World Applied Sciences Journal 8 (2): 177-184, 2010
ISSN 1818-4952
© IDOSI Publications, 2010

Improving the Accuracy of Software Cost Estimation Model Based
on a New Fuzzy Logic Model

Iman Attarzadeh and Siew Hock Ow

Department of Software Engineering, Faculty of Computer Science and Information Technology,
University of Malaysia (UM), 50603 Kuala Lumpur, Malavsia

Abstract: Software development effort estimation is one of the most important activities in software project
management. Formal effort estimation models, for example Constructive Cost Model (COCOMO), are limited by
their inability to manage uncertainties and imprecision surrounding software projects early in the development
life cycle. In recent years, attention has turned to a variety of soft computing methods like fuzzy logic in
particular to estimate software development effort. A software effort estimation model which adopts a fuzzy
mference method provides a solution to adjust the uncertain and vague properties of software effort drivers.
The present paper proposes a new fuzzy logic model to overcome the uncertainty at the mput level of the
COCOMO model that 1t causes uncertainty at the output or estimation error. The main objectives of this
research are to investigate the effect of crisp mputs and fuzzification techmques on the accuracy of system’s
output when fuzzy logic applied to the model to derive the software effort estimates. The proposed model
validated by using the 63 historical project data in the well-known COCOMO model and an artificial dataset that
consists of 100 sample projects. Empirical results showed that applying fuzzy logic for software effort estimates
resulted in slightly smaller mean magnitude of relative error (MMRE) and probability of a project having a
relative error of less than or equal to 0.25 (Pred(0.25)) as compared with the results obtained from original model.

Key words: Software project management - Software estimation -
Constructive cost model - Fuzzy logic

models -

Effort estimation - Formal estimation

INTRODUCTION

Software cost estimation refers to the estimations of
the likely amount of effort, time and staffing levels
required to build a software system. The most helpful form
of effort estimation is the one made at an early stage
during a project, working primarily from feasibility and
requirements specifications However,
estimates at the early stages of the development are the
most difficult to obtain and they are often the least
accurate, because very little detail 1s known about the
project and the product at its start. Accurate software
cost estunates are critical to both developers and
customers. They can be used for generating request for
proposals, contract negotiations, scheduling, monitoring
and control. Underestimating the costs may result in
management approving proposed systems that then
exceed their budgets, with underdeveloped functions
and poor quality and failure to complete on time. Most
cost estimation models attempt to generate an effort

documents.

estimate, which can then be converted into the project
duration and cost. Although effort and cost are closely
related, they are not necessarily related by a simple
transformation function. Effort is
person-months of the programmers, analysts and project
managers. Software cost estimation techniques can be
broadly classified as algorithmic and non-algorithmic
models. Algorithmic models are derived from the

often measured in

statistical analysis of historical project data [1], for
example, Constructive Cost Model (COCOMO) [1] and
Software Life Cycle Management (SLIM) [2]. Non-
algorithmic techmques mclude Price-to-Win [3], Parkinson
[3], expert judgment [3] and machine learning approaches
[4]. Machine learning 1s used to group together a set of
techniques that embody some of the facets of human
mind [4], for example fuzzy systems, analogy, regression
trees, rule induction and neural networks. Among the
machine learning approaches, fuzzy systems
neural networks are considered to belong to the soft
computing group.

and

Corresponding Author: Iman Attarzadeh, Department of Software Engineering, Faculty of Computer Science and Information
Technology, University of Malaya (UM), 50603 Kuala Lumpur, Malaysia

177

World Appl. Sci. J., 8 (2): 177-184, 2010

Algorithmic Models: Software effort estimation provided
of the
measurement, so it 1s the oldest, most mature aspect of

some first attempts at precise software
software metrics. Boehm was the first researcher to look at
software engineering from an economic point of view,
coming up with a cost estimation model, COCOMO-81 in
1981, after mvestigating a large set of data from TRW in
the 1970s [3]. Putnam also developed an early model
known as SLIM in 1978 [2]. COCOMO, SLIM and
Albrect’s function point [3] methods (ie. measures
amount of functionality in a system) were all based on
linear regression techniques by collecting data from past
projects. Both COCOMO and SL.IM take size of lines of
code (about which least is known very early in the
project) as the major input to their models.

Models based on historical data have limitations,
because attributes and relationships used to predict
software development effort could change over time
and/or differ for software development environments [4].
Existing models rely on accurate estimate of size of
software in terms of line of code LOC, number of user
screen, interfaces, complexity and so on, at a time when
uncertainty surrounds the project the most [5]. Their
mability to handle categorical data, that are specified by
a range of values and most importantly lack of reasoning
capabilities, the ability to draw conclusions or make
judgments based on available data, contributed to the
number of studies exploring non-algorthmic methods,
for example neural networl, fuzzy logic and ete.

Non-Algorithmic Models: Newer computation techmques
to cost estimation that are non-algorithmic were sought in
the 1990°s. Researchers particularly have turned their
attention to a set of approaches that are soft computing
based. These mclude artificial neural networks, fuzzy logic
models and genetic algorithms. Artificial neural network
is able to generalize from trained data set. Over a known
set of training data, a neural-network learning algorithm
constructs rules that fit the data and fits previously
unseen data in a reasonable manner as well [5]. Some of
the very early works indicating that neural networks are
highly applicable to cost estimation include those of
Venkatachalam [6] and Krishna and Satsangi [7].

Fuzzy logic with its offerings of a powerful linguistic
representation can represent imprecision in inputs and
outputs, while providing a more expert knowledge based
approach to model building. A study by Hodgkinson and
Garratt claims that estimation by expert judgment was
better than all regression based models [8].

178

Fuzzy Logic: The fuzzy logic model uses the fuzzy logic
concepts introduced by Lofti A. Zadeh [9]. Fuzzy
reasoming consists of three main components [10]:
fuzafication process, inference from fuzzy rules and
defuzzification process. Fuzzification process is where the
objective term is transformed into a fuzzy concept. The
membership functions are applied to the actual values of
variables to determme the confidence factor or
membership value (MV). Fuzzification allows the input
and output to be expressed in linguistic terms. Inferencing
involves defuzzification of the conditions of the rules and
propagation of the confidence factors of the conditions to
the conclusion of the rules. A number of rules will be fired
and the inference engine assigned the particular outcome
with the maximum MV from all the fired rules.
Defuzzification process refers to the translation of fuzzy
output into objective terms.

A system based on Fuzzy Logic has a direct
relationship with fuzzy concepts (such as fuzzy sets,
linguistic variables, etc.) and fuzzy logic. The popular
fuzzy logic systems can be categorised into three types:
pure fuzzy logic systems, Takagi and Sugeno’s fuzzy
system and fuzzy logic system with fuzzification and
defuzzification [10]. Since most of the engineering
applications produce crisp data as input and expects crisp
data as output, the last type is the most widely used one
fuzzy logic system with fuzzification and defuzzification
was first proposed by Mamdam It has been successfully
applied to a variety of industrial processes and consumer

products [10].

The COCOMO Model: The Censtructive Cost Model
(COCOMOQ) is a regression based software cost
estimation model developed by Barry Boehm [3]. This
model allows one to estimate the cost, effort and schedule
when planning a new software development activity.
COCOMO TT is the latest major extension to the original
COCOMO (COCOMO 81) model published in 1981.
COCOMO 11 has three models also, but they are different
from those of COCOMO 81. They are [1, 3]:

Application Composition Model - Suitable for
projects built with modern GUI-builder tools. Based
on new Object Points.

Early Design Model - To get rough estimates of a
project's cost and duration before have determined
its entire architecture. It uses a small set of new Cost
Drivers and new estimating equations. Based on
Unadjusted Function Points or KSLOC.

World Appl. Sci. J., 8 (2): 177-184, 2010

Post-Architecture Model - The most detailed on the
three, used after the overall architecture for the
project has been designed. One could use function
points or LOC as size estumates with this model.
Tt involves the actual development and maintenance
of a software product.

COCOMO TT describes 17 cost drivers that are used
i the Post-Architecture model [3]. The cost drivers for
COCOMO I are rated on a scale from Very Low to Extra
High m the same way as in COCOMO 81. COCOMO I
post architecture model is given as:

17
Effort = 4 % [Sz'ze]B X HEﬁfortMulrzpliefg (1)
i=1
5
where B = 1.01 + 0.01 % ZScaleFactorJ,-
1=1
Tn <17
A: Multiphicative Constant
Size: Size of the software project measured in terms of
KSLOC (thousands of Source Lines of Code, Function
Points or Object Points). The selection of scale factors
(SF) is based on the rationale that they are a significant
source of exponential variation on a project’s effort or
productivity variation.

LITERATURE REVIEW

In the last decades, many methods have been
introduced into the area of software cost estimation to
umprove estimation accuracy.

Gray and MacDonell [4]
techniques in software effort estimation as regression
techniques, function point analysis (FPA), fuzzy logic
and neural network. Their results showed that fuzzy

compared popular

logic model achieved good performance. They introduced
an application of fuzzy logic to effort estimation. They
developed a tool, FUzzy logic SOftware MEasuring
(FULSOME) [4], to assist software managers in making
estimation. In FULSOME model, the two most important
variables were selected: complexity adjustment factor
and unadjusted function point. Then a triangular
membership functions were defined for the small, medium,
large intervals of size, complexity and effort.

Shepperd’s case-based reasoning tools [11] explore
algorithmic methods for emulating expert analogical
reasoning; Chulani and Boehm’s Bayesian tuning method
[3] for regression models allows an algorithm to carefully

179

combine expert judgment with the available data;
Chulani et al. [3] applied Bayesian analysis mn calibrating
the 1998 version of COCOMO II model to 161 data-points.
When compared with the 1997 calibration done using
multiple the Bayesian approach was
adjudged to perform better and more robust. Bayesian
analysis was also used m the calibration of the 2000
version of COCOMO T by Boehm et al. [3]. The result of
this was a higher predictive accuracy.

Fei et al have tried to fuzzify some of the existing
algorithmic models in order to handle uncertainties and
imprecision problems in such models [12]. They have
done the first realisation of the fuzziness on COCOMO
model. They found i1t is unreasonable to assign a
determmate number for it, because an accurate estimate of
delivered source instruction (KDSI) carmot be made
before starting the project. Ryder [13] applied fuzzy
modeling technique to COCOMO and the Function-Points
models.

Idri et al. and Huang et al. [14, 15] investigated the
application of fuzzy logic to the cost drivers of
intermediate COCOMO model.

In another research, Kumar et al. [7] applied fuzzy
logic in manpower buildup index (MBI) of Putnam
estimation model. MBI was based upon 64 different rules.

regressions,

The results showed it can be effectively applied to
software project management. Fuzzy logic also had been
applied to the non- algorithmic models to overcome the
uncertainly of the models.

Molokken et al and Idir ef al. proposed a combination
of fuzzy logic and estimation by analogy [15, 16].
Estimation by analogy is one of the classified techniques
of expert-based estimation method. It is a type of Case-
based Reasoning (CBR) method. The fuzzy analogy for
software cost estimation had also been applied to web
base software. Venkatachalam [6] applied artificial neural
network to cost estimation. Neural network is able to
generalise from tramed data set. Over a set of traming
data, neural network learning algorithm constructs
mappings that fit the data and fits previously unseen data
1n a reasonable way.

Research had also been done to combine fuzzy logic
with neural network. A new system based on fuzzy logic,
neural networlk and COCOMO IT proposed [17, 18, 19].
This system Based on COCOMO TIT post architecture
model, the input of neuro-fuzzy COCOMO consists of size
and 22 cost drivers (5 scale factors plus 17 effort
multipliers). In summary, fuzzy logic has been proposed to
algorithmic and non-algorithmic models in the pursuit of
achieving better estimation results. Nevertheless, there 15
still much uncertainty as to what estimation technique

World Appl. Sci. J., 8 (2): 177-184, 2010

suits which type of estimation problem [20, 21].
Choosing between the different techniques is a difficult
decision that requires the support of a well-defined
evaluation method to show each estimation technique as
it applies to any estimation problem.

Problem Statement: It is unrealistic to expect very
accurate cost estimates of any software because of the
inherent uncertainty in software development projects
and the complex and dynamic interaction of factors that
impact software development cost use. Still, it is likely that
estimates can be improved because software development
cost estimates are systematically overoptimistic and very
inconsistent. An important objective of the software
engineers has been to develop useful models that are
accurately estimating the software cost. In order to
address and overcome to these problems, new
approaches with accurate estimation will be considerable.

RESEARCH METHOD

The new proposed model based on COCOMO II has
three input’s data group. Those groups are COCOMO 1I
cost dnvers; scale factors and size of software. Also
one system output, effort estimation. It is shown in
Figure 1.

In COCOMO effort is expressed as Person Months
(PM). It determines the efforts required for a project based
on software project's size in Kilo Source Line of Code
(KSLOC) as well as other cost drivers known as scale
factors and effort multipliers. [t contains 17 effort
multipliers and 5 scale factors. The standard numeric
values of the cost drivers are given in Table 1.

Traditionally, the problem of software effort
estimation relies on a single (numeric) value of size and
scale factors values of given software project to predict
the effort. However, the size of the project is, based on
some previously completed projects that resemble the
current one (especially at the beginning of the project).
Obviously, correctness and precision of such estimates
are limited. It is of principal importance to recognise this
situation and come up with a technology using which we
can evaluate the associated imprecision residing within
the final results of cost estimation. The technology
endorsed here deals with fuzzy sets. Using fuzzy sets, size
of a software project can be specified by distribution of its
possible values. Commonly, this form of distribution is
represented in the form of a fuzzy set. It is important that
uncertainty at the input level of the COCOMO model
yields uncertainty at the output [10].

180

Table 1: COCOMO T cost drivers

Cost Driver Range

Required software reliability (RELY) 0.82-1.26
Databage gize (DATA) 0.90-1.28
Product complexity (CPLX) 0.73-1.74
Developed for reusability (RUSE) 0.95-1.24
Documentation match to life-cycle needs (DOCU} 0.81-1.23
Execution time constraint (TIME) 1.00-1.63
Main storage constraint (STOR) 1.00-1.46
Platform volatility (PVOL) 0.87-1.30
Analyst capability (ACAP) 1.42-0.71
Programmer capability (PCAP) 1.34-0.76
Personnel continuity (PCON) 1.29-0.81
Applications experience (APEX) 1.22-0.81
Platform experience (PLEX) 1.19-0.85
Language and tool experience (LTEX) 1.20-0.84
Use of software tools (TOOL) 1.17-0.78
Multi site development (SITE) 1.22-0.80
Required development schedule (SCED) 1.43-1.00

Cost Drivers

Scale Factors

M

Size (KSLOC)

STEP #1

=

Fuzzification 1 cation 2 fication 2

COCOMO II

STEP #2 F==v Inference Engine s Rules

il

Effort %

Fig. 1: The proposed model: Inputs: COCOMO 1T cost
drivers, scale factors, size. Output: Effort
estimation

Defuzzification

STER #3

This becomes obvious and, more importantly, bears
a substantial significance in any practical endeavor.
By changing input parameters using fuzzy set, we can
model the effort that impacts the estimation accuracy.
Cbviously, a certain monotonicity property holds, which
1s less precise estimates of inputs give rise to less detailed
effort estimates. Overlapped symmetrical Two-sided
Gaussian function reduces fuzzy systems to precise linear
systems [17]. Furthermore there is a possibility when
using a Two-sided Gaussian function that some attributes
are assigned the maximum degree of compatibility when
they should be assigned lower degrees. In order to avoid
this linearity it is proposed to use more superior function

Warld Appl. Sci. 1., 8 (2): 177-184, 2010

| =
]
il N R
%
5] a0
(L]
Centres

Fig. 2: Gaussian membership function

U N

- inp.ut. Jaritle 'DATAY
Fig. 3: Representation of DATA cost driver using
Ganssian function (Input)

i.e.,, Two-gsided Ganssian membership function for
representing inputs of the project. The Gaussian Function
is represented by “2”. In “2”" the weight of exponential is
selected as 1.

2
My (x) = Gaussian (x, ¢;,06;) 9% @)
i

Where O, iz the center of the i, fuzzy set and g, iz the
Full Width at Half Maximum (FWHM) of the i,, fuzzy set.
It is shown in Figure 2.

The processes involved in software effort estimation
using FL are shown in Figure 1. The main processes of
this system include four activities: fuzzification, fuzzy rule
base, fuzzy inference engine and defuzzification. The main

fours components® functions are in three steps as follows:

L Step #/
Fuzzification: It converts a crisp input to afuzzy set.

2. Step #2
Fuzzy Rule Base: Fuzzy logic systems use fuzzy IF-THEN
rules.

Fuzzy Inference Engine: Once all crisp input values are
fuzzified into their respective linguistic values, the
inference engine accesses the fuzzy rule base to derive
linguistic values for the intermediate and the output
linguistic variables.

181

3. Step #3
Defuzzification: It converts fuzzy output into crisp
output.

All the input variables in COCOMO ITmodel changed
to the fuzzy variables based on the fuzzification process.
The term s Very Low, Low, Nominal, High and Very High,
Extra High were defined for the 22 variables, cost drivers
and scale factors, in COCOMO IL For example, in the case
of DATA cost driver, we define a fuzzy set for each
linguistic value with a Two-sided Gaussian shaped
membership function i is shown in Figure 3. We have
defined the fuzzy sets corresponding to the various
associated linguistic values for each cost driver.

In this research, a new fuzzy effort estimation model
is proposed by using Two-sided Gaussian function to
deal with linguistic data and to generate fuzzy membership
functions and rules for cost drivers obtained from 3%,
In the next step, we evaluate the COCOMO model using
the “1” and cost drivers obtained from fuzzy sets (F_EMij)
rather than from the classical EMij. F_EMij is calculated
from “‘4” the clagsical EMij and the membership functions
i defined for the various fuzzy sets associated with the
cost drivers.

Fuzzy,, = FU™ g i gy EMyy ... EMy) (3)

For ease, F is taken as a linear function, where the pVi
Ai is the membership function of the fuzzy set Ai
associated with the cost driver Vi iz shown in “4”.

kt
F“ZZJ’EM‘}_ = Z#A:v’ *EM

1=1

4)

The new fuzzy model rules contain the linguistic
variables related to the project. It is important to note that
those rules were adjusted or calibrated, as well as all
pertinence level functions, in accordance with the tests
and the characteristics of the project. In rules use the
connective "and" and "or" or combination of them
between input variables, as indicated in the example
below.

Fuzzy Rules:

IF DATA is Low TEHN effort is Low

IF ACAP is Very_Low THEN effort is Very High
IF CPL X is Nominal THEN effort is Nominal

IF RUSE iz Very_High THEN effort is Very High

The number of rules that have used in proposed
model is more than 193 rules for all input variables.

World Appl. Sci. J., 8 (2): 177-184, 2010

Table 2: The artificial dataset generated for system validation consists of
100 data samples

No. Mode Size Effort

1 1.1200 51.2500 246.5900
2 1.2000 12.5500 58.2800
3 1.0500 81.5200 550.4000
97 1.2000 56.5300 354.7300
98 1.0500 16.0400 67.1400
100 1.1200 54,1700 262.3800

DATASET DESCRIPTION

B.W. Boehm [1] is the first researcher to look at
software engmeering from an economic point of view
and he came up with cost estimation models from two
datagets, COCOMO and COCOMO I1. The COCOMO [1]
dataset includes 63 listorical projects with 17 effort
drivers and one dependent variable of the software
development effort. So, the first used dataset for
evaluating the proposed model is based on COCOMO
model. The second attempt was to create an artificial
dataset based on COCOMO model. The algorithm for
fuzzy set learning in a Mamdani-type fuzzy system is
following this four-step procedure:

Choose a traming sample and propagate the input
vector across the network to get the output.
Determine the error in output and the error gradient in
all the other layers.

Determine the parameter changes for the fuzzy
weights and update the fuzzy weights.

Repeat until the fuzzy error is sufficiently small after
an epoch 1s complete.

The dataset randomly generated following the
procedure discussed in above and shows in Table 2.

Therefore, m this work has used two datasets for
evaluation of the proposed model. Finally, by aggregate
the accuracy across all testing datasets as the mean
result.

EXPRIMENTAL RESULTS

For evaluating the different software effort estimation
models, the most widely accepted evaluation criteria are
the mean magnitude of relative error (MMRE) and
probability of a project having a relative error of less than
or equal to 0.25 (Pred()). The Magnitude of Relative Error
(MRE) is defined in “5” as follows:

182

Actual Effort; - Predicted Effort &)
L | ctual Bffort, edicte ﬁ'or1.|

! Actual Effort,

The MRE value 1s calculated for each observation 7
whose effort is predicted. The aggregation of MRE over
multiple observations (N) can be achieved through the
Mean MRE (MMRE) in “6” as follows:

MMRE = % Z?IMREi ©

Another measure similar to MRE, the Magnitude of
error Relative to the Estimate (MER), has been proposed.
Intuitively, 1t preferable to MRE since it
measures the error relative to the estimate. MER uses
Predicted Efforti as denominator m “5”. The notation
MMER 1s used to the mean MER in “6”. However, the
MMRE and MMER are sensitive to mdividual predictions
with excessively large MREs or MERs. Therefore, an
aggregate measure less sensitive to extreme values is also
considered, namely the median of MRE and MER
values for the N observations (MdMRE and MdMER
respectively) . A complementary criterion is the prediction
at level I Pred(]) = /N, where k& is the number of
observations where MRE (or MER) is less than or equal
to [and N is the total number
Thus, Pred(25) gives the percentage of projects which
were predicted with a MRE (or MER) less or equal
than 0.25.

The proposed fuzzy model was validated by two
approaches. In the first approach, has used the COCOMO
dataset that consists of 63 projects (Dataset #1). In the
second approach, has used the artificial dataset that
consists of 100 sample projects (Dataset #2). Then both
datasets are applied to the new fuzzy model and
COCOMO IT'model. The validation of the new fuzzy model
to building trained fuzzy model for effort estimation has

SCCINS

of observations.

been done using artificial dataset and standard dataset
COCOMO TI. The comparison between the results of
standard dataset and artificial dataset that applied on the
new fuzzy model and COCOMO I model shows more
accuracy n case of effort estimation by the new fuzzy
model. The comparisons between results are shown in
Tables 3 and 4.

In this research, each dataset separately applied to
the COCOMO TT model and proposed model. Then for
each model, the MMRE and Pred were calculated.
Finally mean of those calculations are used to compare
both models. The result for 163 applied projects shows
the MMRE for COOCMO IImodelis 0.406713037 and

World Appl. Sci. J., 8 (2): 177-184, 2010

Table3: Comparison between performance of the proposed model and
COCOMO IT
Data set Model Evaluation MMRE Pred (25%)
Dataset#1 COCOMO IL 0.413812453 30
Proposed Model 0.366545456 500%
Dataset#2 COCOMO IL 0.39961362 40%
Proposed Model 037272956 45%%
Mean COCOMOII 0.406713037 35%
Proposed Model 0.369637508 47.5%
Table 4: Accuracy of the proposed model
Model Evaluation MMRE
Proposed Model vs. COCOMOIL COCOMO IT 0.406713037
Proposed Model 0.369637508
Improvement %o 12.63

for proposed model the value equals to 0.369637508.
It shows the proposed model has MMRE less than
COCOMO II model, so it means the accuracy of proposed
model 18 better than COCOMO II. In case of Pred, the final
result shows the proposed model value 15 47.5% m Pred
(25%) and COCOMO IT value is 35% in same Pred. As it
mentioned above, Pred shows the number of projects that
they have MMRE lass than 25%. According to this
definition, the proposed model shows better accuracy.
Table 4 shows how much the proposed model 1s accurate
than COCOMO IT model.

For comparing proposed model with COCOMO
model, the improvement is 12.63% based on the MMRE
0.40 and 0.36. The experimental results show that the
proposed software effort estimation model shows better
estimation accuracy than the other two models, 1.e.,
COCOMO. In summary, an output with more terms or
fuzzy sets provided a better performance due to the high
granularity demanded from the results. Most of the
sample data in the dataset with the proposed fuzzy model
resulted in a more accurate estimation when compared to
the COCOMO Il model.

CONCLUSION

An essential 1ssue for project managers 1s the
accurate and reliable estimates of the required software
development effort, especially in the early stages of the
software development life cycle. Software effort drivers
usually have properties of uncertainty and vagueness
when they are measured by humean judgment. A software
effort estimation model utilising fuzzy inference system
can overcome these characteristics of uncertainty and
vagueness exist in software effort drivers. However, the

183

determination of the suitable fuzzy rule sets for fuzzy
inference plays an important role in coming up with
Software effort
estimation using fuzzy logic is an attempt in the area of

accurate and reliable effort estimates.

software project estimation. The objective of this work 1s
to provide a technique for software cost estimation that
performs better than other techmiques on the accuracy of
effort estimation and a given set of test cases. This paper
presented a new model for handling imprecision and
uncertamnty by using the fuzzy logic systems. This work
has shown by applying fuzzy logic on the algorithmic
and non-algorithmic software effort estimation models
accurate estimation is achievable. The proposed fuzzy
logic model showed better software effort estimates in
view of the MMRFE, Pred(0.25) evaluation criteria as
compared to the traditional COCOMOQO. The above-
mentioned results demonstrate that applying fuzzy
logic method to the software effort estimation is a
feasible
uncertainty and vagueness existed in software effort
drivers. Furthermore, the fuzzy logic model presents better

approach to addressing the problem of

estimation accuracy as compared to the origmal
COCOMO dataset. The utilisation of fuzzy logic for other
applications m the software engineering field can also be
explored in the future.

REFERENCES

Boehm, B.W., 1981. Software Engineening Economics,
Englewood Cliffs, NJ, Prentice-Hall.

Putnam, L.H., 1978. A General Empirical Solution to
the Macro Software Sizing and Estimating Problem,
IEEE Transactions on Software
4(4): 345-361.

Boehm B., C. Abts and S. Chulam, 2000. Software
Development Cost BEstimation Approaches - A
Survey, University of Southern California Center for
Software Engineering, Technical Reports, USC-CSE-
2000-505.
MacDonell, S.G.

Engineering,

and AR, Gray, 1997.
A Comparison of Modeling Techmques for
Software evelopment Effort Prediction, in
Proceedings of the 1997 International Conf. on Neural
Information Processing and Intelligent Information
Systems, Dunedin, New Zealand, Springer-Verlag,
Pp: 869-872.

Schofield C., 1998. Non-Algorithmic Effort Estimation
Techmques, Technical Reports, Department of
Computing, Bournemouth University, England,
March.

10.

11.

12.

13.

14.

World Appl. Sci. J., 8 (2): 177-184, 2010

Venkatachalam, A.R., 1993. Software cost estimation
using artificial neural networks. Proceedings of the
1993 International Joint Conference on Neural
Networks, pp: 987-990.

Kumar, 5. A. Krishna and P. Satsangi, 1994. Fuzzy
systems and neural networks in software engineering
project management, J. Applied Intelligence, 4: 31-52.
Hodgkinson, A.C. and P.W. Garratt, 1999. A
NeuroFuzzy Cost Estimator, in Proceedings of the 3
International Conference on Software Engmeering
and Applications - SAH., pp: 401-406.

Lotfi Zadeh, A., 1994, Fuzzy Logic, Neural Networks
and Soft Computing, Communication of ACM.,
37(3): 77-84.

Lotfi Zadeh, A., 2001. The Future of Soft Computing,
In JToint 9th TFSA World Congress and 20th NAFIPS
International Conference, Vancouver, Canada.
Shepperd, M.I. C. Schofield, 1997.
Estimating software project effort using analogies.
IEEE Transactions
23(11): 736-743.
Fei, Z. and X Lwm, 1997. {~COCOMO: Fuzzy
Constructive Cost Model in Software Engineering, in
Proceedings of the IEEE International Conference on
Fuzzy Systems, IEEE Press, New York, pp: 331-337.
Ryder, 1., 1998. Fuzzy modeling of software effort
prediction, in Proceedings of IEEE Information
Technology Conference, Syracuse, NY.

Jingzhou, L. and R. Guenther, 2008. Analysis of
attribute weighting heuristics for analogy-based
software effort estimation method AQUA+ in
Proceedings of Empirical Software Engineering J.
13(1): 63-96.

and

on Software Engineering,

184

15.

16.

17.

18.

19.

20.

21.

Idri, A., A. Zahi and A. Abran, 2006. Software Cost
Estimation by Fuzzy Analogy for Web Hypermedia
Applications, m Proceedings of the International
Conference on Software Process and Product
Measurement, Cadiz, Spain, pp: 53-62.

Molokken, K. and M. Jorgensen, 2003. A review of
software surveys on software effort estimation, in
Proceedings of IEEE International Symposium on
Empirical Software Engineering, ISESE., pp: 223 -230.
Huang, S. and N. Chiu, 2009. Applying fuzzy neural
network to estimate software development effort , in
Proceedings of Applied Intelligence J., 30(2). 73-83.
Boehm, B., 1995. Cost Models for Future Software
Life Cycle Processes: COCOMOQO 2.0, Annals of
Software Engineering Special Volume on Software
Process and Product Measurement, Science
Publisher, Amsterdam, Netherlands, 1: 45-60.
Boetticher, GD., 1995. An Assessment of Metric
Contributtion m the Comstruction of a Neural
Network-Based Effort Estimator, in Proceedings of
2nd International Workshop on Soft Computing
Applied to Software Engineering.

Liu, H. and L.. Yu, 2005. Toward Integrating Feature
Selection Algorithms
Clustering, [EEE Transactions on Knowledge and
Data Engineering, 17(4): 491-502.

MacDonell, 3.G., A.R. Gray and M.J. Calvert, 1999.
FULSOME: A Fuzzy Logic Modeling Tool for
Software Metricians, in Proceedings of the 18"
International Conference of the North American
Fuzzy Information Processing Society - NAFIPS,
TEEE., pp: 263-267.

for Classification and

