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Study of Mixed Three-Flavor Neutrino Oscillation with Berry Phase
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Abstract: Three-flavors form a useful basis for describing the state of a neutrino. In this nvestigation
we study the time evaluation of a mixed state for a composition of neutrino with different flavors in

presence of Berry (topological) phase. The berry phase obtained in this study is a function of the mixing

angle only.
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INTRODUCTION

The discovery of neutrino oscillation in the past
decade [1-8], has turned neutrino physics into one of
the most exciting and active fields
Different types
now namely solar, atmospheric and reactor neutrino.
In spite of different masses identified for different
types
identities in time as they travel i vacuum [9] and also

of physics.
of neutrino have been discovered by

of neutrino, they alternatively change their
especially in matter [10]. This process called neutrino
oscillation.  The physics of neutrino oscillation is
currently under very active investigation, since it leads
to physics beyond the standard model. The oscillation
effects are closely related to the phases of neutrino
mixture. Neutrino oscillation in a mixed system is an
interesting subject in theoretical research about neutrino.
Particularly, m recent years strong activities have been
done to perform experiments for better inderstanding
of neutrino.

oscillation, however, is

Two-flaver neutrino

adopted i most analyzes of the data, although
everyone knows that there are tlwee active neutrino
flavors. Two-flavor oscillation is easy to investigate in
comparison with three-flavor oscillation because there
are only two parameters: a mass-squared difference and a
mixing angle. In addition, some exact solutions of the
oscillation probability are known in the two-flavor
oscillation scheme.

Quantum mechamcally, if interactions of particle

with background matter are known, its wave function

and energy spectrum immediately be the solutions of
the associated time mdependent Schrédinger equation.
Once the wave function of the particle known m an
specific time, its evolution can be determined. This
approach is useful when Hamiltonian of the system do
not depend on time.

Berry has shown that if the Hamiltoman depends
on time via a set of adiabatic parameters, besides the
usual dynamic phase, a geometrical phase (the Berry
phase) can be wused [11].
considered the phase properties in neutrino oscillations
[12-14]. When the neutrinos move through a medium, a

Several authors have

Berry phase is then expected to be generated. Tt has been
shown that the mass squared differences and the mixing
angles have strong constraints from various experiments
[15-21]. This paper organized as follow. In next section,
we describe the notion of Berry phase completely and
apply it to explain oscillation of two-flavor neutrino
system. In third secton we develop this approach to
study the oscillation of three-flavor neutrino system.
Finally we summarize our results and compare them with
the results obtained from other theoretical methods for
two-flavor neutrino system.

Berry Phase for Two-Flavor Oscillating Neutrinos:
Two-flavor neutrinoe states in + = 0 can be show by the
following relation,

|ve(0)>:0059|v1>+sin9‘v2>, (1-2)

‘V#(O)>:fSin@‘v1>+0059|v2>,
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At time t, the states |"e> and “ﬁ,;) evolve to states,

‘ v, (.t)): exp(—im 1) cos 9| v1>+ exp(—it,)sin g ‘ v2>, (2-2)
‘ vy (I)>: — exp(—iey?)sin @ |v1>+ exp(—ie,t) cos 9| vy > .

Where H |v1 ) =, ‘Vz> and ¢, are energies assoclated
to the mass Eigen states ‘Vz> with [ = 1,2. Since at a time
27 the states are same as the initial ones a part

@y — 0y
from a phase factor,

T =

(3-2)

v, ()= explig) [v,(0)),
[u(0))= explig) |v, (0)).

Where q;:,zniwl_ Now we show how sucha

@y — &y
time evolution does contain a purely geometric part,
i.e. the Berry phase. Ttis a straight forward calculation

to separate the geometric and dynamical phases
which 18 summanized by the following standard
procedure,

r

Bo= o [ (0l v, 1)

0

(4-2)

o +27E(a)100529+a)25in29),
0~y Oy
=27sin® 6.

Here, appeared a non-zero geometrical phase 3 which
18 related to mixing angle @ and independent of
neutrino masses m,, m, and energiesw , @ , In an similar
way, we obtain the Berry phase for the muon neutrino

states,
T

ﬁp{ = §0+j<vﬂ(l‘)}ﬂ‘vﬁ (I))dz‘: 2mcos? O,

0

(5-2)

Since 3, + f3, = 27, we canrewrite equation (3-1) as,
v (D)= exp(i2psin® )exp(—w,.T) [v,(0)) (6-2)

‘v#(t)>: exp(z‘2(pcos2 Q)exp(fa)##T) ‘V# (0)>.
Where we have used the notations

(v, ®]H |[v,(1)) = (@ cos” B+, sin’B)=w,, (7-2)

v, () H v, (1))= (e sin” 8+ 0, cos’ 0)=a,,.
()| H v ) o

110

In analogy with above relation, it is convenient to obtain

v, (8'2)

(v (O H| vy ()= (v, (0| v, (),

;(a)z — @y )sin 20,

= me

0= O
It is convenient to show that time evaluated states

are not eigen states of Hamiltoman,

(vQ(O)‘H‘ve (I)>: exp(fia)lz‘)cos2 0+ exp(ﬂ'a)z.t)sin2 0.
(9-2)

Thus as an effect of time evolution, the state
|Ve(f)> "rotate" as shown by equation (9-2). However
at t = T we have,

(Ve(o)‘H‘ve (T)>: exp(7i¢) = exp(iﬁe)exp(fia)egT):(lo_Z)

Which indicate that ‘Ve (r ))differ from ‘ve (0)) by a
geometrical phase that part of it known as Berry phase.
Other part of this phase refer to dynamical origin.
Generally, for time, = T+ T we have,

(v (O H| v, ()= exp(iep) {-,(0) H| v, (T} (11-2)

—epl—i2nsin’8) @q)(—ia%eT)[@qJ(—ialfoosz O+ expl—icoyT )sin 9}.
Also for different states in time # = 7+ T we have,

(12-2)

<v# (0)‘H v, (1) = %exp(.igo)exp(f.imlf)

sin 20| exp(—i{w, — &)r) -1

Wears for £+ 7 will be equal to zero. Also in a given
t, states with different flavor are orthogonal

(vu | H| v, (0) =0, (13-2)
Equation (12-2) show that the oscillation of |Ve(‘t)>
related to flavor of muon and Berry phase. To develop

calculations for n cycle, for example relations (4-2) and
(5-2) can be rewrite as,

nfl

B.= _‘-<Ve(f)ﬁfffa)1\ve(z)>dz = 2rsin’0,
0
nf

JB,u: j (Vﬁ(l')}ﬂ — Dy ‘V#(I)>dr = 27cos? O,

0

(14-2)
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These results indicate that the berry phase acts as a
"counter” of neutrino oscillation

Berry Phase for Three-Flavor Oscillating Neutrinos:
The Berry geometric phase also can be computed in
the case of three-flavor mixing. In this case, we can apply

the method used for two-flavor neutrino system so
we have [21],
‘vf>: U‘Vi> (1-3)
5
213 51243 53¢
_ —i0 —id
U=| —s12003 — q2803013¢ €12%23 — S12523% 3¢ %3313
—if —id
$12523 —€12€235 28 —C12573 ~ S12€23513¢8 €233
(2-3)
Where S, = sin 8, €, = cosf, and & is the CP-

violating phase of the Cabibbo-Kobayashi —Maskawa
(CKM) matrix. However if the CP-violating phase to be
equal to zero, the neutrino state at time £ will be,

|ve )= empianC 201 3 v+ expl—tanis| 201 3| va b+ ap-tantisy 3 |v3),

|V,u®>= expCiae)-512C23 - C12523C13) v )+ expl-iansXC12C3 - M2 823513 [v2 )
+epi-iaB523013|v3),

[vr 0} =emp(—tansXs 2823 - C12.Ca3812)| W H+ empiciani-C1 2523 - M 2C23513 v )
+ep(-iag023C1 3|3 (3-3)

Let consider here a particular case m which the
difference of each two frequencies be proportional
together: QZM_ This condition make the states

0y — @y
periodic with rotational number q and period:
2 2Im
—o @-0y

previous

Therefore we can use the

q:

As  defined
previously for the case of two-flavor neutrino system,
we Have,

definition  of Berry phase.

T
B.=o+ j<vg(z)p{\vg(z))dz = 2m(S5S% + g8,

0

(4-3)

Whuch 1s of course reduces to the result of two-flavor
neutrino  system for 8 = 0. Where 4= B3~ and
@y —

= ((-2m w )/ (w, - w,; as defind previously for the

111

two-flavor case. For completeness, we have also
computed the other eight possible components of

Berry phase,

T

R [RG O

0

(3-3)

2 +2775(512Clzczacla S12513Q3523+9S13Q3t%3%»)
j Ol )

E’c

" + 2781 CiaS s — 15151 +4S15 1 )= By
7 (7-3)
Bo=o+ I(VT(I)M v »dz
0

_ 2

= > a +20=8/52G3553 _SlzchSBCB +a550Cn) =B

T

Buu= 0+ I(vﬂ(r)P{ |vu()de

0

=2ir [(CIZCB — 8128235130 + g(C3Ca3) J (8-3)
and
7
e GO
0
(9-3)

2 2
= 27:[(7C12S23 = 81833813)" +4(Cy3C53) }

Note that B, + B, + .. =27 )1 - ¢) which shows that
B 1s not completely free from dynamical parameters since
the appearance in it of the parameter q.

Although because of this, S is not purely geometric,
nevertheless it is interesting that it does not depend on
the specific frequenciesgbut on the ratio of their
differences only. This means that we have now
(geometric) classes labeled by q.

SUMMARY AND CONCLUSION

In summary, we have calculated Berry phase for both
two and three-flavor mixing neutrino oscillating system.
Results i two-flavor neutrino system shows that the
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Berry phase associated to neutrino oscillations is a
function of the mixing angle only. Since geometrical
(Berry) phase is an observable, the mixing angle can be
(at least in principle) measured directly 1.e. independently
from dynamical parameters as the neutrino masses and
energies.

In the case of three-flavor neutrine mixing oscillation
system, the components of Berry phase related to ratio of
differences of frequencies and not related directly to
frequencies. Therefore in this case the Berry phase is not
a pure geometrical parameter and it can not be related to
measurements directly.
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