorems, which eventually lead us
to the main contribution of this section.

Mathematically:
12)

Theorem 2: For any given periodic tasks set 7, scheduled
by RM, task 7, has a set of RM scheduling points S;:S;

S

Proof: To prove this theorem, we must prove that if there
exist a scheduling point ¢ € S, then ¢ € S,,, also holds
good. For an arbitrary element of S,, it follows that ¢ = ap,,
where a € {1,....|p,/p,].j € 1...., iand b € 1,...i. According
to RM, tasks priorities are inversely proportional to their
periods, tasks 7, has higher priority than 7., as p,,, > p,, so
it can be seen that a €{1,..., |p./p,| } and j € 1,..., i + 1,
hence ¢ € S, and therefore S, € S;,, holds true.

Definition 1: False Point (FP): A point ¢ € S, is said to be
false for any task 7, if it satisfies the inequality constraint:
W(n>t.

Theorem 3: Given a set of n periodic tasks {7,...,T,}
scheduled by RM, every false point for 7, must also be a
false point for 7,,.

Proof: According to the definition of false point for task
T, W, (¢) > t, thus for task 7,

i+l t i t t
W.o)=)|—lc,=) |—]|c +{——‘c,
' /Z-Jpﬂ ! ,Z_Jpﬂ e

=W(t)+c,, > W ()

i+l

(13)

As ¢;;, > 0, therefore W,,(¢) > t and hence ¢ is also a false
point for 7,,.

Theorem 4: Given a set of n periodic tasks {7,...,T,}
scheduled by RM, every false point for 7, is also a false
point for task having priority lower than t,.

Proof: This theorem can be directly deduced from
Theorem 3.
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Definition 2: Chained Point: A false point ¢ for task T,
becomes chained point for the task with priority lower
than 7, We represent all the false points contributed by T,
with a set X, such that X, becomes a set of chained points
for {51, Tt

Theorem 5: Given a set of n periodic tasks {{7,,...7.}, T,
can be feasibly scheduled for all tasks phasings using
RM iff .

L =min P <1 14

Totez; ot

Where Z, = S, - X ,,.
By Extension X, =&

Proof: The proof is straightforward, from Theorem 4, we
known that, if # is a false point for 7, then it must also be

a false point for 1,
Consequently to calculate L, we confined our search
to areduced set Z < 5, by excluding all chained points.

Theorem 6: The entire task set T 1s schedulable for all task
phasings using RM if

L=maxl, <1 (15)

1<i<n

We have replaced S, given 1 Theorem 1 by Z, which
mmmediately reflects the reduced complexity of our
technique Z, = 5, allows us to search reduced number of
inequalities for determining task feasibility. Task
feasibility 1s drawn immediately when W, ()<t 1s satisfied
at the smallest 1 € Z. We use the term Enhanced
Time-Demand Analysis (ETDA) to refer our scheme
hereafter in this paper. The effectiveness of ETDA
becomes more prominent when it is applied to a large
task set.

Pseudo Code for ETDA Can Be Written as Follows:
Procedure ETDA (1)

Xo=9

Forall e tdo

Compute S, =ap, |b=l..iha= 1,...,’7;—:—‘
Zi - S: - ){:*—1
Forallte Z

If (L, < 1) then

4 o0
7| N o~ EN Py P Py N Y o~ o
P
AT
3 S S - - ~
T . . \ . \ . \
IRZ By
| -
o ¢
' i N
Py N T [ N -
I S e L — f T T f
A N R Fivt
v Y
P riority : { } ! I
ol
S
\TTTIn T ITr
[
[ T A A
R I
B e E e ittt ittt
I LU B 1}
T ! | If Loy |
I
[t N T TF T I
! | Lo v | Pim
ooy P
LR R L | |
[ !
anr T % ot ! ,1, T ! T T T
i ~ L Py

Fig. 2: Identification of false points

T1s schedulable; break; else update X; end if end for if
(L, < 1) then 7 1s feasible Else 1s infeasible; end if end for
end procedure.

A graphical explanation for the identification of
FP 1s givenn in Fig. 2. The symbol 1 shows the time period
of the current task 7, whule | denotes the testing pomts
contributed from higher priority tasks. Lets assume task
t, is infeasible at point ¢t = p, (the deadline for the
highest priority task ;) or algebraically: Zf ¢ { s W ot

=1 py

This fact makes it unnecessary to analyze feasibility
of lower priority tasks (from 1, to 7,)at t, = p execution
demand of lower priority task 1s also added to the
left side of already false mequality constraint i.e.
Z;=1 e, Lf—l—‘ T Cpper =

never holds true at £ = p,, since the workload carmot be
reduced while considering additional lower prionty tasks.
We mark p, as FP and avoid this inequality constraint to
be tested by lower priority tasks. The same treatment 1s
applied to all FP that arise as ETDA proceeds.

In Fig. 3, we visualize Theorem 5. The feasible
interval [0, p,] for any task r, is divided into three sub
portions. The filled rectangle represents all candidate
scheduling points Z. At each pomt f € Z, L, is evaluated,
which 1s either true or false. A true answer declares
feasibility of t, otherwise ¢ is marked as FP. The thin
horizontal rectangle with crossed lines depicts the
false region, which consists of all FP, where task
feasibility of current task T, 1s defimtely false. False region
becomes larger and larger as the feasibility test proceeds,
due to emergence of more FP. Once task feasibility is
confirmed, our algorithm skips further search space,
which 1s denoted by blank rectangle m Fig. 3.

Experimental Results and Anlysis: Tn this section, we
evaluate the performance of ETDA. In order to make a
comparison, both TDA and HET are also implemented.

39
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Fig. 3: Tllustration of Theorem 3

For our experiments, we generate random task periods
in the range of [10,1000] with uniform distribution.
Similarly, for corresponding task execution demands,
random values are taken in the range of [1, p], also with
uniform distribution. Tasks priorities are assigned
according to RM assignment algorithm. The work is
compared, in light of three performance evaluation
criterions 1Le. 1) the number of RM scheduling points
used, 11) the number of actual-points tested and u1) the
execution time, which is the mtended contribution of
this paper.

Number of Sheduling Points: In this section, we
demonstrate the effectiveness of ETDA in terms of
reducing the number of scheduling pomts. Fig. 4
provides a  comparison among the tests by
counting the number of scheduling points

7:1 SJ’ZL HJ’ZL Z:

for TDA, HET and ETDA respectively. Together, a
series of periodic tasks 1s generated by varying the
range from 5 to 50 with the increase of 5 tasks and average
is taken after 200 iterations. We analyze all tests by
varying system utilization form In(2) to 1.0. When tasks
set size increases (# ~ =), more inequalities are needed to
be tested as p,/p, is becoming larger. Since v is always
feasible when wu,, <In(2), LL-bound would be sufficient
to determine feasibility, however, we are intended to find
feasibility through exact tests and hence the numbers of
scheduling points are discussed. At higher system
utilization, ¢, becomes larger and more points are need to
reach the conclusion (more mequalities to test). The graph
of TDA and ETDA 1s increasing with increased utilization,

Le.

40

Skiped region

since both commence testing ¢ in ascending order. HET
enjoys the advantage here of being non-increasing here,
for any task v, it starts testing feasibility with largest
element from H, and therefore task feasibility 13 answered
quickly. It can be seen that both HET and ETDA have
effectively reduced the number of scheduling points as
compared to TDA. This improvement is due to so-called
reduced sets (H_, c S, and (Z, c S,) required for any task
7, by HET and TDA respectively.

Number of Actual Points: Tn this important experiment, we
extract the number of actual-points, which are bemng
tested by all necessary and sufficient tests discussed
earlier in Section 3.1, 3.2 and 4 respectively. Results in
Fig. 5 are obtained by performing computation over
200 task sets, each consist of 5 to 30 tasks. Here we also
varied the total utilization from m(2"™ -1) to 1.0. We
observed that the number of actual-points tested is
directly influenced by wvariation in system utilization.
The reason 1s that for higher utilization the execution
demand of each task 1s ugh, since umform distribution
is applied. This fact makes the cumulative workload of
individual task 7, higher and its schedulability becomes
possible at some later stage in the interval [0, p,]. At lower
system utilization wu,, </n(2), all tasks 7,7,...T ,are
feasible, so feasibility of all » tasks is tested in sequence
and thus, more actual-points are utilized. While for higher
#,,, there exist some unschedulable task 7,1<{ < n, where
feasibility of 7 15 determmed early and therefore the
feasibility tests quits immediately (skipping lower
priority tasks). Tt is found that HET uses
operator and has implicit tendency for testing repeated
pints from mtended search space obtained with Eq. (8).

union
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c:u, < 0.90

Fig. 4: Required number of scheduling points

In contrast, On one hand, for feasible task set having u,,
< n(2" -1) both ETDA and TDA converges early (fewer
inequalities required), while on the other, more actual-
points are needed to be analyzed for higher utilization
when u,, (again in ascending order). Clearly, the improved
performance of ETDA is due to (Z, c Si), which is a direct
conclusion of Theorem 5, that suppresses others in terms
of testing reduced number of actual-points as shown in
Fig. 4. For TDA and ETDA the number of scheduling
points are always more than or equal to actual-points,
since both are implemented non-recursively. In our
experiment it is revealed that HET uses repeated points.
This fact is witness by the difference in Fig. 4 and Fig. 5,
where no agreement is followed between number of
scheduling points and actual-points tested by HET.
As mentioned before, though HET reduces the number
of scheduling points in theory, it looses its effectiveness

Points searched

Points searched
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run time by scanning redundant points from the
search space due to its recursive implementation. In our
proposed test, there is

Fig. 4 and Fig. 5.

a direct mapping between

Execution Times:The time a test takes to solve feasibility
problem is an obvious criteria for measuring the
performance of a given algorithm, especially when
efficiency is the primary concern. This experiment
supports our claim that only reducing number of
scheduling points is useless unless actual number of
points utilized is also handled carefully. The task set is
constructed with the same criteria, as discussed earlier.
The effect of changing system utilization is also observed.
It note that both TDA and ETDA increases with
higher utilization, because more points are needed to be
tested in this case, which eventually takes longer to
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conclude feasibility of the task set as given in Fig. 6.
TDA’s graph 1s mncreasing according to utilization, since
it start testing feasibility with smallest scheduling point
m ascending order, that’s why at higher utilization
the commutative workload can not be satisfied and
more actual-points are needed to be evaluated. From
Fig. 5 and 6, with increased number of actual-points,
the taken by TDA also increases in Fig. 6. As expected
ETDA takes negligible amount of time, because of
skipping huge number false points. The non-increasing
behavior of HET with increasing utilization 1s for certain,
since number of actual-points are also reduced (Fig. 5).
In the light of Fig. 4, 5 and 6, it can be seen that, though
the number scheduling point for HET 18 lowered (Fig. 4),
the time taken by HET for the same task set is still high
(Fig. 6). For HET Fig. 5 and 6 are in agreement and not
Fig. 4 and 6. Thus, it is concluded from the experimental
analysis that restricting actual-points is more important
for online analysis of periodic task set than just reducing
scheduling points.

CONCLUSION

We addressed the basic question of testing
feasibility of periodic task under fixed priority assignment
algorthms by elimmating redundant points in feasibility
analysis. To reach the conclusion, merits and demerits
of both SC and NSC are discussed. As a background
worle, we have shown the impracticality of exact tests for
large tasks set to be performed online for real time
systems. Similarly, a recently proposed efficient feasibility
test is critically evaluated and its shortcomings are
explored both theoretically and experimentally. Lastly, we
have proposed ETDA, a state of the art solution for
testing online feasibility of real time systems employing
RM scheduling.

We evaluated the correctness and goodness of
ETDA by means of mathematical proofs and simulation
results. The experiment aimed at testing the algorithm
under different performance conditions and comparing its
results with previous solutions. The experimental results
obtained, show the effectiveness of ETDA m providing
an efficient online analysis for periodic tasks and
validated our theoretical results.
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