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Abstract: In the family of CELP coders, codebook search has high computational complexity. In this 
paper, the codebook search in low delay-code excited linear prediction (LD-CELP) G.728 coder is 
performed by a multi-self organizing map (SOM) neural model. A modified-supervised SOM training 
algorithm is also used in this work. In this algorithm, the codebook vectors are assigned to a class during 
training and a rejection term for codebook entries is used. The proposed neural search codebook module 
consists of 48 SOMs, which determine optimum index values of shape codebook. Empirical results show 
that the proposed model, which has an average classification rate of 97.8%, leads to 28% reduction in 
execution time as compared to a traditional implementation of G.728 encoder. However, the degradations 
in mean opinion score (MOS) and segmental signal to noise ratio (SNRseg) are 0.16 and 0.17 dB, 
respectively.
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INTRODUCTION

In June 1988, International Telecommunication
Union-Telecom sector (ITU-T, formerly CCITT)
decided to investigate the possibility of standardizing a 
low delay 16 kbps speech coding for universal
application. In this way, in 1989 Chen presented an 
algorithm based on low delay-code excited linear
prediction (LD-CELP) [1]. The presented algorithm
after some tests and enhancements [2, 3], became
standardized by CCITT in 1992 as G.728 [4].

This coder has a one-way coding delay less than 2 
msec, so it can be used in video-phone, cordless 
telephone, digital satellite system and applications like 
that in which having low delay is a critical parameter. 
LD-CELP is basically a backward-adaptive version of
the CELP coder in which the predictor and excitation 
gain are updated backward adaptively by analyzing the 
former quantized speech and excitation, respectively. 
Many researches have been performed to improve
LD-CELP speech coding algorithm [5-10].

On the other hand, artificial neural networks
(ANNs) emerged in the recent decades as powerful 
and adaptive data processing models for pattern
classification and feature extraction. Neural networks
have been used extensively and successfully for a
variety of applications in speech coding algorithms, 
as well. The researches on using ANNs in speech 
coding can be classified into two main domains: 
neural predictors which improve the quality of coder 

[11-19] and reduction the computational complexity
[20-25].

In the family of CELP coders, codebook search has 
high computational complexity. ANNs can be used to 
reduce this complexity. For example, a modified
Hopfield neural net is used to search in the codebook of 
a CELP coder [20]. Stochastic codebook (SCB) search 
for CELP coding is performed by the counter
propagation neural network model and less
computational complexity is achieved, too [21]. An
efficient procedure for exploiting self organizing maps 
(SOMs) for a fast search quantization procedure is also 
presented in [22] that greatly reduce the complexity for 
vector quantization (VQ) of the spectral envelope. A 
codebook design algorithm, based on modified self-
organizing feature map (SOFM) neural network, is
introduced for LD-CELP in [24], as well. Huong et al.
employed a new line spectral pairs (LSPs) codebook by 
using a centroid neural network (CNN) to enhance the 
compression rate of an adaptive multi-rate (AMR)
coder [25]. 

LD-CELP is an analysis -by-synthesis (AbS)
codebook driven method for linear predictive speech 
coding. The basic structure of the encoder is shown in 
Fig. 1. In this coder, which is an encoding method 
based on a source filter model, speech is reproduced by 
using excitation codevectors that are time-series signals 
and are stored in an excitation codebook, to drive a 
linear predictive synthesis filter that represents the
spectral envelope of the input speech [4, 6].
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Fig. 1: Block diagram of LD-CELP encoder

Fig. 2: Block diagram of search codebook module in LD-CELP [4]

The optimal excitation codevector is selected from 
the excitation codebook by using a closed-loop search 
according to the AbS method to find the one having the 
minimum perceptually-weighted waveform distortion
of the synthetic speech signal to the related input 
speech signal.

In this study, codebook search is performed by a 
multi-SOM structure with modified-supervised training 

algorithm, which reduces the complexity of LD-CELP
algorithm. This paper is organized as follows. In
Section 2, the codebook search in LD-CELP encoder is 
described. Section 3 gives the details of modified-
supervised training algorithm of SOM. The details of 
codebook search using multi-SOM are discussed in 
Section 4. The empirical results are reported in Section 
5 and conclusions are drawn in Section 6.
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CODEBOOK SEARCH IN LD-CELP

The LD-CELP algorithm with low rate and low
complexity has very important meaning in the field of 
communication. On the other hand, the computations in 
codebook design increase rapidly with the growth of the 
codeword dimension k  and the codebook size m. For the 
quantizer that needs higher dimension and higher size 
codebook, search is very time-consuming and difficult.
In actual design of LD-CELP coder, the complexity 
must be reduced.

As shown in Fig. 1, in LD-CELP, zero-input
response vector r(n) subtracts from the VQ weighted 
speech vector v(n) to obtain the VQ codebook search 
target vector x(n). The excitation gain s(n) is obtained 
with closed loop method, too. Each of the 1024
candidate codevectors is scaled by the current
excitation gain and then is passed through a cascaded 
filter consisting of the synthesis filter F(z)  and the 
perceptual weighting filter W(z)  [4]. The transfer
function of the cascaded filter is obtained as:

H (z) =W(z).F(z) (1)

The detailed block diagram of LD-CELP search 
codebook module is shown in Fig. 2. The following 
formula is used for codebook search:

22
i iˆD (n) x(n) gH(n)y= σ − (2)

in which, s(n) is the predicted value of excitation 
gain and x̂(n) is the target vector adjusted by s(n).
H(n) is the unit impulse response matrix of the
short–term predictor, gi is the ith level in the 3-bit gain 
codebook and yj is the jth codevector in the 7-bit shape 
codebook [4]. 

According to G.728 recommendation, minimizing 
D is equivalent to maximizing Dmax:

T 2
max i j i jD 2 g p (n)y g E= − (3)

in which, T ˆp(n) H x(n)= and
2

j jE Hy= .

The inner product term, T
j jˆp H x(n)y= , which

solely depends on j, takes the most of the computation 
in determining Dmax. The number of multiplications and 
additions in computing Ej and pj is reported in Table 1. 
Once the best indices for i and j are identified, they are 
concatenated to form the output of the codebook search 
module (a single 10-bit index). The 10-bit codebook 
index consists of two portions: 3 bits for gain codebook 
(b0-b2: 8 scalar values) and 7 bits for shape codebook
(b3-b9: 128 codevectors).

Table 1: Number of multiplications and additions for computing Ej

and pj in search codebook module [10]

Number of Number of
Equation multiplications additions

2
j jE Hy= 2560 2304

T
j jˆp H x(n)y= 10240 9216

The values of gain are symmetric with respect to 
zero. The occurrence frequency characteristics of
codevectors in shape codebook have not the
uniform distribution [26]. The experiments show that 
the occurrence frequency characteristics of shape
codevectors have not so significant dependency on the 
gain scalar values, as well. According to the results that 
are reported in [27], occurrence probability of shape 
codebook index values in the range of 65 to 128 is 
much higher than index values in the range of 1 to 64. 
In this way, Fig. 3 shows the histogram of the shape 
codebook index values for 11,000 sample speech
frames of speech in this study.

MODIFIED SUPERVISED SOM ALGORITHM

The SOM, introduced by Kohonen [28], is a well 
known neural model and is popular in areas that require 
visualization and dimension reduction of large, high 
dimensional data sets. The SOM is a vector
quantization method which can preserve the topological 
relationships between input vectors when projected to a 
lower dimensional display space.

The basic idea of SOM is simple. Every neuron i of 
the map is associated with an n-dimensional codebook 
vector mi = (mi1,…,min)T. The neurons of the map are 
connected to adjacent neurons by a neighborhood 
relation, which defines the topology or the structure of 
the map. Adjacent neurons belong to the neighborhood 
Ni of the neuron i. Neurons belonging to Ni are updated 
according to a neighborhood function f(.). Most often, 
f(.) is a Gaussian-bell function.

SOMs are typically trained in an unsupervised 
fashion, even if a teacher signal is available. Some
attempts were made to utilize teacher signals, if
available, with the goal to improve the mapping
precision. Supervised training of SOMs is attempted by 
Kohonen in [28]. There, supervision is achieved by 
attaching information about class membership to the 
input vector while during the recognition phase, the 
class label is omitted.

However, the approach produces good results 
only for some artificial learning tasks where the 
number of classes is small [29]. A method for
supervised training of SOM is described in this
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Fig. 3: Histogram of the shape codebook index values in LD-CELP for 11,000 sample speech frames 

section, which has been developed with considerably
more success.

In detail the method works as follows: Given a self 
organizing map M with k  neurons. Each neuron is 
associated with a codebook entry m Rn. The best 
matching neuron mr for an input x is obtained e.g., by 
using the Euclidean distance:

ii
r argmin ( x m )= − Λ (4)

where  is a n n dimensional diagonal matrix, which 
its diagonal elements 11… pp are assigned to be 1, all 
remaining diagonal elements are set to 2. The values 

1 and 2 weight the influence of the components l and 
c in x. Then the ith element of the jth codebook vector mj
is updated as follows:

jr i ij r
ij

jr i ij

( t)f( ) h (x , m ) ; if x and m are in different classes
m

(t)f( )(x m ) ; else

−βα ∆∆ = α ∆ −
(5)

f(∆jr) is a neighborhood function which will be
explained later,  is the learning rate which decreases 
linearly to zero in time,  is a rejection rate which 
weights the influence of the rejection term h(.) . The 
purpose of the rejection term is to move mr and its 
neighbors away from x. The effect is a reduction of the 
likelihood that an input node activates a codebook
vector which is assigned to a foreign class in
subsequent iterations. The rejection term is defined as 
follows:

i ij i ij i i ijh ( x , m ) sgn(x m )( x m )= − ρ − − (6)

where sgn(.) is the signum function returning the sign 
of its argument and i is the standard deviation defined 
as follows:

N
2

Nli i
li il 1 l 1

i i

(x x ) x .
; x

N N
= =

− ρ
ρ = =

∑ ∑ (7)

where N is the number of nodes in the training set. i
can be approximated by a constant when assuming that 
the mapping of nodes is random. This approximation 
significantly reduces the computational cost. The
rejection term dictates stronger actions if a codebook 
entry is very similar to the input node. Note that h(.)
returns values within the range [-1; 1] eliminating the 
harmful influence of the magnitude of the vector
elements.

The neighborhood function f(.) controls the amount 
by which the weights of the neighboring neurons are 
updated. The neighborhood function f(.) can take the 
form of a Gaussian function: 

2
i r

ir 2

l l
f ( ) exp

2 (t)

 −
 ∆ = −
 σ 

(8)

where (t) is the spread decreasing with the 
number of iterations and lr is the location of
the winning neuron and li is the location of the ith

neuron in the lattice. Note that because of Eq. (5), the 
weights will not be distributed as a linear function 
of the input density. Training a supervised SOM
network is an extension of the training algorithm
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Table 2: Range of shape codebook index values in each part of 
multi-SOM structure

Range of index values
--------------------------------------------------------------------------

Part First segment Second segment Third segment

1 j∈[81,100] j∈[65,80], j∈[101,106]j∈[107,128]
2 j∈[33,52] j∈[17,26], j∈[53,64] j∈[1,16], j∈[27,32]

Table 3: Occurrence frequency of gain index values in 12,700
sample speech frames

Index value (i) Occurrence frequency

1 3502
2 1802
3 515
4 121
5 3793
6 2375
7 512
8 80

Table 4: Index specifications of SOMs in the first part of proposed 
model

Gain codebook Shape codebook
SOM index (i) index (j)

SOM1 5 (81≤j≤100)
SOM2 5 (65≤j≤80) & (101≤j≤106)
SOM3 5 (107≤j≤128)
SOM4 1 (81≤j≤100)
SOM5 1 (65≤j≤80) & (101≤j≤106)
SOM6 1 (107≤j≤128)
SOM7 6 (81≤j≤100)
SOM8 6 (65≤j≤80) & (101≤j≤106)
SOM9 6 (107≤j≤128)
SOM10 2 (81≤j≤100)
SOM11 2 (65≤j≤80) & (101≤j≤106)
SOM12 2 (107≤j≤128)
SOM13 3 (81≤j≤100)
SOM14 3 (65≤j≤80) & (101≤j≤106)
SOM15 3 (107≤j≤128)
SOM16 7 (81≤j≤100)
SOM17 7 (65≤j≤80) & (101≤j≤106)

SOM18 7 (107≤j≤128)
SOM19 4 (81≤j≤100)
SOM20 4 (65≤j≤80) & (101≤j≤106)
SOM21 4 (107≤j≤128)
SOM22 8 (81≤j≤100)
SOM23 8 (65≤j≤80) & (101≤j≤106)
SOM24 8 (107≤j≤128)

used by an unsupervised SOM network. The
difference between the two approaches is that 
codebook vectors are assigned to a class during 
training and also a rejection term is used for 
codebook entries that do not belong to the same
class as the input vector.

The weight values 1 and 2 can be computed as 
they depend on the dimension and magnitude of the 
elements in l and c. Given that the Euclidean distance in 
Eq. (4) is computed as follows:

p p
2 2

1 i i 2 j n j
i 1 j 1

d (l m ) (c m )+
= =

= µ − + µ −∑ ∑ (9)

Thus, 1 and 2 balance the influence of l and c to 
the distance measure. Ideally, the influence of the data 
label and the coordinate vector on the final result is 
equal. A way to obtain the pair of weight values is 
suggested in [30]:

m
j jj 11

n
2 i ii 1

( ( l ) ( l ))n
m ( ( c ) (c))

=

=

φ − σµ
=

µ φ − σ

∑
∑

(10)

where (li) is the average absolute value of the ith

element of all data labels in the data set. Similarly, (ci)
is the average of the ith element of all coordinates. To 
obtain unique value pairs we make the assumption that 

1 + 2 = 1 .

CODEBOOK SEARCH BASED 
ON MULTI-SOM STRUCTURE

In this paper, a multi-SOM structure is used instead 
of search codebook module. This structure consists of 
two parts and 24 SOMs are used in each part. The first 
part determines optimum index values of shape
codebook in the range of 65 to 128. The second part 
has the same function for indices in the range of 1 to 
64 (Fig. 4).

In our experiments, the range of shape codebook 
index values in each part is segmented based on the 
occurrence frequency characteristics of codevectors
(Table 2). The occurrence frequency of the gain
codebook indices has not uniform distribution, too 
(Table 3).

Training dataset for each of the SOMs is formed 
based on the index values of gain codebook (i) and 
shape codebook (j), listed in Table 4 and 5. The
proposed arrangement for indices is achieved by
several experiments to have acceptable levels of
the segmental signal to noise ratio (SNRseg) and mean 
opinion score (MOS).
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Fig. 4: The proposed multi-SOM model for search codebook module in LD-CELP

Table 5: Index specifications of SOMs in the second part of 
proposed model

Gain codebook Shape codebook
SOM index (i) index (j)
SOM25 5 (33≤j≤52)
SOM26 5 (17≤j≤26) & (53≤j≤64)
SOM27 5 (1≤j≤16) & (27≤j≤32)
SOM28 1 (33≤j≤52)
SOM29 1 (17≤j≤26) & (53≤j≤64)
SOM30 1 (1≤j≤16) & (27≤j≤32)
SOM31 6 (33≤j≤52)
SOM32 6 (17≤j≤26) & (53≤j≤64)
SOM33 6 (1≤j≤16) & (27≤j≤32)
SOM34 2 (33≤j≤52)
SOM35 2 (17≤j≤26) & (53≤j≤64)
SOM36 2 (1≤j≤16) & (27≤j≤32)
SOM37 3 (33≤j≤52)
SOM38 3 (17≤j≤26) & (53≤j≤64)
SOM39 3 (1≤j≤16) & (27≤j≤32)
SOM40 7 (33≤j≤52)
SOM41 7 (17≤j≤26) & (53≤j≤64)
SOM42 7 (1≤j≤16) & (27≤j≤32)
SOM43 4 (33≤j≤52)
SOM44 4 (17≤j≤26) & (53≤j≤64)
SOM45 4 (1≤j≤16) & (27≤j≤32)
SOM46 8 (33≤j≤52)
SOM47 8 (17≤j≤26) & (53≤j≤64)
SOM48 8 (1≤j≤16) & (27≤j≤32)

It is noted that MOS provides a numerical
indication of the perceived quality of received media 
after compression and/or transmission. The MOS is
expressed as a single number in the range of 1 to 5, 
where 1 is the lowest perceived audio quality and 5 is 
the highest perceived audio quality measurement.

SNRseg is an important factor in determining the 
quality of audio data, too. This is particularly important 
in speech recognition technology, since it is well known 
that recognition performance is strongly influenced by 
the SNR [31]:

2

n
2 2 2

n

x (n)
SNR 10log( )

(x (n) y (n))
=

−

∑
∑

(11)

where x(n) is the input signal to encoder and y(n) is the 
output signal from decoder. SNRseg is defined as the 
average of SNR measurements:

N

seg m
m 1f

1SNR SNR
N =

= ∑ (12)

in which, Nf is the number of frames.
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Table 6: Map size, training and test specifications of SOMs in the first part of model
Training time (sec)
----------------------------------------

SOM Number of training samples Number of test samples Map size T 1 T 2

SOM1 4400 400 12×20 3.401 5.987
SOM2 4400 400 12×20 3.764 5.456
SOM3 4400 400 12×20 3.897 5.453
SOM4 4400 400 12×20 3.376 5.567
SOM5 4400 400 12×20 3.399 5.222
SOM6 4400 400 12×20 3.123 5.569
SOM7 4400 400 12×20 3.434 5.454
SOM8 4400 400 12×20 3.608 5.861
SOM9 4400 400 12×20 3.564 5.302
SOM10 4400 400 12×20 3.666 5.875
SOM11 4400 400 12×20 3.376 5.110
SOM12 4400 400 12×20 3.354 5.132
SOM13 4400 400 10×20 2.567 4.013
SOM14 4400 400 10×14 2.235 4.077
SOM15 4400 400 10×14 2.345 4.076
SOM16 4400 400 10×14 2.567 4.179
SOM17 2200 200 10×14 2.567 4.106
SOM18 2200 200 10×14 2.233 4.003
SOM19 1000 100 9×10 1.999 4.100
SOM20 1000 100 9×10 2.001 3.986
SOM21 1000 100 9×10 2.010 3.924
SOM22 1000 100 9×10 1.997 3.634
SOM23 1000 100 9×10 1.921 3.234
SOM24 1000 100 9×10 1.987 3.244

Table 7: Map size, training and test specifications of SOMs in the second part of model
Training t ime (sec)
----------------------------------------

SOM Number of training samples Number of test samples Map size T 1 T 2

SOM25 1100 100 12×20 3.321 5.384
SOM26 1100 100 12×20 3.363 5.453
SOM27 1100 100 12×20 3. 164 5.333
SOM28 1100 100 12×20 3.273 5.563
SOM29 1100 100 12×20 3.311 5.109
SOM30 1100 100 12×20 3.144 5.587
SOM31 1100 100 12×20 3.431 5.234
SOM32 1100 100 12×20 3.345 5.654
SOM33 1100 100 12×20 3.552 5.352
SOM34 1100 100 12×20 3.361 5.055
SOM35 1100 100 12×20 3.386 5.188
SOM36 1100 100 12×20 3.308 5.431
SOM37 1100 100 10×20 2.201 4.000
SOM38 1100 100 10×14 2.001 4.001
SOM39 1100 100 10×14 2.145 4.051
SOM40 1100 100 10×14 2.137 4.017
SOM41 600 80 10×14 2.117 4.106
SOM42 600 80 10×14 2.123 4.009
SOM43 600 80 9×10 1.799 4.001
SOM44 600 80 9×10 1.900 3.701
SOM45 600 80 9×10 1.986 3.333
SOM46 600 80 9×10 1.891 3.330
SOM47 600 80 9×10 1.900 3.209
SOM48 600 80 9×10 1.960 3.204
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Table 8: Number of SOMs' selection in the multi-SOM model-2700
input frames

Number of Number of
SOM selection SOM selection

SOM1 251 SOM25 64
SOM2 210 SOM26 61
SOM3 171 SOM27 49
SOM4 160 SOM28 41
SOM5 148 SOM29 38
SOM6 141 SOM30 39
SOM7 138 SOM31 29
SOM8 130 SOM32 21
SOM9 131 SOM33 23
SOM10 120 SOM34 25
SOM11 117 SOM35 19
SOM12 116 SOM36 17
SOM13 80 SOM37 14
SOM14 61 SOM38 16
SOM15 56 SOM39 15
SOM16 58 SOM40 13
SOM17 49 SOM41 10
SOM18 41 SOM42 12
SOM19 4 SOM43 1
SOM20 2 SOM44 5
SOM21 1 SOM45 3
SOM22 1 SOM46 0
SOM23 0 SOM47 2
SOM24 0 SOM48 0

Based on the index values of i and j, which are 
determined in the test phase of model, Eq. (2) is used 
for calculating the value of D. If the value of D is lower 
than a threshold, which is explained in the next section,
the best index is found for j. Otherwise, the next SOM 
is employed to find the best index.

EMPIRICAL RESULTS

In this work, a 16 kbps LD-CELP vocoder
is implemented based on the ITU-T G.728
recommendation [4]. The simulation of encoder and 
decoder is performed by MATLAB v.7.2 software.
Training dataset includes 103,200 frames of speech 
from 25 male and 30 female speakers. The sampling 
frequency is 8 kHz and the frame size is 20 samples.

We used a learning rate α(0)=0.5, a rejection rate 
β(0)=0.05, a neighborhood spread σ=40, µ1=0.43 and 
µ2=0.57 in simulations. The fine tuning of SOMs is also 
performed, in which learning rate is set 0.05. The
specifications of SOMs in the first and second parts of 
proposed model in terms of "number of training and 

Table 9: AQE and ATE for different map sizes

Map size
---------------------------------------------------------

Quality index 9×10 10×14 12×20

AQE 0.159 0.099 0.073
ATE 0.122 0.141 0.137

Table 10:Performance comparison of proposed model with a 
traditional G.728 implementation 

Execution SNRseg

System time (sec)  (dB) MOS

Traditional G.728 [3, 35] 4.04 18.45 3.91
Proposed model 2.91 18.28 3.75

Fig. 5: Values of D for 2400 frames of speech

test samples", "map size", "training time in self-
organization phase (T1)" and "training time in
convergence or fine tuning phase (T2)" are reported 
in Table 6 and 7, respectively.

The optimum value of threshold is selected so as to 
maximize the SNR. The similar problem was studied by 
Max [32] and later by Paez and Glisson [33]. This 
iterative procedure is used and an optimum value of 
2.83 is achieved for 2400 frames of speech. The value 
of D for these frames is depicted in Fig. 5.

To show the effectiveness of the proposed model, 
which has the average classification rate of 97.8% over 
9640 test samples, 2700 frames of speech are selected 
and applied to the trained model. The number of SOMs' 
selection is reported in Table 8.

In general in constructing SOM, two quality
indices are considered, i.e. average quantization
error (AQE) and average topographic error (ATE).
AQE is the average distance between each input
vector and its best matching unit (BMU) and is 
used to measure map resolution. ATE represents the
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accuracy of the map in preserving topology and
the error value is calculated from the proportion
of all data vectors for which first and second BMUs 
are not adjacent for measuring topology preservation 
[34]. These two indices serve as a criterion in our
research to choose a suitable map. The values of 
AQE and ATE for different map sizes of SOM are 
reported in Table 9.

CONCLUSIONS

In this paper, codebook search module in the
structure of LD-CELP encoder was replaced by a 
multi-SOM neural model. Although, SOM is typically 
trained in an unsupervised fashion, in this study a
modified-supervised SOM model was used. In this way, 
the codebook vectors were assigned to a class during 
training and a rejection term for codebook entries, 
that did not belong to the same class as the input 
vector, was used.

The proposed model had an average classification 
rate of 97.8% and led to 28% reduction in execution 
time as compared to a traditional implementation
of ITU-T G.728 encoder (Table 10). However, MOS
and SNRseg were reduced 0.16 and 0.17 dB,
respectively. Therefore, the proposed model led to
noticeable reduction in computational complexity,
without significant degradation in MOS and SNRseg.
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