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A New Efficient Genetic Algorithm for Project Scheduling under Resource Constraints
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Abstract: This paper considers a new method for solving resource-constrained project scheduling problem
(RCPSP). We propose a new genetic algorithm, called DHGA, to solve RCPSP whereas the objective 1s to
minimize the makespan of project. Our new approach for solving the problem uses a new crossover based on

combination of order crossover and partially mapped crossover. The employed swap mutation selects two

activities and then swaps their contents. Auto-tuning 1s considered to automatically adjust rates of crossover

and mutation operators. Computational experiments show effectivity of the proposed method.
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INTRODUCTION

The resource-constrained project scheduling problem
(RCPSP) still lingers to represents an important practice
and research problem. Not only exact solution procedures,
but also many heuristic methods have been proposed to
solve RCPSP. Being an NP-hard problem, Alcaraz and
Maroto [1] mentioned that the optimal solution can be
achieved by exact solution procedures but only in small
projects, usually with less than 60 activities, which are
not highly resource constrained. Therefore, heuristic
methods are designed to solve large and highly resource-
constrained projects. Mohring and. [2] mentioned that
RCPSP 1s one of the most intractable problems in
operations research and many optimization techniques
have been applied to solve it. Many effective heuristic
and metaheuristic algorithms are also proposed for
RCPSP.

There are many exact algorithms proposed for
RCPSP, which are mainly based on the branch-and-bound
strategy. For example, Demeulemeester and Herroelen
[3, 4] developed a depth-first branching scheme with
dominance criteria and the bounding rules. Brucker and.
[5] presented a branch-and-bound algorithm where its
branching scheme 1s applied on a set of conjunctions and
disjunctions to pairs of activities. Due to linitations of
exact algorithms, some authors proposed heuristic
algorithms for RCPSP. For example, Méhring and. [2]
proposed a heuristic based on the Lagrangian relaxation
and mmimum cut computations. The heuristic methods

which are based on priority rules can be divided into two
classes: single-pass methods and multi-pass methods. For
example, [6, 7, 8] used single-pass methods while multi-
pass method was presented in [9]. The forward-backward
methods were also proposed mn [10].

There are also numerous metaheuristics proposed for
RCPSP. They include Genetic Algorithm (GA), Simulated
Amnealing, Tabu Search and Ant Colony Optimization.
The mvestigation of Hartmann and Kolisch [11] and its
updated version [12] conducted an elaborate study on
state-of-the-art heuristic and metaheuristic methods. They
presented performance comparisons among heuristic and
metaheuristic methods in their study by applying these
methods to different standard instance sets, namely J30,
I160 and 1120, generated by ProGen in the PSPLIB. As
shown by the latest experimental evaluation [12],
metaheuristic methods outperform heuristic methods.

The use of Tabu Search for RCPSP has had lugh
quality achievements in recent years. Klein [13] developed
a so-called reactive Tabu Search method for RCPSP with
time-varying resource constraints. It was based on the
activity list representation and the serial schedule
generation scheme (SGS). The neighborhood was
given by swap moves which included the shifting of
predecessors or successors of the swapped activities, if
the resulting list would otherwise not be precedence
feasible. Nonobe and Tharaki [14] suggested a Tabu
Search approach for a generalized variant of RCPSP.
Considering only the features that are relevant for the
standard RCPSP, the heuristic employed the activity list
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representation, the serial 5GS, shift moves and a specific
neighborhood reduction mechanism. Thomas and Salhi
[15] introduced a Tabu Search method which operated
directly on schedules. They defined three different moves.
Since the resulting neighbor schedules may be infeasible,
they employed a repair procedure to tum an infeasible
schedule into a feasible one. There are also many
mstances of the application of Simulated Annealing on
RCPSP. For example, Fayer [16] reported fairly good
performance by a Simulated Annealing approach on
and. [17] tested a
Simulated Annealing method i a paper that focuses

the scheduling problems. Valls

on forward-backward improvement. The first application
of Ant Colony to RCPSP was proposed by Merlkle et al.
[18]. In thewr approach, a single ant corresponds to one
application of the serial SGS. The eligible activity to be
scheduled next is then selected using a weighted
evaluation of the latest start time (L.ST) priority rule and
so-called pheromones, which represent the learming
effect of previous ants. Further features of the approach
included separate ants for forward and backward
scheduling and a 2-opt-based local search phase at the
end of the heuristic.

One of the fiust attempts to apply GA n the
scheduling problem was made by Davis [19]. The main
idea of his approach was to encode the representation of
a schedule m a meaningful and legal way. Alcaraz and
Maroto [1] developed a GA based on the activity list
representation and the serial 5G'S. An additional gene was
used to decide whether forward or backward scheduling
15 employed when computing a schedule from an activity
list. The crossover operator for activity lists was extended
such that a child’s activity list could be built up either in
forward or in backward direction. Alcaraz and. [20]
extended the genetic algorithm of Alcaraz and Maroto [1]
by adding two features from the literature. First, they took
the additional gene that determines the SGS to be used
from Hartmann [21]. Second, they employed the
forward—backward improvement of Tormos and Lova [22].
Mendes and. [23] used a random key representation and
a modified parallel SGS. The modified parallel SGS
determined all activities to be eligible which can be started
up to the schedule time plus a delay tune. The random key
had twice the length of the number of activities and each
entry was a random number. The first half of the entries
biased the activity selection and the second half biased
the delay time of the SGS. They also presented a new
genetic algorthm for multi-project scheduling problem
[24]. Hindi and [25] suggested a genetic algorithm based
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on the activity list representation, the serial SGS and the
related order-preserving crossover strategy. Toklu [26]
developed a GA which operated directly on schedules
(1.e., a vector of start times). Since the genetic operators
may produce infeasible offspring schedules, a penalty
function was used to evaluate the constraint violations.
Valls and. [27] extended the activity list-based GA with
forward-baclkeward improvement of Valls and. [17] to what
they called a hybrid GA. This is more developed in
[28, 29].

There are also some review papers on RCPSP.
Kolisch [30] provided an extensive comparison of the
parallel and serial scheduling schemes. Computational
results of six prionty rules under the two scheduling
schemes were tested. Herroelen and. [31] conducted
surveys of various branch-and-bound algorithms for
RCPSP and illustrated extensions to a variety of related
problems. Brucker and. [32] and Kolisch and Padman [33]
surveyed some exact and heuristic methods for classes of
project scheduling problems. See also [34].

The purpose of this paper is to introduce a new GA
approach for solving RCPSP and to compare it to existing
GA techniques for this problem class. The design of this
approach is based on Hartmann [21] and the algorithm
focuses on crossover and mutation operators. Tn fact, the
main difference between our approach and [21] 1s the type
of crossover and mutation operators employed. Our main
contributions are desigmng a new crossover based on
combination of order crossover and partially mapped
crossover, employing the swap mutation by selecting two
activities and swapping their contents and auto-tuning for
adjusting the rates of crossover and mutation operators.
We call our new heuristic as "Development of Hartmann
Genetic Algorithm" (DHGA).

The remainder of this paper is organized as follows.
We begin with a description of RCPSP in Section 2.
Subsequently, DHGA approach is presented in Section 3.
Section 4 summarizes the results of our computational
investigation. Moreover, we compare it with several
project scheduling heuristics from the hiterature. Finally,
Section 5 draws conclusions from this study.

The
constrained project-scheduling problem has been given
by Wall [35], as follows:

Problem Description: defimtion of resource-

A project has a number of distinct activities that have
known durations.
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+ A setof precedence constraints are predefined.

* A project has multiple resource types and multiple
umts of each resource type are required to
execute an activity. If activity j requires 7, units of
resource k, then this requirement is constant
throughout the duration of ; and the resource is
“shared” so that r, units of resource & are removed
from a single pool of available units of resource &
when activity ; starts and are returned to this pool
when activity j finishes.

¢+ A feasible schedule must satisfy both precedence
constraints and resource constraints.

¢ The goal is to find the minimum makespan.

*  Activities cannot be mnterrupted (pre-empted) during
execution.

A typical problem instance in resource-constrained
project scheduling can be represented on a graph
G = (N,P) where N, the set of nodes, corresponds to the
activities and P, the set of arcs, corresponds to the
precedence relations. In addition, the duration of each
activity and resource requirements for each activity must
be specified.

The objective is to minimize the duration of the
project that is represented by the finish time of the last
activity in the project. That 1s, the problem i1s to establish
a set of feasible start imes for all activities such that the
entire project 18 completed in a mimimum makespan. The
feasibility of the schedule is established by two sets of
constraints: constraints  and

prece dence resource

constraints.

Design of Dhga
Basic Scheme: GA is a part of evolutionary computing,
which is a rapidly growing area of artificial intelligence.
Continuing improvements have made GA attractive for
many types of optimization problems. GA is inspired by
Darwim's theory of evolution of survival of the fittest.
Simply stated, problems are solved by an evolutionary
process resulting n the best (fittest) solution (survivor).
In other words, the solution 1s evolved.

Our GA framework starts with the computation of
an wutial population, 1e., the first generation, which 1s
described in Subsection 3.2. The GA then determines the
fitness values of the individuals of the initial population.
Afterwards, the population is randomly partitioned into
pairs of individuals. To each resulting pair (parent) of
individuals, we apply the

crossover operator to

Start
[

Randomly generate a population of 30
schedules

Randomly select 2 schedules from the
population, then do the crossover and
create a new schedule. Put the parents
and the child back into the population.
Repeat the procedure for creation of
30 children.

Do the mutation on the children

h 4
Select the 30 schedules and let them
enter the next generation.

Repeat this
procedure

for 30 times

If repeated 30 times

Fig. 1: Structure of DHGA

produce two new individuals (Subsections 3.3 and 3.4).
Subsequently, we apply the mutation
(Subsection 3.5) to the genotypes
produced children. After computing the fitness of each

operator
of the newly

child individual, we may add the children to the current
population. Then we apply the selection operator
(Subsection 3.6) to reduce the population to its former
size. Finally, in subsection 3.7, we use auto-turning to
adjust the rates of crossover and mutation operators.
The general structure of DHGA is described in the
Figure 1.

Chromosomes Representation and Initial Schedule
Generation Scheme: For many optimization problems,
GAs do not operate directly on the solutions of the
problems. Instead, they make use of problem-specific
representations of the solutions. The genetic operators
modify the representation which is then transformed mto
a solution by means of a so-called decoding procedure.
During the last few decades, there have been two main
chromosome encoding methods for representing the
sequence of a set of numbers including Adjacency and
Path representation [36]. Each of these chromosome-
encoding methods has its own “genetic” operators.
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Adjacency representation is designed to facilitate the
manipulation of edges. The crossover operators based on
this representation generate offspring that inherit most of
their edges from the parent chromosomes. The inportant
disadvantage of this representation is that Adjacency
representation does not support the classical crossover
operators, such as one point or two pomt crossover, while
Path representation supports these operators. Based on
the above discussion, we chose the Path representation
for presentation of the chromosome of DHGA.

After discussing how to represent the sequence of a
set of numbers in the chromosome, we need to discuss
how to allocate the resources and start time to the each
activity. Therefore, we need a SGS, either a serial or a
parallel one, depending on whether it is based on activity
mnerimination or time merimination.

Hartmann alse pointed out that the activity list
representation together with the serial SGS as decoding
procedure leads to  Tbetter results than other
representations for the RCPSP [21]. Based on this
research, we chose the serial SGS in DHGA.

In short, the encoding and presentation of the
chromosome of DHGA can be divided into two stages. In
the first stage, we generate chromosomes that do not
break the precedence constraints in the form of path
representation. Each time DHGA generates an individual
allele, it checks whether adding this allele into the
chromosome will break the precedence constraints. If
using the new allele as the next activity in the schedule
breaks the precedence constraints, DHGA will abort this
allele and continue to generate new alleles until using the
new allele as the next activity in the schedule does not
break the precedence constraints.

While DHGA guarantees the precedence constraints
in the first stage, in the second stage it considers the
resources constraints. In fact, we begin from the first
activity in the chromosomes and allocate the resources
and start time to each activity n order to complete a
feasible schedule and achieve its makespan. If the
mndividual activity has enough resources to begm, we let
this activity begin as soon as possible. Otherwise, we
delay it until some previous activities fimsh and free
enough resources.

Selection: For crossover, we should determine how the
individuals of current population must be selected.
There are several variants of selection operator such as
ranking method, proportional selection and tournament

990

selection. From the computational studies by researchers,
ranking method gives better results than the other
alternatives. Therefore, we set the selection component to
the ranking approach.

Crossover: For RCPSP, a simple crossover reproduction
scheme does not work since 1t makes the chromosomes
inconsistent (some activities may be repeated while others
are missed out and hence solutions cannot meet the
The traditional
operators like one point crossover are regarded as

precedence constraints). crossover
inappropriate in the study of scheduling problems. In
addition to the traditional one or two point crossover,
recently two crossover operators were developed for the
sequence problem: partially-mapped (PMX) and order
(OX) crossovers (For detailed expressions see [36]).
However, they can only guarantee that no activities are
missed out or visited twice. Sometimes they still break the
precedence constraints. The crossover operator used in
this paper is derived from them and inherits their merits.
Now, we describe the construction of DHGA
crossover operator. Let us assume that two individuals of
the current population have been selected for crossover.
We set the following two parents to show how this
crossover operator performs under the precedence
constramts: P1=[124|536|78]and P2=[132]|654|7§].
Obviously these two parents obey the precedence
constraints. Let’s set two crossover pomts x = 3 and
v = 6 as shown above (“|” means the crossover points).
Then we set an empty offspring O where the symbol “X”
can be interpreted as "at present unknown”). So we set
O=[X XXX XXXX]. First, from 1 tox, we copy P1 to O:
O=[124|XXX|XX] Then from y to #, we copy Pl to
0:0=[1 24| XX X| 78] Inthe next step we can set the
activities from x to y for offspring O under the precedence
constraints. Obviously the job sequences in parents P1
and P2 are valid. So the job sequence in the first part and
last sections of the offspring O are valid. For the middle
section of offspring O, we can borrow the job sequence
from P2. That means 1f any activities 7 in P2 have not been
in O and all activities before 7 have been finished at its
position i P2, we can set 1t to the offspring O. Thus we
can complete the whole offspring O. We begm to set the
first X in the middle section of offspring O. In parent P2,
first element 1 has already been copied to offspring O. So
we skip the first element of P2 and check the second
element 3 of P2. This element is not in O. Since every
activity before 3 has been finished, we can set the first X
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Set two integer numbers x and v
(1?27x?2y?7n)

\ 4

| Choose two parents P1 and P2 |

\ 4

| From 1 to x, copy the P1 to O |

k4
| From y ton, copy thePlto O |

\ 4

From 1 to n, if activity i in P2 is
not in O[1, x] and C[y, n], copy
activity ito Ofx, y]

Fig. 2: Structure of DHGA crossover operator

Parent chromosome
|2|1|3|4|5|6|7|8|9|10|11|

Child chromosome
|2|1|3|4|5|6|7|8—|9|10|11|

Fig. 3: The swap mutation operator

in the middle section of offspring O to 3. So we can set
O=[124]3XX|78]. We continue to set the second
element of X for O. The element after 3 n P2 1s 6, because
6 is not in O and all activities before 6 have been finished.
We set the second element of X of O to 6. So we can set
0=[124|36X|78]. For the same reason we set the last
Xto 5.

There are three main differences between this
operator and PMX and OX. Firstly, both PMX and OX
focus on missed or replicated activities. However they do
not consider the precedence constraints. The crossover
operator used in this paper can guarantee the precedence
constraints. Secondly, the crossover operator used in this
paper only produces one offspring rather than two and
finally, this crossover focuses on the change between the
two cut points rather than outside the two cut points.

The crossover of DHGA 1s similar to Hartmarmn [21].
However, Hartimann’s crossover can create two cluldren.
The crossover of DHGA creates only one child. Another
important issue is that DHGA only considers the changes
mn the middle part of the schedules rather than the whole
part of solution. Figure 2 depicts the structure of DHGA
crossover operator.
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Randomly choose 2 activities
(mutation points) on the child
chromosome

v

| Swap the 2 activities |

Mutation breaks the
priority constraint?

Cancel the
mutation

Replace child by the new chromosome
(schedule after the mutation)

Fig. 4: Structure of DHGA mutation operator

Mutation: also

mnappropriate m scheduling problems in terms of

The classic mutation operator is

precedence constraints as well as crossover operators.
Mutation used in this research will first randomly choose
two activities and if possible, it swaps them as shown in
Figure 3. The reason for using the word “possible”™ 1s that
the offspring after mutation may be mvalid and DHGA
checks the precedence constraints. This means that if the
swap breaks the precedence constraints, the procedure
abandons this switch. Figure 4 shows how DHGA
mutation operator works.

Construction of the next Generation: There are several
methods
Hartmann [37] considered four altermative selection
operators which follow a survival-of-the-fittest strategy.

for construction of the next generation.

The first one is a simple ranking method. In this method,
chromosomes are sorted based on non-decreasing
function of their fithess value. Then keep the POP best
individuals and remove the remaining ones from the
population. The
selection, can be viewed as a randomized version of the
previously described ranking techmque. Let f{7) be the
fitness of an individual I and let P denote the current

second variant, the proportional

population, that is, a list containing the individuals. Note
that we use a list of individuals instead of a set because
we explicitly allow two (or more) distinet individuals with
the same genotype in a population. We restore the
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original population size by successively removing
individuals from the population until POP individuals are
left, usmg the following probability: Denoting with
Joew = min{fiDIeP? the best fitness mn the current
population, the probability to die for an individual I is
given by

(FD = fom + 1
DU fr v 1

I'eP

P )=

The next method 1s tournament technique. There are
two versions of the tournament technique. In the 2-
tournament selection, two different randomly chosen
mdividuals I, and 7, compete for (temporary) survival. If
mdividual /, 13 not better than mdividual 7,, 1.e. fI,)<AL),
then it dies and is removed from the population (again,
ties are broken arbitrarily). This process is repeated
until POP individuals are left. Recall that a lower fitness
value mmplies a better quality of the mdividual.

Finally, the 3-tournament selection extends the
previously described method by randomly selecting
three individuals [, [, and I, If we have fi7,)>f(])
and fiI)2f{.), individual I, 15 removed from the
population. Again, this step is repeated until POP
individuals are left.

Hartmann [21] denote that the ranking method gave
better results than the other alternatives. So we choose
this method for the construction of the next generation.

Auto-Tuning the Rates of Crossover and Mutation
Operators: For this heuristic, we use the concept of Mak
and. [38]. They employed the fitness values of parents
and offspring at each generation in order to construct
adaptive crossover and mutation operators: this scheme
mcreases the occurrence rates of the crossover and
mutation operators, if it consistently produces a better
offspring during the genetic search process; however, it
also reduces the occurrence rates of the operators, 1if it
produces a poorer offspring. This scheme encourages the
well-performing crossover and mutation operators to
produce more offspring, while reduces the chance for the
poorly performing operators to destroy the potential
mdividuals during the genetic search process. This 1s the
main scheme for constructing DHGA. We employed the
0.05, 0.1, 0.15 and 0.2 for increasing or decreasing the
occurrence rates of the crossover and 0.01, 0.015 and 0.02
for mutation. The results show that the amount of 0.05 for
crossover and 0.015 for mutation is the best.
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The rate of crossover and mutation operators are
determined as follows: If £ denotes the current generation,
Pt and Pt represent the rates of crossover and
mutation operators at generation ¢ and f£,,(t) and £, /1) are
the average fitness values of parents and offspring at
generation £, the probability of crossover and mutation
operators are defined as:

F 1) £ 01201 Thon PAt + )= PAD 1005, P {1+ =B (1) 0015

M

F 1,0 £,0-1201Than P+ D=P#)~005.B, {1+ 1=R, £)—0015
(IT)

IF-01< £, (8)) £ 1<01 Then PAt + V= Po(1), P, (1 1 =B, (1)
(IID)

In the cases (I) and (IT), the adjusted rates should not
exceed the range 0.5 to 1.0 for P(t+1) and the range 0.00
to 0.10 for P, (1+1).

The scheme of the procedure defined above is
evaluated in all generations during the genetic search
process and the occurrence rates of crossover and
mutation operators are adaptively regulated according to
the results of the above procedure.

Computational Results

Test Design: In this section we present the results of the
computational studies. The experiments have been
performed on a Pentium-based Intel-compatible personal
computer with 2.4 GHz clock-pulse and 128 MB RAM.
DHGA for RCPSP has been coded in C++ and tested
under Windows XP.

To evaluate the performance of DHGA, we have
taken three standard sets of RCPSP instances from the
literature, which were constructed by the project
generator (ProGen) of Kolisch and. [11, 12]. These
instance sets are available from the web-based project
scheduling problem library PSPLIB (cf. Kolisch and
Sprecher [39]). The first two sets contain 480 instances
with 30 and 60 activities per project, respectively. The
third one consists of 600 mstances with 120 activities.
DHGA computed 1000, 5000 and 50000 schedules for each
project (with parameter settings FOF = 30, GEN = 30 for
30 and 60 activities per project and POP = 90, GEN = 55
for 120 activities per project). This test design allowed us
to compare our results with those obtained for several
RCPSP heuristics from the literature which were tested for
the evaluation study of Hartmamnn and Koelisch [11].
In that study, also 1000, 5000 and 50000 schedules were
computed by each heuristic for each mstance. This allows



Table 1: Average deviations (26) from optimal makespan—ProGen set J= 30
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Iteration
Algorithm 85GS Reference 1000 5000 50000
GA-Hybrid, FBI Serial Valls and. [27] 0.27 0.06 0.02
GA-FBI Serial Valls and. [17] 0.34 0.20 0.02
GA-FBL Both Alcaraz and. [20] 0.25 0.06 0.03
GA-FBI Serial Alcaraz and Maroto [1] 0.33 0.12
Sampling-1.FT, FBI Both Tormos and Lova [22] 0.25 0.13 0.05
TR-Activity List Serial Nonobe and Tharaki [14] 046 0.16 0.05
GA- Self-adapting Both Hartmann [21] 038 0.22 0.08
GA-Activity List Serial Hartmann [37] 0.54 0.25 0.08
GA-Activity List Serial Klein [13] 042 017
Sampling-Random, FBI Serial Valls and. [17] 046 0.28 0.11
GA-Activity List (DHGA) Sericl This Study 033 019 ai2
SA-Activity List Serial Bouleimen and Lecocq [40] 0.38 0.23
GA-Late Join Serial Coelho and Tavares [41] 0.74 0.33 0.16
Sampling-Adaptive Both Schirmer [42] 0.65 0.44
T8-Schedule Scheme Baar and. [43] 0.86 0.44
Sampling-Adaptive Both Kolisch and Drex] [44] 0.74 0.52
GA-Random Key Serial Hartmann [37] 1.03 0.56 0.23
Sampling-1.LFT Serial Kolisch [30] 0.83 0.53 0.27
Sampling-Global Serial Coelho and Tavares [41] 0.81 0.54 0.28
Sampling-Random Serial Kolisch [45] 1.44 1.00 0.54
GA-Priority Rule Serial Hartmann [37] 1.38 1.12 0.88
Sampling-WCS Parallel Kolisch [30] 1.40 1.28
Sampling-LFT Parallel Kolisch [30] 1.40 1.29 1.13
Sampling-Random Parallel Kolisch [45] 1.77 1.48 1.22
Table 2: Average deviations (%) from critical path lower bound—ProGen set J = 60

Tteration
Algorithm 3G8 Reference 1000 5000 50000
GA-Hybrid, FBI Serial Valls and. [27] 11.73 11.10 10.71
GA-FBI Serial Valls and. [17] 12.21 11.27 10.74
GA-FBI Both Alcaraz and. [20] 11.89 11.19 10.84
GA- Self-adapting Both Alcaraz and Maroto [1] 12.21 11.70 11.21
GA-Activity List Serial Tormos and Lova [22] 12.68 11.89 11.23
Sampling-1.FT, FBI Both Nonobe and Tharaki [14] 11.88 11.62 11.36
GA-FBI Serial Hartmann [21] 12.57 11.86
S A-Activity List Serial Hartmann [37] 12.75 11.90
GA-Activity List Serial Klein [13] 12.77 12.03
Gd-Activity List (DHGA) Serial Valls and. [17] 1219 11.88 11.47
T8-Activity List Serial This Study 12.97 12.18 11.58
Sampling-Random, FBI Serial Bouleimen and Lecocq [40] 12.73 12.35 11.94
Sampling-Adaptive Both Coelho and Tavares [41] 12.94 12.58
GA-Late Join Serial Schirmer [42] 13.28 12.63 11.94
GA-Random Key Serial Raar and. [43] 14.68 13.32 12.25
GA-Priority Rule Serial Kolisch and Drex]1 [44] 13.30 12.74 12.26
Sampling-Adaptive Both Hartmann [37] 13.51 13.06
Sampling-WCS Parallel Kolisch [30] 13.66 13.21
Sampling-Global Serial Coelho and Tavares [41] 13.80 13.31 12.83
Sampling-1.LFT Parallel Kolisch [45] 13.59 13.23 12.85
T8-Schedule Scheme Hartmann [37] 13.80 13.48
Sampling-LFT Serial Kolisch [30] 13.96 13.53 12.97
Sampling-Random Parallel Kolisch [30] 14.89 14.30 13.66
Sampling-Random Serial Kolisch [45] 15.94 15.17 14.22
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Table 3: Average deviations (29) from critical path lower bound—ProGen set J = 120
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Tteration

Algorithm SGS Reference 1000 5000 50000
GA-Hybrid, FBI Serial Valls and. [27] 34.07 3254 31.24
GA-FBL Both Valls and. [17] 36.53 33.91 31.49
GA-FBI Serial Alcaraz and. [20] 3539 33.24 31.58
Population Based- FRI Serial Alcaraz and Maroto [1] 35.18 34.02 32.81
GA- Self-adapting Both Tormos and Lova [22] 37.19 3539 3321
Sampling-LFT, FBI Both Nonobe and Ibaraki [14] 35.01 34.41 33.71
GA-Activity List (DHGA) Sericl Hartmann [21] 35.27 34.64 33.88
Ant System Serial Hartmann [37] 3543
GA-Activity List Serial Klein [13] 3937 36.74 34.03
GA-FBI Serial Valls and. [17] 39.36 36.57
TS-Activity List Serial This Study 40.86 37.88 35.85
GA-Late Join Serial Rouleimen and Lecocq [40] 39.97 38.41 36.44
Sampling-Random, FBI Serial Coelho and Tavares [41] 3821 3747 36.46
SA-Activity List Serial Schirmer [42] 42.81 37.68
GA-Priority Rule Serial Baar and. [43] 39.93 38.49 36.51
Sampling-Adaptive Both Kolisch and Drex]1 [44] 39.85 38.70
Sampling-1.LFT Parallel Hartmann [37] 39.60 38.75 37.74
Sampling-WCS Parallel Kolisch [30] 39.65 38.77
GA-Random Key Serial Coelho and Tavares [41] 45,82 42.25 38.83
Sampling-Adaptive Both Kolisch [45] 41.37 40.45
Sampling-Global Serial Hartmann [37] 41.36 40.46 39.41
Sampling-LFT Serial Kolisch [30] 42.84 41.84 40.63
Sampling-Random Parallel Kolisch [30] 44.46 43.05 41.44
Sampling-Random Serial Kolisch [45] 49.25 47.61 45.60
Table 4: Average deviations (%6) from best solution and lower bound currently known

J=60 J=120
Iterations 1000 5000 50000 1000 5000 50000
From best solution currently known 1.31 1.06 0.73 3.76 333 2.83
From best lower bound currently known 3.32 3.06 2.72 8.14 7.68 7.16

evaluating the heuristics both in short and medium
term optimization. The authors of the heuristics tested
their approaches themselves such that they were able to
adjust the parameters in order to obtain the best possible
results. As the computational effort for constructing one
schedule can be assumed to be similar in all of the tested
heuristics, this test design should allow for a fair
comparison.

Comparison with Other Heuristics for the RCPSP:
The results of our experimental study on the ProGen
nstance sets are summarized in Tables 1-3. They compare
DHGA with several RCPSP heuristics from the literature.
The mnformation of these tables has been provided by
Kolisch and Hartmann [12]. In these tables, each heuristic
is briefly described by a few keywords, the SGS employed
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and the reference. For the J30 set, the results are given in
terms of average deviation from the optimal solution. For
the other two sets, some of the optimal solutions are
unknown. Thus, the average deviation from the well-
known critical path-based lower bound 1s reported. In
each table, the heuristics are sorted according to
descending performance with respect to 50000 iterations.
For DHGA, Table 4 displays the average percentage
deviation from the best solutions and lower bounds
currently known. The results show that the solution gap
is rather small. The bounds are frequently updated in the
library PSPLIB of Kolisch and Sprecher [39] (the results of
Table 4 are based on the bounds reported there in 2006).
These tables clearly demonstrate the superiority of DHGA
in comparison with majority of GA based heuristics
proposed in the literature.
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CONCLUSION

In this paper, we presented a new GA based heuristic
called DHGA for the classical resource-constramed
project scheduling problem. The building blocks of DHGA
were procedures such as its new crossover which is
based on combination of order crossover and partially
mapped crossover, swap mutation which is realized by
selecting two activities and swapping their contents and
the auto-tuned rates of crossover and mutation operators.
The computational experiments on a large set of standard
test instances showed that the proposed heuristic leads
to competitive results compared to several heuristics from
the literature. For solving RCPSP, DHGA is the 4" best for
J30, J60 and J120 in the comparison lists where
comparisons are based on evaluating 1000 schedules.
Also, DHGA is the 8" best for 130, 7% best for J60 and 6%
best for I120 in 5000 schedules.

From this Study, it Is Observed That:

¢ The representation of the chromosome, the crossover
and the mutation operator in DHGA obey the
precedence and resource constraints. This means
that after crossover, the offspring solutions satisfy
precedence constraints. This is a very critical issue
for RCPSP as many other alternative GA methods
cannot handle it.

¢  The large population size does not significantly
improve the performance of GA. When we set the
population size and other parameter settings of GA,
we need to consider the number of tasks in the

It's

unnecessary to use large population sizes when the

project and the size of chromosomes.
number of tasks m the project 1s small. This can

avold unnecessary computational work.

The findings of this research can be readily employed
to develop more efficient GA based methods. They also
can be used to create more effective crossover operators
for other scheduling instances like job-shop and flow-
shop problems.
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