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Abstract: This paper studies robust performance analysis problem of linear multivariable uncertain systems.
A new approach for the design of optimal controllers based on adjustment of parametric controllers to minimize
the condition number of the eigenvector matrix of the closed-loop system is presented. First, a parametric
formula for eigenvalue assignment of the desired spectrum for the system under nominal conditions is obtained
and then these parameters are determined such that the condition number of the eigenvector matrix of the
closed-loop matrix of the system is minimized. The time response of the uncertain system is then optimized.
The results obtained are applied to an example and it is shown that the new results show better performance
and the computations are less complicated and a more robust controller matrix for uncertain systems is obtained.
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INTRODUCTION

In actual situations, the structural parameters are
often uncertain, such as the inaccuracy of the
measwrement, errors 1n the manufacturing process,
mcomplete knowledge of the physical system and so on.
In many cases these parameter uncertainties lie within
known bounds. Therefore, the uncertain systems play an
imnportant role in the control theory. The problem of
robust pole assignment to these systems in such a way
that the response of the system remains unchanged in
the presence of disturbances, have attracted a great deal
of attention in the past two decades. From mathematical
point of view, robust pole assignment m uncertain
systems is to obtain state feedback controllers such that
for all admissible uncertainties, the change in the
eigenvalue spectrum of the closed-loop system, in order
to preserve the stability of the system under control,
remains as small as possible. This problem has many
applications in science and engineering, from the design
of dynamical systems concerning buildings and bridges
to the theory of microprocessors and robots [1]. The main
purpose of this paper is to design robust controllers in
the sense that not only the stability of the closed-loop
system 1s preserved but also the time-response of the
system under the presence of uncertain parameters is
kept reasonable.

There are different types of uncertamnties in the
control systems. These uncertainties can appear in the
elements of the matrix systems in state space
representation, also due to ageing of some elements of
the system which may appear unexpectedly. In this paper
the former one will be considered by assuming that each
uncertain parameter is allowed to vary within some known
bounds and we will present a reliable and simple method
to obtain the solution of robust pele assignment problem
in uncertain systems. From 1970's onward the variable
structure control remains one of the most interesting
branches of control and the theory of variable structure
control for various applicable systems with uncertainties
has been developed by many mvestigators such as
Emelyanov and Korovin [2], Utkin [3], Hsu and Lizarralde
[4], Choi [5], Chen and Guo [6], Petersen [7] and see also
[8-11]. One of the important methods proposed m this
field, 1s due to Soylemez and Mumro in 1997 [12-13] by
introducing a concept called pole coloring. In their
method a special performance index for every eigenvalue
15 minimized. The caleulations of this method are rather
complicated, also other present methods are quute difficult
too and each method results in a different feedback matrix.

Several robust control system design methods for
uncertain systems such as A, - H. approaches [14-17]
and ZA4] approach [18-20] have been developed to solve
this problem. But the method presented in this paper, is
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very reliable and easy to apply. Here, first a general
method of parametric eigenvalue assignment proposed
by Karbassi and Tehrani [21] is used to provide a
nonlmear system of equations for the nominal values
system. Tt allows parameterizing explicitly the family of
feedback gain matrices assigning a given spectrum.
Then Genetic Algorithms (GAs) [22-26] and linear
programming [27] are used in such a way as to find the
best set of parameters of the parametric state feedback
such that the condition number of the
closed-loop of the eigenvector matrix 13 mummized.
Genetic algorithms (GAs) are directed random search
techniques which can find the global optimal solution n

gain  matrix

complex multidimensional search spaces. In this problem
(G As is appropriate because of the lack of prior knowledge
about the properties of the spectral condition number as
a function of the state feedback matrix. It is well known
that, GAs 18 general search algorithms, based on the
mechanics of natural evoelution, which have been often
used in system analysis in control problems. This choice
15 due to the ease of implementation and to the widely
recognized ability of GAs to obtain robust controllers.
The rest of the paper is orgamzed as follows. In
section 2, the parameterization of state feedback
controllers is reviewed. In section 3 the reliable and
simple methodology 1s presented to obtain robust
pole assignment state feedback controller. Section 4,
demonstrates the efficiency and effectiveness of the
procedure by an example. Conclusion is given in the last

section.

Feedback Controllers:
In this section we briefly explain the method of Karbassi
and Tehrani to determine the parametric state feedback
matrix [21].

Consider the following system equations of a linear
multivariable system in state space form:

Parameterization of State

()= Ax(#)+ Bu(z) ()
y(1) = Cx(2)

And State Feedback Control Law:
u(t) = Kx(f) (2)

Where x(#) is the nx - n = [ state vector, u(f) is the
m * 1 mput vector, 4 and B are the # * n system matrix
and the # * m input coefficient matrix, respectively and K
is the m = »n state feedback matrix. There exists a
transformation matrix 7 such that transforms the
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system state vector to new space x(f)=TX# and
system matrices have the following form:
P G, B B, (3
Infm 2 Omfm,m Omfm,m

Where G, 1s an m * n matrix and B, 13 an m X » upper
triangular matrix. Now suppose that 4, is a parametric
matrix such that its eigenvalues lie in the spectrum

A = {A,. .,A, and has the vector companion form similar
to 4, 1.e}.
- G, €)]
* In—m H] On—m,m
thus as shown n [21]
K=B (-G, +G)T" (5)

is the feedback matrix which assigns the desired
eigenvalue spectrum to the closed-loop system A4 + BK.
If the characteristic polynomial of 4, has the form:

PA=(1 A"+ e A +e,A" it e,) (6)
then by equating the coefficients of det(/],l —ADh=0 with
the characteristic polynomial (6), the following non-linear
system of equations 1s obtained:

j;(gjj):cr, r=12,.., (7

Where g, U=1,...m,j=1..., n)are the elements of
G, and by choosing N = n(m - 1) unknowns arbitrarily,
it is possible to solve the system (7). Thus we can obtain
many number of state feedback matrices K, which assign
the same eigenvalue spectrum A to the closed-loop
system.

An important advantage of this method with respect
to other parameterization methods, 15 that both linear and
nonlinear relationships for state controller matrix can be
generated.

Robust Pole Assigcnment Controller Design for
Uncertain Systems: This study considers parametric
model uncertainties with the following model description:

x(2)= Alr)x()+ Blr u(z) (8)
Y1) = Clr)xlr)

Where r 13 the uncertainty vector lies within bounds
» Fuse] @0 under nominal working conditions #,.

[
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As it is known, the spectral condition number of the
eigenvector matrix of the closed-loop system matrix still
remains as the most widely accepted measure of
robustness. This 15 because of the following theorem,
known as the Bauer-Fike theorem which gives an
appropriate way to stabilize the uncertain systems:

Baure-Fike Theorem [28]:
diagonalizable matrix, that 13 there exists a nonsingular
matrix X such that X' 4X is a diagonal matrix 1. Then for
an eigenvalue A of the perturbed matrix 4 + E, we
have where minj3, 7] < [} 15
and 4, A,,...,A, are the eigenvalues of 4.
For this reason, the spectral condition number
KX )= \X||XJ1
sensitivity of the closed-loop eigenvalues due to all
suitably characterized perturbations in the parameter

Tet 4 be a square and

18 a matrix norm

provides a meaningful measure on the

uncertainties.

Now, as there exists an mnfimte number of state
feedback matrices for linear multivariable MIMO systems
and correspondingly, each feedback matrix results m a
different eigenvector matrix for the closed-loop system,
therefore, a state feedback matrix X can be chosen such
that the corresponding condition number of the
eigenvector matrix of the closed-loop system is minimum.
So, to solve the robust pole assignment problem for the
uncertain system (8), first we use the method of
parameterization reviewed in the previous section and find
the parametric form of the state feedback matrix K for the

following nominal system:

x(1) = Alr, )x(t) + Bl ult)
¥(t) = Clr,)x(1)

)

To do this, first we find the nonlmear system of
equations (7) for the nominal system (9), then by using
genetic algorithm [22-26], we can select the linear or
nonlimear relationship which produces the minimum
condition number of the eigenvector matrix of the closed-
loop system under nominal conditions respect to other
relationships and therefore the convenient parametric
state feedback matrix X can be determined.

The design process mvolves determining the set
of parameters of the parametric state feedback gain
matrix K which mimmizes the spectral condition
number x(X)= ‘XHHX u
this purpose, we use linear programming [27] and
determine the parameters of the state feedback gain matrix
K such that the condition number of the eigenvector

as an objective function. For

matrix of the uncertain closed-loop system 13 mimmized
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subject to varying the uncertain parameters #, in the
specified intervals. Although this method 1s based on
search techniques, however, employing the explicit
parametric relationships enhances the maneuvering
power.

The ability and effectiveness of the proposed method

1s shown by an example in the next section.
ILLASTRATIVE EXAMPLE

Let us consider the problem investigated by
Soylemez and Munro [13] here, to be able to compare their
results with our method. The problem is to find the state
feedback controller matrix K for assigning the eigenvalue
spectrum A = {-1 £ 24, -5} to the uncertain system:

FoOK n O (10)
A=2 3 JB=|0 1
3 4 0
Where:
08<r <12 (11
1.7<r, <23

0.95<r<1.05

Such that by variation of #, ,, r, in the specified
intervals, the difference between the eigenvalue spectrum
of the closed-loop system of the uncertain system and the
desired eigenvalue spectrum A, is minimized.

The nominal values of the uncertain parameters are:

=1 (12)

.
By substituting these values mto matrices A
and B, the nominal value system is obtained. The
characteristic polynomial for the closed-loop system
under nominal working conditions with its roots lying in
the spectrum A is:
PA) =4+ 747 +154+ 25 (13)
From [21], the nonlinear system of equations
govemning the nominal value system which assigns the
eigenvalues given in spectrum A 1s:

*(gll+g22j:7 (14
g8 —gu:8n 8 =15
885 ~ 8u8yn =25
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By choosing the free parameter g,, = « and selecting
g, =-4.6545 and g,, = 2.4055 by genetic algorithm [22-26]
such that the condition number of the closed-loop system
under nominal conditions, is minimized, the value of the
other parameters that satisfy the system of equations (14)
can be chosen in terms of «. Substitution of these
parameters in

Gl=|:g” 8 g|3:| (15)
. 8y 8»n 8x»n
Yields:
_[-4.6545 24055 —4.0829-2.40550 (16)
S —2.3455 —6.4118+ 2.3455¢

This results in the parametric state feedback matrix K,

K _|:—l332]2—13333a —-12.8951-1.7777c —25.7357—4.066306}

133330-26788  244850:—1239
(17)

o

Now by using the linear programming method [27],
the parameter o is determined such that the condition
number of the eigenvector matrix of the uncertain
closed-loop system 4 + BK, is minimized subject to
varying the parameters 7, in the specified intervals. In this
way, the optimal value oo =-4.0188 is obtained. By
substituting this value into parametric matrix K,, the
appropriate controller matrix K is:

—-5.7509 (18)
-8.0372

-9.3928
—-11.0802

—-7.9628
-4.0188

Now to be able to compare this result with the
controller matrix

obtained by Soylemez and Munro [13], we define a new
variable 0 in the uncertain parameters r, in the following
form:

~19.6451 (19)

-2.8289

-33.0025
-4.7523

K

—-11.2476
-1.6196

r=0.8+0.460 (20)
r=14+0.60
r=095+0.10

In this way, varying 60 from zero to one produces all
r, in their respective interval values. In Figure 1, the norm
of the difference between the vector of perturbed
eigenvalues and the vector of eigenvalues of the nominal
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Plots of the variation of the norm of closed-loop system eigenvalues.
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Fig. 3: r, Fixing and r,, r; varying simultaneously

system when all the uncertain parameters vary, is shown
for both cases. New values are shown with circles.
Also, in Figures 2, 3 and 4, r, r, and r, are fixed while
other parameters are varied, respectively. As it can be
observed from these figures, the error obtained by the
new method is less than the error obtained by the method
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in [13]. It is interesting to note that the condition
number of the eigenvector matrix of the closed-loop
system is reduced from 29.6379 for the state feedback
matrix K, to 6.1623 for the matrix K obtained by our
method. Also the Frobenius norm of K is 16.3284 while of
K, is 40.4328.

CONCLUSION

In this paper, a new method of obtaining robust state
feedback matrix for uncertain systems is developed on the
basis of a search technique (GAs) combined with linear
programming.

Comparison of the results obtained with prior
methods, shows that our method is easier and produces
better results. Figures 1 and 2 compared with the result of
Soylemez and Munro variations, but
Figures 3 and 4 reveal quite a significant improvement in
the results.

show small

The obtained condition number value is in fact the
minimum value that is found for the above system up to
now. Thus the algorithm presented in this paper has
produced a more robust feedback matrix in the sense that
it has a lesser norm compared with previous result [13]
and also a lesser condition number of the closed loop
eigenvalues matrix. Further research to determine that this
value is a local minimum or is a global minimum is under
way. The work from here can be employed in other areas
of uncertain systems concerning output feedback,
time-delay systems, tracking systems as well as discrete-
time systems.
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