
World Applied Sciences Journal 7 (5): 600-609, 2009
ISSN 1818-4952
© IDOSI Publications, 2009

Corresponding Author: Dr. T. Özis, Department of Mathematics, Science Faculty, Ege University, Izmir 35100, Turkey
600

The Modified Decomposition Method for the Boussinesq Equation
1S.  Faydaoglu and 2T. Özis

1Faculty of Engineering, Dokuz Eylul University, 35160, Izmir, Turkey
2Department of Mathematics, Science Faculty, Ege University, Izmir 35100, Turkey

Abstract: In this paper, the modified decomposition method is used to solve the generalized Boussinesq 
equation. This equation commonly describes the propagation of small amplitude long waves in several 
physical contents. The exact solution of the equation is obtained by the modified decomposition method in 
the form of a convergent series with easily computable components and, moreover, the convergence 
analysis is also given. 
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INTRODUCTION

Obtaining exact and explicit solutions of nonlinear 
partial differential equations is very important in
mathematical sciences and it is one of the most
inspiring and mainly active areas of the investigation. It 
is well-known that one large class of nonlinear partial 
equations belongs to the integrable partial differential 
equations and these equations have the infinity number 
of the exact solutions. The most well-known equations 
among them are Koteweg-de Vries equation, Sine-
Gordon equation, Kawahara type equations, nonlinear 
Schrödinger equation, Boussinesq equations and the list 
can be expanded with other basic integrable equations 
but it is not our purpose to give all list. 

In the last few decades great progress was made in 
the development of methods for obtaining exact
solutions of nonlinear equations but the progress
achieved is not adequate. Because, from our point of 
view, there is no single best method to obtain exact 
solutions of nonlinear differential equations and each 
method  have  its  merits  and  deficiencies  depending 
on  the researchers  experience  and  the  sympathy to 
the  method  utilized.  Moreover,  it  can  be  said  that 
all  these  methods  are  problem dependant, namely 
some methods work well with certain problems but 
others not. Therefore, it is rather significant to apply 
some well-known methods in the literature to nonlinear 
partial  differential  equations  which  are  not solved 
with that method to search possibly new exact solutions 
or to verify the existing solutions with different
approach.

In nonlinear equations, the fourth order Boussinesq 
equation  is  a  nonlinear  partial  differential  equation 
that reads

2
tt xx xxxx xx 0 1u u u 6(u ) , L x L= + + ≤ ≤ (1)

with u = u (x, t) is a sufficiently often differentiable 
function.

The initial conditions associated with the
Boussinesq equation (1) are assumed to have the form

tu(x,0) f(x), u (x,0) g(x)= =

Boussinesq introduced Eq. (1) to describe the
propagation of long waves in shallow water.

The variant of this equation also arises in other 
physical applications such as nonlinear lattice waves, 
iron sound waves in plasma and in vibrations in a
nonlinear string. Moreover, it was applied to problems 
in the percolation of water in porous subsurface strata.

Many authors are interested in seeking soliton-like
solutions, because the waveforms can change in
different mechanisms and it usually has traveling wave 
solutions. Recently, Wazwaz [1,2] established many 
new traveling wave solutions for the Boussinesq and 
the Klein-Gordon equations by using the extended tanh 
method, the rational hyperbolic functions method and 
the rational exponential functions method to generate 
these new solutions. Abbasy et al. [3] apply the
modified variational iteration method to solve a class of 
nonlinear partial differential equations and Boussinesq 
equation is used as a case-study. Wazwaz [4] uses 
variational iteration method is used to determine
rational solutions for the KdV, the K(2,2), the Burgers 
and the cubic Boussinesq equations. Wang et al. [5], by
means of an extended rational expansion method and 
symbolic computation, obtained the exact solutions of 
Boussinesq equation and Jimbo-Miwa equations. Hajji 
and   Al-Khaled  [6]   utilized   the   modified  Adomian
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decomposition method to solve the generalized
Boussinesq equation and El-Sayed, D. Kaya [7] studied 
the solitary-wave solutions of the (2+1)-dimensional
Boussinesq equation and (3+1)-dimensional KP
equation.

In this study, we extend the modified Adomian 
decomposition method [8] to obtain the solution of 
Boussinesq equation in form of Eq. (1) and give the 
convergence analysis of the method. The modification 
introduced in this study is inspired from the various 
works which utilize similar modifications in the
literature [9-14].

THE ADOMIAN DECOMPOSITION METHOD

The principal algorithm of the Adomian
decomposition method when applied to a general
nonlinear equation is in the form

Lu Ru Nu g+ + = (3)

The linear terms are decomposed into L+R, while 
the nonlinear terms are represent by Nu. L is taken as 
the highest order derivative to avoid difficult
integration involving complicated Green’s functions
and R is the remainder of the linear operator L−1 is 
regarded as the inverse operator of L and is defined by 
a definite integration from 0 to t, i.e.,

t t
1

0 0

L (.) (.) dt dt− = ∫ ∫ (4)

If L is a second-order operator, L−1 is a two-fold
indefinite integral,

1 u(x,0)
L Lu u(x,t) u(x,0) t

t
− ∂

= − −
∂

(5)

Operating on both sides Equation (3) with L−1 yields

1 1 1 1L Lu L g L Ru L Nu− − − −= − − (6)
and gives

1 1 1
tu(x,t) u(x,0) tu (x,0) L g L Ru L Nu− − −= + + − − (7)

The decomposition method represents the solution 
of Equation (7) as a series

n
n 0

u(x,t) u (x,t)
∞

=
= ∑ (8)

The nonlinear operator, Nu, is decomposed as

n
n 0

Nu A
∞

=
= ∑ (9)

Substituting Equations (8) and (9) onto Equation 
(7), we obtain

1 1
n 0 n n

n 0 n 0 n 0
u (x,t) u L R u L A

∞ ∞ ∞
− −

= = =
= − −∑ ∑ ∑ (10)

where
1

0 tu u(x,0) tu(x,0) L g−= + + (11)

Consequently, it can be written as

1 1
1 0 0

1 1
2 1 1,

1 1
n 1 n n,

u L Ru L A ,

u L Ru L A ,

.

.

.

u L Ru L A , n 0,

− −

− −

− −
+

= − −

= − −

= − − ≥

(12)

where An are Adomian’s polynomials of u0, u1,…,un
and are obtained from the formula

n
i

n in
i 0 0

1 d
A F u ,

n! d

∞

= λ=

  
= λ   λ    

∑ n = 0,1,2,… (13)

Eq. (13) give

0 0

1 1 0
0

2 2
1

2 2 0 02
0 0

2 3 3
1

3 3 0 1 2 0 02 3
0 0 0

A f ( u ),
d

A u f ( u ),
du

d u dA u f(u ) f (u ),
du 2! du

d d u d
A u f(u ) u u f(u ) f(u ),

du 3!du du

=

=

= +

= + +

(14)

.

.

.

ANALYSIS

To implement the analysis, Eq. (1) can be written 
in an operator form
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1 x 2L u L u L u 6Nu= + + (15)

where L1, L2 and Lx are linear differential operators and 
Nu is a nonlinear operator,

2 2 4

1 x 22 2 4L , L , L
t x x
∂ ∂ ∂= = =
∂ ∂ ∂

(16)

It is assumed that L−1 is a two-fold integral
operator given by

t t
1

1
0 0

L (.) (.) dt dt− = ∫ ∫ (17)

operating with the integral operator L1
−1 on both sides 

of Eq. (15) and using the given conditions we have

1 1 1 1
1 1 1 x 1 2 1L L u L L u L L u L 6Nu− − − −= + −

1
1 x 2u(x,t) f(x) tg(x) L (L u L u 6Nu)−= + + + + (18)

where f and g are the functions that arise from the given 
initial conditions that are assumed to be prescribed. We 
assume that a series solution of the unknown function u 
(x, t) is given by

n
n 0

u(x,t) u (x,t)
∞

=
= ∑ (19)

The nonlinear term Nu = (u2)xx can be decomposed 
into a infinite series of polynomials

1
n 1 n xx

n 0 n 0

1 1
1 n xxxx 1 n

n 0 n 0

u (x,t) f(x) tg(x) L ( u )

L ( u ) L (6 A )

∞ ∞
−

= =
∞ ∞

− −

= =

= + +

+ +

∑ ∑

∑ ∑
(20)

To determine the components un(x, t), n≥0, we can 
write the recursive relation

0
1 1 1

1 1 0 xx 1 0 xxxx 1 0

1 1 1
n 1 1 n xx 1 n xxxx 1 n

u (x,t) f(x) tg(x)

u ( x , t ) L (u ) L (u ) L (6A )
.
.
.

u (x,t) L (u ) L (u ) L (6A ), n 1

− − −

− − −
+

= +

= + +

= + + ≥

(21)

where An  are  the  Adomian polynomials that
represent  the  nonlinear  term  (u2)xx  and  can  be 
derived by 

2
0 0 xx

1 1 xx 0 xx
2

2 1 xx 0 2 xx

3 1 2 xx 0 3 xx

A (u ) ,
A 2(u ) (u ) ,

A (u ) 2(u u ) ,
A 2 ( u u ) 2(u u ) ,

=

=

= +

= +

(22)

.

.

.

Other polynomials can be generated in a like manner.
It is worth noting that the recurrence relation (21) 

introduces a slight variation from the original
recurrence relation developed by Adomian [15].
Although this change in the formulation of the
recurrence relation is slight, it introduces a qualitative 
tool that accelerates the convergence of the solution and 
minimizes the volume of calculations. The first few
components of un(x, t) follows immediately upon
setting:

0
1 1 1

1 1 0 xx 1 0 xxxx 1 0
1 1 1

2 1 1 x x 1 1 xxxx 1 1
1 1 1

3 1 2 xx 1 2 xxxx 1 2

u (x,t) f(x) tg(x)

u ( x , t ) L (u ) L (u ) L (6A )

u (x,t) L ( u ) L (u ) L (6A )

.u (x,t) L (u ) L (u ) L (6A )

− − −

− − −

− − −

= +

= + +

= + +

= + +

(23)

The scheme (23) determines the components un(x,
t), n≥0. It is, in principle, possible to calculate more 
components in the decomposition series to enhance the 
approximation. Consequently, one can recursively

determine every term of the series n
n 0

u (x,t)
∞

=
∑  and 

hence the solution u (x, t) is readily obtained in a series 
form. It is interesting to note that we obtained the series 
solution by using the initial conditions only. For a
detailed description of Adomian decomposition method 
and the mo dified decomposition algorithm, we refer the 
reader to [15]. From Eqs. (11) and (12), we know that 
all the components un(x, t) are calculable. If the series 
converges, the n-term partial sum

n 1

n i
i 0

u(x, t ) ,
−

=
φ = ∑ (24)

will be the approximate solution since

in i 0
lim u u

∞

→∞ =
=∑ (25)

CONVERGENCE RESULTS

The convergence results of Adomian
decomposition method is first proved by Cherruault 
[16].
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Ngarhasta et al. [17] and Mavoungou and Cherruault 
[18] have introduced a new approach for the
convergence of this method. They have launched a new 
condition for obtaining convergence of the
decomposition series to the diffusion model and
Fisher’s equation. In this paper, we confirm how
approximate solutions of Boussinesq equation are
closed to corresponding exact solutions following the 
steps [16, 17].

Convergence analysis: Consider a Hilbert space H,
defined by

2H L (( , ) [0,T])= α β ×

the set of applications:

u : ( , ) [0,T]α β × →ℜ
with

2

( , ) [0,T]
u (x,s)dsd

α β ×

τ<+∞∫

and the following scalar product:

H
( , ) [0,T]

(u,v) u(x,s)v(x,s)dsd
α β ×

= τ∫

and
2 2
H

( , ) [0,T]
u u (x,s)dsd

α β ×

= τ<+∞∫

We now consider Boussinesq equation with respect 
to above assumptions and then the operator of nonlinear 
Boussinesq equation is

2 2 4 2

2 2 4 2T(u) R(u) N(u) u u 6 u
t x x t
∂ ∂ ∂ ∂

= = + = − − −
∂ ∂ ∂ ∂

where

2 2 4 2

2 2 4 2L(u) u,R(u) u u,N(u) 6 u
t x x x
∂ ∂ ∂ ∂= = − − = −
∂ ∂ ∂ ∂

The Adomian decomposition method is convergent 
if the following two hypotheses are satisfied [16]. 

(H1) 2(T(u) T(v),u v) k u v , k 0,   u,v H− − ≥ − > ∈

(H2) Whatever may be M>0, there exists a constant
C(M)>0 such that for u, v∈H with ||u||≤0, ||v||≤M,
we have:
(T(u) T(v),w) C( M) u v w− ≥ − for every w∈H.

THEOREM (Sufficient Condition of Convergence
for nonlinear Boussinesq equation): If N is a
Lipschitzian function in H, the Adomian decomposition
method applied to the following IBE

2 2 4 2
2

2 2 4 2(u) (u) (u) 6 (u )
t x x x
∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

without initial and boundary conditions, converges
towards a particular solution.

Proof: To prove the theorem, we will validate the
conditions (H1) and (H2) for Boussinesq equation
respectively. Now, consider the equation: 

2 2 4 2
2

2 2 4 2(u) (u) (u) 6 (u )
t x x x
∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

and set

2 2 4

2 2 4

2
2

2

L(u) (u),R(u) (u) (u),
t x x

N(u) 6 (u )
x

∂ ∂ ∂
= = − −
∂ ∂ ∂

∂
= −

∂

Therefore, we have,

2 2 4 2
2

2 2 4 2L(u) (u) T(u) (u) (u) 6 (u )
t x x x
∂ ∂ ∂ ∂= = − = + +
∂ ∂ ∂ ∂

We assume that the convergence hypothesis (H1),
i.e., there exists a constant k>0, such that for u, v∈H,
we have

2(T(u) T(v),u v) k u v− − ≥ −

2 2 4

2 2 4

4 2 2
2 2

4 2 2

2 4 2
2 2

2 4 2

T(u) T(v) (u) (v) (u)
x x x

(v) 6 (u ) 6 (v )
x x x

(u v) (u v) 6 (u v ),
x x x

∂ ∂ ∂
− = − − −

∂ ∂ ∂

∂ ∂ ∂− − −
∂ ∂ ∂

∂ ∂ ∂= − − − − − −
∂ ∂ ∂

2

2

4

4

2
2 2 2 2

2

(u v),u v)
x(T(u) T(v),u v)

( (u v),u v
x

( 6 (u v ),u v )
x

 ∂− − − 
∂ − − =  ∂ + − − − 
∂ 

∂+ − − −
∂
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But there exists a real δ>0 such that 

2 4

2 4

2 2

2 2

2 2 2

( (u v),u v) ( (u v),u v)
x x

( (u v),u v)[1 ( (u v),u v)]
x x

u v (1 u v ) u v

∂ ∂
− − − − − −
∂ ∂

∂ ∂= − − − − − −
∂ ∂

≥ δ − − − ≥ δ −

hence

(H1)
2

2
2( (u v),u v) u v

x
∂⇒ − − − = δ −
∂

(H1)
2

2
2[1 ( (u v),u v)] (1 u v )

x
∂⇒ − − − − = − −
∂

Because
2

2x
∂
∂

 and 
4

4x
∂
∂

 are two differential operators in 

H and according to the Schwartz inequality, we have

2
2 2 2 2 2 2

2

2 2

( 6 (u v ),u v ) [6(N(u) N(v),u v ]
x

6 N(u) N(v) u v

∂
− − − = − −

∂

≤ − −

As N a Lipschitzian function, we have

2 2 2 2

2 2 2 2

[6(N(u) N(v),u v ] 6 u v

[6(N(u) N(v),u v ] 6 u v

− − ≤ α −

⇔ − − − ≥ α −

We therefore deduce

2 2 2

2 2

(T(u) T(v),u v) u v 6 u v

( 6 ) u v

− − ≥ δ − − α −

≥ δ − α −

Setting K = δ-6α, we obtain hypothesis (H1) For the 
hypothesis (H2), i.e., M 0,  C(M) 0∀ > ∃ >  such that

2

u M,  v M (T(u) T(v),w)

C(M) u v w , w H

≤ ≤ ⇒ −

≤ − ∀ ∈
.

Indeed, we have

22 2 2

2 2 2

2 2 2

22

22

(T(u) T(v),w) 2 u v w 6 u v w

2 u v w 6 u v u v w

 2 u v w 6 u v 4M w

(2 24 M ) u v w

(2 M ) u v w

− ≤ − + α −

≤ − + α − +

≤ − + α −

= + α −

= + α −

where C (M) = (2+αM2). Thus the hypothesis (H2) is 
satisfied. The proof is complete.

NUMERICAL APPLICATIONS

Example: Consider the Boussinesq equation with the 
following initial conditions,

2
tt xx xxxx xxu u u 6(u )= + + (26)

2 1u(x,0) sech ( x)
6
α= α

β
(27)

2
t

1 1u (x,0) 2 sech ( x)tanh( x)
6 6 6
α α α= α

β β
(28)

Where α and β are arbitrary constants and

2
1

3
β = + α

Proceeding in a usual manner, we introduce the 
recursive relation

2 2
0

1 1 1u (x,t) sech ( x) 2 tsech ( x)tanh( x)
6 6 6
α α α= α + α

β β β
                  . 

                                              . (29)
                                              .

1 1 1
n 1 1 n xx 1 n xxxx 1 nu (x,t) L (u ) L (u ) L (6A ), n 1− − −
+ = + + ≥

To make simplification, let be 

1K(x) cosh( x)
6
α=

β
and

1M(x) sinh( x)
6
α=

β
and one can obtain

1K(x) M(x)
6
α′ =

β
,

1M(x) K(x)
6
α′ =

β
.

Hence;
3
2

0 2 3
1 6 M(x)

u
3K (x) K (x)
α

= α + .

Substituting Equation (22) into Eq. (29) gives 
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1 1 1
1 1 0 xx 1 0 xxxx 1 0u ( x , t ) L (u ) L (u ) L (6A )− − −= + +

where
3 3

3 2 2 2 22 2
0 x 3 6 3 2 4

K( x) 6 M(x)K (x) 3K (x)K(x)M(x) 6 M(x) 1 M (x)
(u ) 2 t t t

3 3 3K (x) K (x) K (x) K (x) K (x)

′ ′ ′α − α α α
= − α + = − + −

β β β

2 2 2 2

4 4 2 2 2 2 2 2 2 4 2 4
M (x) sh a 1 sh a 1 ch a 1 1 1 1 1 1 1

(1 )
K (x) ch a ch a ch a ch a ch a ch a ch a ch a ch a K (x) K (x)

−
= = = = − = − = −

3
2 2 22

0 x 3 2 2 4
6 M(x) 1 1 1

(u ) t t t
3 3K (x) K (x) K (x) K (x)
α α α α

= − + − +
β β β β

3
2 22

0 x 3 2 4
6 M(x) 2 1 1

(u ) t t
3 3K (x) K (x) K (x)
α α α

= − − +
β β β

3
3 2 2 22

0 xx 6 3 5

5 5
2 2 2 2 2

2 2 2 4 2 3 2 5

5 5
2 2 2 2

0 xx 2 2 2 4 2 3

6 M(x)K (x) 3K (x)K(x)M(x) 4 K( x ) 4 K(x)
(u ) t t

3 3K (x) K (x) K (x)

1 M (x) 2 6 M(x) 2 6 M(x)t t
3 K (x) K (x) 9 K (x) 3 K (x)

2 1 1 2 6 M(x) 2 6
(u ) [

3 K (x) K (x) 9 K (x)

′ ′ ′ ′α − α α
= − + −

β β β

α α α α= − + + − ⇒
β β β β

α α α α
= − + −

β β β 2 5
M(x)

]t
3 K (x)β

5 5
t t2 2 2 32 2 1

1 0 xx2 2 2 4 2 3 2 5
0 0

2 1 1 2 6 M(x) 2 6 M(x) t ta , b L (u ) (a bt)dtdt a b
2 63 K (x) K (x) 9 K (x) 3 K (x)

−α α α α= − = − ⇒ = + = +
β β β β ∫∫

5 5
2 2 3 2 5 42 2

0 xxx 2 3 2 5 2 6 2 10

5 5
3 3 2 32 2

3 3 3 5 3 2 3 4 3

4 K (x ) 4 K(x ) 2 6 M(x)K (x) 3K (x)K(x)M(x) 2 6 M(x)K (x) 5K (x)K(x)M(x)
(u ) t t

3 K (x) K (x) 9 K (x) 3 K (x)

2 6 M(x) 2 6 M(x) 2 1 2 M (x) 2t t
9 K (x) 3 K (x) 9 K (x) 3 K (x) 3

′ ′ ′ ′ ′ ′α α α − α −
= − + + −

β β β β

α α α α α= − + + − −
β β β β β

3 2

4 3 6

5 5
3 3 22 2

0 xxx 3 3 3 5 3 2 3 6

1 10 M (x)t
K (x) 3 K (x)

2 6 M(x) 2 6 M(x) 4 1 10 M (x)
(u ) t t

9 K (x) 3 K (x) 9 K (x) 3 K (x)

α+ ⇒
β

α α α α
= − + − +

β β β β

5 5
3 2 5 42 2

0 xxxx 3 6 3 10

3 3 6 5 2

3 3 3 12

3 3

4 2

2 6 M(x)K (x) 3K (x)K(x)M(x) 2 6 M(x)K (x) 5K (x ) K(x)M(x)
(u ) t

9 K (x) 3 K (x)

8 K (x ) 10 2M(x)M(x)K (x) 6K (x)K(x)M (x)
 t

3 K (x) 3 K (x)

2 1 2
9 K (x) 3

′ ′ ′ ′α − α −
= − +

β β

′ ′ ′α α −
+ +

β β

α α
= − +

β β

7 7 7
2 3 3 2 32 2 2

4 4 4 4 4 6 4 3 4 5 4 7
M (x) 2 1 10 M (x) 4 6 M(x) 10 6 M(x) 10 6 M (x)

t t t
K (x) 3 K (x) 3 K (x) 27 K (x) 9 K (x) 3 K (x)

α α α α α
+ − + + − ⇒

β β β β β
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7 7 7
3 3 2 32 2 2

0 xxxx 4 2 4 6 4 3 4 5 4 7
4 1 10 M (x) 4 6 M(x) 10 6 M(x) 10 6 M (x)

(u ) t t t
9 K (x) 3 K (x) 27 K (x) 9 K (x) 3 K (x)
α α α α α

= − + + −
β β β β β

7 7 7
3 3 2 32 2 2

0 xxxx 4 2 4 6 4 3 4 5 4 7
4 1 10 M (x) 4 6 M(x) 10 6 M(x) 10 6 M (x)

(u ) [ ]t
9 K (x) 3 K (x) 27 K (x) 9 K (x) 3 K (x)
α α α α α

= − + + −
β β β β β

7 7 7
3 3 2 32 2 2

4 2 4 6 4 3 4 5 4 7
4 1 10 M (x) 4 6 M(x) 10 6 M(x) 10 6 M (x)

c ,  d
9 K (x) 3 K (x) 27 K (x) 9 K (x) 3 K (x)
α α α α α

= − = + −
β β β β β

t t 2 3
1

1 0 xxxx
0 0

t tL (u ) (c dt)dtdt c d
2 6

− = + = +∫ ∫

3 5
3 22 22 2 2 2

0 2 3 4 5 6
1 6 M(x) 1 2 6 M(x) 2 M (x)

u [ ] t t
3 3 3K (x) K (x) K (x) K (x) K (x)
α α α

= α + = α + +

5
5 4 3 6 5 222 2 2

0 x 5 10 12
K( x) 2 6 M(x)K (x) 5K (x)K(x)M(x) 2 2M(x)M(x)K (x) 6K (x)K(x)M (x)

(u )  4 t t
3 3K (x) K (x) K (x)

′ ′ ′ ′ ′α − α −
= − α + +

5 7 7
3 32 2 22 2 2

0 x 5 4 6 5 7
2 6 M(x) 8 1 10 1 4 6 M(x) 2 6 M(x)

(u )  t t t t
3 3 3 9 3K (x) K (x) K (x) K (x) K (x)
α α α α α

= − − + − +
β β β β β

5
5 4 3 322

0 xx 10 5 7

7 7
5 4 7 62 22 2

10 14

2 6 M(x)K (x) 5K (x)K(x)M(x) 32 K(x) 20 K(x)
(u ) t t

3 3K (x) K (x) K (x)

4 6 M(x)K (x) 5K (x)K(x)M(x) 2 6 M(x)K (x) 7K (x)K(x)M(x)
t t

9 3K (x) K (x)

′ ′ ′ ′α − α α
= − − −

β β β

′ ′ ′ ′α − α −
− +

β β

7 7
3 3 2 42 22 2

0 xx 2 4 2 6 2 5 2 7 2 4

4 2 4 4 2
2 2 2

2 6 2 6 2 8

2 1 10 M (x) 16 6 M(x) 10 6 M(x) 4 1
(u )  t t t

3 K (x) 3 K (x) 9 K (x) 3 K (x) 9 K (x)

20 M (x) 2 1 14 M (x)
 t t t

9 K (x) 3 K (x) 3 K (x)

α α α α α
= − + + − −

β β β β β

α α α
+ + −

β β β

7 7
3 3 2 32 22

0 xx 2 4 2 6 2 5 2 7

4 4 2 4 4 2
2

2 4 2 6 2 6 2 8

2 1 10 M (x) 14 6 M(x) 10 6 M (x)
(u )  [ ]t

3 K (x) 3 K (x) 9 K (x) 3 K (x)

4 1 20 M (x) 2 1 14 M (x)
 [  ]t

9 K (x) 9 K (x) 3 K (x) 3 K (x)

α α α α
= − + + − +

β β β β

α α α α
+ − + + −

β β β β

7 7
3 3 2 32 2

2 4 2 6 2 5 2 7
2 1 10 M (x) 14 6 M(x) 10 6 M (x)

e ,    f
3 K (x) 3 K (x) 9 K (x) 3 K (x)
α α α α

= − + = − +
β β β β
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4 4 2 4 4 2

2 4 2 6 2 6 2 8
4 1 20 M (x) 2 1 14 M (x)

g
9 K (x) 9 K (x) 3 K (x) 3 K (x)
α α α α

= − + + −
β β β β

t t 2 3 4
1 2 2

1 0 xx
0 0

t t tL (u ) (e ft gt )dtdt e f g
2 6 12

− = + + = + +∫ ∫

1 1 1
1 1 0 xx 1 0 xxxx 1 0u ( x , t ) L (u ) L (u ) L (6A )− − −= + +

5 5
t t2 2 2 32 2 1

1 0 xx2 2 2 4 2 3 2 5
0 0

2 1 1 2 6 M(x) 2 6 M(x) t ta , b L (u ) (a bt)dtdt a b
2 63 K (x) K (x) 9 K (x) 3 K (x)

−α α α α= − = − ⇒ = + = +
β β β β ∫ ∫

7 7 7
3 3 2 32 2 2

4 2 4 6 4 3 4 5 4 7
4 1 10 M (x) 4 6 M(x) 10 6 M(x) 10 6 M (x)

c , d
9 K (x) 3 K (x) 27 K (x) 9 K (x) 3 K (x)
α α α α α

= − = + −
β β β β β

t t 2 3
1

1 0 xxxx
0 0

t tL (u ) (c dt)dtdt c d
2 6

− = + = +∫ ∫

7 7
3 3 2 32 2

2 4 2 6 2 5 2 7
2 1 10 M (x) 14 6 M(x) 10 6 M (x)

e ,    f
3 K (x) 3 K (x) 9 K (x) 3 K (x)
α α α α

= − + = − +
β β β β

4 4 2 4 4 2

2 4 2 6 2 6 2 8
4 1 20 M (x) 2 1 14 M (x)

g
9 K (x) 9 K (x) 3 K (x) 3 K (x)
α α α α

= − + + −
β β β β

t t 2 3 4
1 2 2

1 0 xx
0 0

t t tL (u ) (e ft gt )dtdt e f g
2 6 12

− = + + = + +∫ ∫

2 3 2 3 2 3 4

1
t t t t t t t

u a b c d 6(e f g )
2 6 2 6 2 6 12

= + + + + + +

2 3 4
2 2

1
t t t 1

u (a c 6e) (b d 6f) 6g t [ 81a 81c 486e ( 27b 27d 162f)t 81gt ]
2 6 12 162

= + + + + + + = − − − − + − − − −

2
2 2 6 2 2 4 3 6 3 2 2 3 2 4

1 8 4

5 5 7 7
3 2 2 2 2 5 2 3 5 32 2 2 2

7 7
3 2 32 2

1 t
u { 54 K (x) 81 K (x) 36 K (x) 270 K (x)M (x) 324 K (x)

162 K (x)

1620 K (x)M (x) [ 6 6 K (x)M(x) 18 6 K (x)M(x) 4 6 K (x)M(x) 30 6 K (x)M(x)

90 6 K(x)M (x) 252 K (x)M(

= − − α β + α β − α + α + α β
β

− α β + − α β + α β − α − α

− α + α β
7

2 3 4 2 4 4 2 2 22

4 2 2 4 2 2 2

x) 540 6 K(x)M (x)]t [36 K (x) 180 K (x)M (x)

54 K (x) 378 M (x)]t }

− α β + α β − α β

− α β + α β

Therefore;

0 2 3
1 M(x)

u 2 t
6K (x) K (x)
α

= α + α
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2
1 8 4

1 N(x) H(x) R(x) P(x)
u t

162 K (x)

 + + +
= −   β 

.

.

.
where

1 1K(x) cosh( x), M ( x ) sinh( x)
6 6
α α= =

β β

5
3 2 2 2 2 4 2 32N(x) 270 K (x)M (x) 81 K (x) 18 6 tK (x)M(x)a= α + α β + α β

7
4 2 2 2 2 4 2 2 4 3 4 2 2 22H(x) 180 t K (x)M (x) 36 t K (x) 90 6 tK(x)M (x) 378 t M (x)= − α β + α β − α + α β

7 7
4 2 2 2 2 2 6 3 2 4 5 2 32 2R(x) 54 t K (x) 54 K (x) 324 K (x)-4 6 tK (x)M(x) 252 tK (x)M(x)= − α β − α β + α β α + α β

5 7 7
2 5 3 2 32 2 2

3 2 2 2 3 6

P(x) 6 6 tK (x)M(x) 30 6 tK (x)M(x) 540 6 tK(x)M (x)

1620 K (x)M (x)  36 K (x)

= − α β − α − α β

− α β − α

and from Eq.(19) the first order approximate solution reads 

0 1

2
2 3 8 4

u(x,t) u u ...

1 M(x) 1 N(x) H(x) R(x) P(x)
2 t t ...

6 162K (x) K (x) K (x)

= + +

 α + + +
= α + α − +  β 

which is an convergent series according to the theorem 
proved for the convergence for nonlinear Boussinesq 
equation.

CONCLUSION

In  this  study,  the  modified  decomposition 
method is used to solve the generalized Boussinesq 
equation.  The  method  provides  the  exact  solution
in  the  absence of round off error. It has also been 
shown  that  the  method  is  theoretically convergent
and detailed convergence analysis is given. The most 
interesting  future  of  the modification is, unlike
classical decomposition method, accelerates the
convergence  of  the  solution  and  minimizes the 
volume  of  calculations  This  is  done  by choosing
the  first  term  of  the Adomian series, u0, as a function 
of t and x which verifies the initial and boundary 
conditions and by introducing a slight variation of
recurrence  relation  from  the  original  recurrence 
relation developed by Adomian. Future work includes 
generalization  of  the  technique to solve  other  class 
of nonlinear differential equations of mathematical
physics.
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