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Abstract: In this paper, we present a generalized Symmetric Rank-one (SR1) method by employing 
interpolatory polynomials in order to possess a more accurate information from more than one previous 
step. The basic idea is to incorporate the SR1 update within the framework of multi-step methods. Hence 
iterates could be interpolated by a curve in such a way that the consecutive points define the curves. 
However to preserve the positive definiteness of the SR1 updates a restart procedure is applied, in which 
we restart the SR1 update by a scale of the identity. Comparison to multi-steps BFGS method, the proposed 
algorithm shows significant improvements in numerical results.
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INTRODUCTION

In this paper we are concerned with the numerical 
methods for solving the following unconstrained
nonlinear optimization problem

nx
minf(x)
∈�

(1)

where the objective function f: n→ is a twice
continuously differentiable defined in n-dimensional
space.

Among numerous iterative methods for solving (1), 
quasi-Newton (QN) methods constitute a popular class 
of methods. These methods are variants of Newton's 
method, in which the Hessian matrix ∇2f (xk) is
substituted by an approximation to the Hessian. QN 
methods, require only the gradient of the objective
function to be supplied at each iterate. The
improvement over other methods like steepest descent 
is dramatic, epecially on difficult problems. Moreover, 
since second derivatives are not required, QN methods 
are sometimes more efficient than Newton's method. 
For backgound of QN Updates [8].

Among various QN methods, symmetric rank-one
(SR1) method is regarded as very competitive formula 
compared with the widely used BFGS formula. In this 
method, Hessian approximation matrix Bk is updated by 
the following formula:

T
k k k k k k

k 1 k T
k k k k

(y B s )(y B s )B = B
s (y B s )+
− −+

−
(2)

and inverse of the Hessian approximation by

T
k k k k k k

k 1 k T
k k k k

(s H y )(s H y )H = H
y (s H y )+

− −+
−

(3)

where sk = xk+1 – xk, yk = gk+1 – gk and gk = ∇f (xk)
denotes the gradient vector of f at current iteration point 
xk. Several studies in minimization algorithms using 
SR1 formula in both line search and trust region context 
by Conn et al. [3], Khalfan et al. [9], Leong and Hassan 
[10] have sparked renewed interest in this formula.
Conn et al. [3] showed that the SR1 update generate 
more accurate Hessian approximation compared with 
BFGS and DFP.

Ford and Moghrabi [6] introduced multi-steps
method, their two-steps QN method are very similar to 
the QN method with standard secant equation

k 1 k kB s = y+ (4)

in which (4) is replaced with the modified secant 
equation

k 1 k kB r = w+ (5)
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where rk = Sk– χkSk-1 and wk = yk– χkyk-1 with χk as a 
scalar. Equation (5) is approximated by the
interpolating quadratic curves {x(θ)} and {h(θ)} where 
{x(θ)} interpolates the three latest iterates xi-1, xi and 
xi+1  while {h(θ)} interpolates the corresponding
gradient values gi-1, gi and g i+1. They applied multi-step
method by using the well known BFGS formula, in 
which the vectors sk and yk substitute with rk and wk,
respectively in BFGS formula so that the new Hessian 
approximation Bk+1 can be obtained as follows:

T T
k k k k k k

k 1 k T T
k k k k k

B r r B w wB = B
r B r w r+ − + (6)

The numerical results show that the new methods 
offer a significant improvement in performance when 
compared with the standard BFGS method.

Hence it seems reasonable if we employ the SR1 
formula within the framework of the multi-step method. 
Therefore we expect to have higher order accuracy in 
approximating the Hessian of the objective function.

However  a  setback  with SR1 update is the fact 
that its denominator may be zero or it may loss the 
positive definiteness even when Bk+1 updated from
positive definite update. To overcome these difficulties, 
we can set the updated matrix with the scale of initial 
approximation, mostly the positive multiple of identity. 
But the scaling factor should be derived in such a way 
that it improves the conditions of the SR1 update while 
preserving as much information from the previous
iterate.

We organize this paper as follows. In the next 
section we briefly describe multi-step method. In
section 3 we will construct SR1 formula obeying
modified secant equation (5) and introduce the optimal 
scaling factor to maintain the positive definiteness of 
the Hessian approximation matrix. Then we will
describe our algorithm in section 4. Finally,
computational experiments are reported in section 5
which shows that the multi-step SR1 algorithm is
encouraging comparing with the multi-step BFGS
method.

MULTI-STEP METHOD

The concept of multi-step methods, developed by 
Ford and Moghrabi [7], consider data from the m recent 
steps is employed in the construction of an interpolating 
path x (θ)x (θ) is any differentiable curve, denoted by χ
in n), in which the standard secant equation
corresponds to m = 1. In multi-step methods the
polynomial forms for χ have been considered to
interpolate (for a prescribed set of values { }m

k k = 0
θ ) the m 

most recent iteration (m>1):

x (θk) = xi-m+k+1 for k = 0, 1,…,m. Thus the curve 
and the gradient (when restricted to χ), can be
approximated by the interpolatory polynomials,

m

k i m k 1
k = 0

x( ) = L ( )x − + +θ θ∑ (7)

m

k i m k 1
k=0

g(x( )) L ( )g(x )− + +θ ≈ θ∑ (8)

where Lk (θ) is kth the Lagrangian polynomial form

m
j

k
j=0 k j
j k

( )
L ( )

( )
≠

θ − θ
θ ≡

θ − θ∏ (9)

Thus, one can obtain the condition that satisfies in 
(5) by determining the derivatives of (7) and (8) where,

m

i m k m i m k 1
k = 0

r x ( ) = L ( )x=
∆

− + +′ ′θ θ∑ (10)

m

i m k m i m k 1
k = 0

w g(x( )) L ( )g(x )=
∆

− + +′ ′θ ≈ θ∑ (11)

The coefficients in (10) and (11) are given explicitly by 

m 1
m j1

k m k m
j = 0 k j
j k

( )
L ( ) = ( ) fork m

( )

−
−

≠

θ − θ
′ θ θ − θ ≠

θ − θ∏

and
m 1

1
m m m j

j = 0
L ( ) = ( )

−
−′ θ θ − θ∑

It was shown by Ford and Moghrabi that ri and wi
can represent in terms of the most recent “step-vectors”

{ }m 1
i j j=0

s
−

−  and { }m 1
i j j = 0

y
−

−

m 1 m

i i j k m
j=0 k = m j

r = s { L ( )}
−

−
−

′ θ∑ ∑ (12)

m 1 m

i i j k m
j=0 k = m j

w = y { L ( )}
−

−
−

′ θ∑ ∑ (13)

Also in order to determine the values of { }m
k k = 0

θ ,

first we introduce a metric φM defined on n which is 
generated by any appropriate positive-definite matrix 
(M, say) 

{ }def 1/2T
M 1 2 1 2 1 2( l , l ) (l l ) M(l l )=φ − − (14)
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The  choices  of  matrix M considered in [6] were: 
M = I, M = Bk and M = Bk+1. In this paper we will 
consider the case M = Bk. Now by fixing one of the 
points, say j, we calculate the distance (measured by 
metric φM) between each consecutive pair of points in 
the sequence by:

j

k M i m p 1 i m p
p=k 1

= (x , x ), for k < j− + + − +
+

θ − φ∑ (15)

θj = θ (16)

k

k M i m p 1 i m p
p = j 1

= (x ,x ), for k > j− + + − +
+

θ φ∑ (17)

THE SR1 FORMULA BASED 
ON MULTI-STEP SECANT EQUATION

In this section SR1 formula based on multi-step
equation will be proposed. Moreover a scaling factor 
will be present to avoid the loss of positive definiteness 
in the modified formula.

SR1 formula with new secant equation: In this
subsection we propose modified SR1 formula based on 
secant equation (5). By substituting m = 2 in (10) and 
(11), we obtain (after removal of a common scaling 
factor)

2

i i i 1r = s ( )s
2 1 −

δ−
δ+

(18)

2

i i i 1w = y ( )y
2 1 −

δ
−

δ +
(19)

where
2 1

1 0

( )
=

( )
θ − θ

δ
θ − θ

(20)

In the case of two-step method, to specify the 
values of { }2

k k = 0
θ , the matrix in (14) is taken to be Bk,

the current Hessian approximation. Therefore we
determine the measurement of the relevant distances 
(using (15-17)) by

{ }
{ }

1/2T
0 k k 1 k k k 1

1/2T
1 k k k

2

= (s s ) B (s s )

= s B s

= 0

− −θ − + +

θ −

θ

(21)

Therefore the modified SR1 formula based on
secant equation (5) where ri and wi are expressed as 
above can be written as follows

T
k k k k k k

k 1 k T
k k k k

(w B r )(w B r )B = B
r (w B r )+
− −+

−
(22)

Furthermore, by using updates of 1
kB−  in modified 

SR1 formula (22), we can avoid solving linear system
of equations to obtain the search direction pk. By 
denoting the inverse Hessian approximation of Bk with 
Hk, the modified secant equation for Hk is written as

k k 1 kr = H w+ (23)

and the SR1 update that approximates the inverse
Hessian can be obtained as follows:

T
k k k k k k

k 1 k T
k k k k

(r H w )(r H w )H = H
w (r H w )+

− −+
−

(24)

Possible instability of new SR1 update: The modified 
SR1 update clearly possesses desirable features (like 
SR1 update) but it has some major disadvantages:

if Bk is well-defined and positive definite, Bk+1 may 
fail to inherit these qualities. Therefore in order to avoid 
zero denominator and non-positive definite updates in 
modified SR1 update we should have some stabilizing 
options to overcome these difficulties.

A simple remedy for misbehaved update would be 
to simply skip the update (set Bk+1 = Bk) or take a 
gradient step (set Bk+1 = I). These procedures are
aesthetically crude and may run the risk of losing 
valuable information obtained during the descent
process and also by looking to the numerical results of 
Leong and Malik [10], we can observe the lack of
convergence to the minimizer whenever we skip the 
update with identity matrix.

On the other hand Osborne and Sun [11] presented 
a SR1 update of the form Bk+1 = θBk+kszkzk, where zk = 
yk-θsBksk, T

s k kk =1/s z  and θk is a scalar scaling factor 
that can be chosen to preserve the positive definiteness 
of update. However scaling the update may prevent fast 
convergence and it will be redundant if we scale the 
modified update each iteration. Our motivation in here 
is that Bk+1 preserve built up information from Bk. To 
reach to this aim we scale the identity matrix with a 
scaling factor, in which the scaling factor is derived in 
such a way that we may use the valuable information of 
previous iteration while improving the condition of
update. Therefore to find such a scaling factor for the 
modified SR1 update (24), we present the σ-measure
suggested by Dennis and Wolkwicz [4]

max
1/n( A ) =

det(A)
λ

σ (25)
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where A is an positive definite matrix and λmax is the 
largest eigenvalue of A. Dennis and Wolkwicz [4] had 
shown that any σ-optimal will also be κ-optimal as well 
(κ(A) denotes the l2-condition number of A) and have a 
common spectral property.

The following result will be used in the multi-step
iterates.

Theorem 3.1: Let

( )
( )

1/22TT T
k kk k k k

k 2T TT
k k k kk k

w ww w w w
=

w r r rw r

 
 µ − − 
 

(26)

Then the modified SR1 matrix updated from 
k

1
I

µ
:

T
k k k k k k

k 1 T
k k k k k

1 [w (1/ ) r ][ w (1/ )r ]B = I
r [w (1/ )r ]+

− µ − µ+
µ − µ

(27)

is the unique solution of

1
k 1min (B )−
+σ (28)

1
k 1 k ksuchthat B w = r−
+

1
k 1and B ispositivedefinite.−
+

Proof: See [10]. 

Remark 3.2: The scaling factor µk is positive by using 
the Cauchy-Schwarz inequality. 

Remark 3.3: Since T
k k k kr [ w (1/ )r ] 0− µ ≠ , then the

sequences of matrices Bk+1 generated by (27) are
bounded.
Corollary 1 Let

( )
( )

1/22TT T
k kk k k k

k 2T TT
k k k kk k

r rr r r r
=

r w w wr w

 
 µ − − 
 

 (29)

Then the inverse SR1 matrix updated from k Iµ :

T
k k k k k k

k 1 k T
k k k k

(r w )(r w )H = I
w (r w )+

−µ −µµ +
− µ

 



(30)

is the unique solution of

1
k 1min (H )−
+σ , (31)

1
k 1 k ksuchthat H r = w−
+

1
k 1and H ispositivedefinite.−
+

Proof: The proof is the direct result of the theorem 3.1 
by interchanging the role of s and y.

DESCRIPTION OF ALGORITHM

Multi-steps symmetric rank-one Algorithm
(MSSR1)

• Given an initial point x0∈
n, an initial positive

matrix H0 = I, compute f (x0) and g0 = ∇f (x0). Set 
k=0.

• Termination test. If the convergence criterion
||gk||≤ε is achieved, then stop.

• Compute a QN direction, dk, by dk = -Hkgk.
• Find an acceptable steplength, αk, such that the 

Wolfe conditions

T
k k k k 1 k k kf ( x p ) f(x ) g p+ α ≤ + δ α (32)

T T
k k k k 2 k kf(x p ) d g p∇ + α ≥ δ (33)

where   0<δ1<δ2<1, 1
1

<
2

δ ,  are  satisfied . (δ1 = 10−4,

δ2 = 0.9).

• Set xk+1 = xk+αkdk.
• If single-step iteration is being executed, set rk = sk

and wk = yk.
• Stabilizing. If 

T T
k k k k kr w w H w < 0;(Hessianmatrixisnotpositivedefinite)−

or T
k k k k k k k kw (r H w ) < t w r H w− −

where t∈(0,1); (denominator in Hessian matrix is
sufficiently close to zero),

or kH > L ; (whereLisapresetconstant)
∞

set Hk+1 = µkI, where 

( )
( )

1 / 22TT T
k kk k k k

k 2T TT
k k k kk k

r rr r r r
=

w r w ww r

  µ − − 
  

• Compute the next inverse Hessian approximation 
Hk+1 by (24) (or (3) in case of single-step).

• Set k = k+1 and go to step 1. 
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Table 1: Test problems
Andrei [1] test problems:

Ex. Freudenstein & Roth, Ex. Trigonometric, Ex. Rosenbrock, 
Ex. White & Holst, Ex. Beale, Ex. Penalty, Perturbed Quadratic, 
Raydan 1&2, Hager, Ge. Tridiagonal, Ex. Tridiagonal,
Ex. Three Expo Terms, Ge. Tridiagonal 2, Ex. Himmelblau, Ge. PSC1, Ex. PSC1, 
Ex. Powell, Ex. BD1, Ex. Maratos, Ex. Cliff, Quadratic Diagonal Perturbed, 
Ex. Wood, Ex. Hiebert, QF1, QF2, QP1, QP2, Ex. EP1, Ex. Tridiagonal 2, PPQ1, 
Broyden Tridiagonal, Almost Perturbed Quadratic, Tridiagonal Perturbed Quadratic, 
STAIRCASE S1, PPQ2, SQ1, SQ2, Diagonal (1-6)

Cute [2] test problems:
BDQRTIC, TRIDIA, ARWHEAD, NONDIA, NONDQUAR, DQDRTIC, EG2, ENGVAL1, FLETCHCR, COSINE, Ex. DENSCHNB,
Ex. DENSCHNF, SINQUAD, BIGGSB1, EDENSCH, VARDIM, LIARWHD, DIXMAANA, DIXMAANB, DIXMAANC, DIXMAANE,
DIXON3DQ, DIXMAANF, DIXMAANG, DIXMAANH, DIXMAANI, DIXMAANJ, DIXMAANK, DIXMAANL

NUMERICAL RESULTS

In  this  section  we  present  the  performance  of 
the MSSR1 on a set of 73 unconstrained optimization 
problems. At the same time, we compare the
performance of MSSR1 with multi-step algorithm for 
standard BFGS update (MSBFGS).

All the algorithms are implemented in Fortran 77. 
In all cases,  convergence   is  assumed  if  ||gk||≤ε  for
ε = 10−4. The algorithm also stopped whenever the 
number of iterations or function evaluations exceeds 
999. We selected 73 unconstrained optimization test 
problems from the Cute [2] library, along with other 
optimization test problems from [1]. Each function is 
tested with variable dimensions 2≤n≤1000. This has 
resulted in a total of 1300 runs. The names of the 
problems are listed in Table 1.

In Table 2, we present the Geometric and
Arithmetic means of number of iterations and
function/gradient evaluations requires to solve these 
problems by the MSSR1 Algorithm to the
corresponding mean for the MSBFGS method
corresponding to these 730 test problems, referring to 
the total number of iterations, the total number of
function/gradient evaluations. We presented the
summary of our results in Table 2. 

The results presented in Table 2 imply that MSSR1 
Algorithm improved significantly over the performance 
of MSBFGS method. The improvement of Algorithm
MSSR1 over MSBFGS is 17% to 24%, in average, in 
terms of the number of iterations and 13% to 18%, in 
average, in terms of the number of function/gradient 
calls.

Also in order to compare the performance of our 
algorithms to access their performance and represent
graphically, we use the performance profiling proposed 
by Dolan and More [5]. 

Table 2: Ratio of algorithm MSSR1 cost to MSBFGS cost
MMSR1
---------------------------------------------------------

Mean Iterations  Function evaluations
Arithmetic 0.83 0.87
Geometric 0.76 0.82

Fig. 1: Performance profile based on iterations

Fig. 2: Performance profile based on function/gradient 
calls
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As it is represented in Fig. 1 and 2, MSSR1
performs better than the MSBFGS method. Therefore 
the efficiency of our proposed algorithm over MSBFGS 
is clearly observed. 

CONCLUSION

We  have  presented  a  new  method  called  the 
multi-step SR1 algorithm (MSSR1) which involves
alternating two-step QN methods with the standard SR1 
method that rely on one of two approaches to define the 
distribution of recent iterates on an interpolating curve. 
We use the positive multiple of identity matrix to
update the presented SR1 formula. The scaling factor is 
derived in such a way that the multi-step SR1 update is 
optimally conditioned. Moreover by this consideration, 
we preserve positive definiteness of updated matrix. 
The numerical results for a broad class of test problems 
show that the new method are efficient and robust in 
solving unconstrained optimization problems. Finally,
we may note that the new method outperform multi-
step BFGS method. Specifically encouraging
improvements could be realized by our new method as 
the size of the problem increases. 
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