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Abstract: Intense competition in the current business environment leads firms to focus on selecting the 
most appropriate R&D project portfolio in order to accomplish sustainable growth in the fierce market 
place. Achieving this goal is tied down by uncertainty which is inherent in all R&D projects. Therefore, 
investment decisions must be made within an optimization framework, based on the data which is usually 
unavailable or unreliable. In this paper, a model is developed to hedge against the R&D uncertainty. The 
proposed model is constructed by applying the concept of �real options�. The robust optimization approach 
is adopted to handle uncertain parameters and determine the optimal project portfolio. The problem is 
formulated as a robust zero-one integer programming model which is transformed into a standard mixed 
zero-one linear programming one and solved via an optimization technique. The applicability of the 
proposed approach is illustrated through an example. 
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INTRODUCTION

 R&D activities are becoming more and more 
essential to gain competitive advantage, long-term 
survival and growth for a majority of firms. In fact, 
R&D enables firms to improve the value of their 
business through developing new products and services 
or improving the current ones. Some R&D projects 
elevate productivity and consequently reduce costs 
through improving the existing production processes. 
Beyond them, products and services tend to have 
shorter and shorter life cycles, which means more and 
more R&D endeavors are required. R&D projects 
consume resources, such as money, human resources or 
laboratories which are limited. Therefore, they must 
compete for theses common scarce resources.  
 The purpose of project portfolio selection is to 
allocate the limited set of resources to various projects 
in a way that balances risk, reward and alignment with 
corporate strategy [1]. However, due to long lead times 
for R&D projects and market and technology dynamics, 
decision making is a complex task. Furthermore, 
complexity of these projects and resource 
interdependencies make portfolio decisions more 
difficult [2]. Furthermore, R&D projects and in 
particular, portfolios of R&D projects are well-
recognized to possess uncertainty and imprecision 
properties in that various portfolio estimates might be 

overly optimistic or pessimistic or even questionable 
[3]. Therefore, in the R&D project portfolio decision, 
much of the information required to make decisions is 
at best uncertain and at worst very unreliable. 
Moreover, resources or budget availability may be 
flexible, because additional budget and human 
resources may be reallocated from other budget 
categories or projects within the company [4]. 
However,  even  with  this  doubtful information and 
high complexity, the project portfolio decision still 
must be made. 
 Following this introduction, this paper focuses on 
the problem of selecting a portfolio of R&D projects 
when uncertainty in data and interactions between 
candidate projects exist. In particular, we assume no 
prior data or detail about parameters distributions 
exists. It must be mentioned that solving this model 
using robust optimization approach is totally 
overlooked in the literature. The novelty of this paper is 
that the application of this technique on portfolio of 
R&D projects, the employment of real option value of a 
portfolio of projects as an objective function and the 
integration of these concepts in a mathematical 
formulation has, to the best of our knowledge, never 
been investigated in the literature. 
 The organization of this paper is as follows. In 
Section 2, we review the related literature, briefly. 
Then,  we  introduce  the  robust  optimization concepts  
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and techniques. To handle uncertainty, we adopt robust 
optimization approach and transform the model into a 
robust one, in Section 3. The real option valuation 
approach and the robust portfolio selection model are 
discussed in Section 4. An example to illustrate the 
proposed approach is presented in Section 5 and 
Section 6 concludes the paper. 
 

LITERATURE REVIEW 
 
 Studies  on  R&D  project  portfolio  selection  can 
be divided into three major categories: strategic 
management  tools,  benefits  measurement  methods 
and mathematical programming approaches [2]. The 
strategic management tools, such as bubble diagram, 
portfolio map and strategic bucket method, are used to 
emphasize the connection of innovation projects to 
strategy or illuminate issues of risk or strategic balances 
of the portfolio [1]. 
 Benefits measurement methods determine the 
preferability figure of each project. A number of 
approaches, such as analytical hierarchy process [5], net 
present value [6] and option pricing theory [7] have 
been utilized in the literature to estimate the benefit of 
an R&D project. The projects with the highest score 
may be selected sequentially. The major drawback of 
most benefits measurement approaches is that neither 
uncertainty nor resource interactions among projects 
can be captured. In recent years, some studies used the 
criterion of conditional stochastic dominance [8] or the 
mean-Gini analysis [9] to handle R&D uncertainties for 
risk-averse decision makers. 
 Mathematical programming models optimize some 
objective function(s) subject to constraints related to 
resources, project logics, technology and strategies. The 
R&D portfolio selection model can be categorized 
based on mathematical structure as linear, nonlinear, 
integer, dynamic, goal, multiobjective, or stochastic 
programming [2]. In recent years, more complicated 
models were developed to capture the actual situation 
of R&D project selection. Beaujon et al. developed a 
mixed integer programming model to find an optimal 
project portfolio and studied the concept of partial 
funding project and the sensitivity of an estimated 
project value to the selected portfolio [10]. Dickinson et 
al. proposed the concept of dependency matrix 
representing complex dependencies between projects 
and developed an optimal portfolio model over multiple 
time periods [11]. 
 The majority of mathematical formulations in the 
literature are developed based on deterministic data. 
However, as already mentioned, R&D projects 
comprise a high degree of uncertainty, which generally 
precludes   the   availability   of   obtaining   exact   data  

regarding benefit, resource usage and interactions 
between projects. Fuzzy set theory is one of the 
mathematical tools to model imprecise information in 
such environments. It can also be used to represent 
uncertain project information and may provide an 
alternative and convenient framework for handling 
uncertain project parameters (e.g., project value, cost, 
etc.), while there is lack of certainty in data or lack of 
available historical data. The literature on fuzzy set 
application on R&D portfolio selection is fairly 
abundant. As an early work, Pereira and Junior 
formulated a simple fuzzy multi-criteria R&D project 
portfolio selection problem that represented project 
appraisals for each criterion as fuzzy set and developed 
an algorithm to find non-dominated solutions [12]. 
Coffin and Taylor developed a model that includes 
fuzzy logic in a beam search approach to select and 
schedule R&D projects under multiple objectives [13]. 
Kuchta used fuzzy numbers to present the uncertain 
NPV and resource consumption of each project and 
considered benefits, outcomes and resource interactions 
among  projects  [14]. Wang and Hwang and Carlsson 
et al. used options approach instead of traditional 
discounted cash flow to evaluate the value of each 
R&D project and developed a fuzzy zero-one integer 
programming model to determine the optimal project 
portfolio [3, 4].  
 One drawback of fuzzy set theory in R&D 
portfolio selection shows up when there is a possible 
range for each project parameter, but the most plausible 
value(s) within each range cannot be estimated. For 
example, a technological expert may state that if the 
project were to start now, then it would be possible to 
apply for a patent after a few years to protect a new 
production method. However, the expert cannot give 
any detail (e.g. probability or possibility distribution) 
about the likelihood that the patent would be granted or 
that the technological foresight would eventually come 
true. In such a case, it would not make much sense if 
the technological expert presented some distribution to 
characterize outcomes that are unknown. Thus, an 
expectation involving this kind of uncertainty can not 
be stated to represent some known future state. Other 
approaches must then be employed to address such 
problems. 
 Robust optimization is a new approach which 
incorporates the random character of problem 
parameters without making any assumptions on their 
distributions. Robust optimization addresses the 
problem of data uncertainty by guaranteeing the 
feasibility and optimality of the solution for the worst 
instances of the problem. As it is intrinsically a worst 
case approach, feasibility often comes at the cost of 
performance  and  generally  leads  to over conservative  
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solutions. For instance, Soyster proposed a model to 
handle column-wise uncertainty in linear programming 
problems, where every uncertain parameter has to be 
taken equal to its worst case value in the set [15]. 
Future research efforts led by Ben-Tal and Nemirovski 
and El-Ghaoui et al. to address over conservativeness, 
applied robust optimization to linear programming 
problems with ellipsoidal uncertainty sets, thus 
obtaining conic quadratic programs [16-18]. Founded 
on the idea that simultaneous large deviations in all 
uncertain problem parameters actually occur with 
negligible probability, Bertsimas and Sim developed 
the budget of uncertainty approach to control the 
cumulative conservativeness of all uncertain problem 
parameters [19]. As this technique which is specifically 
tailored for polyhedral uncertainty has some interesting 
characteristics, we will employ it in this paper to 
develop a practical approach for project portfolio 
selection in the presence of data uncertainty. 
 Selecting an appropriate set of R&D projects in an 
uncertain environment involves effective valuation of 
all R&D projects. Traditionally, discounted cash flow 
and expected net present value analyses are the most 
frequently used methods for valuation of R&D projects. 
However, these analyses can underestimate R&D 
project values and lead to high-risk and high-payoff 
projects that will not be chosen [20]. In recent years, the 
real options methods have gained growing attention in 
R&D project valuation [7, 21-23]. The basic idea of the 
real options approach is to transfer the sophisticated 
options pricing models used in capital market theory to 
the valuation of risky R&D projects. The real options 
approach has received great attention in recent years, 
because an initial investment of an R&D project is 
similar to the purchase of an option on a future 
investment. An R&D project usually involves several 
phases and the decision makers have the option to stop 
or defer the project at the end of each phase. Therefore, 
each phase is an option that is contingent on the earlier 
exercise of other options. If the project is a technical 
success, it creates the option to make a significantly 
larger investment in the continuing project with 
relatively higher expected net benefit. If the project 
fails to achieve the technical success, there is no need to 
commit any further resources and therefore the 
downside risk is limited to the initial investment cost of 
the R&D project. 
 Robust optimization approach is a novel one for 
R&D project portfolio selection which has not been 
considered and analyzed so far. The objective of this 
paper is to develop a robust portfolio selection model to 
optimize the R&D portfolio for the conservative 
decision maker in an uncertain R&D environment. 
Robust   optimization   approach   is   used   to  describe 

 
uncertain and flexible project information. Since 
traditional financial analysis approaches usually 
underestimate the R&D project value [21], a compound 
options approach is used to estimate the value of each 
R&D project. A robust portfolio selection model that 
can handle both uncertain and flexible parameters is 
developed to select the optimal R&D portfolio. The 
resulting model is transformed into a standard mixed 0-
1 integer programming model to solve the basic model 
from a conservative perspective. An optimal R&D 
portfolio can be obtained by solving the transformed 
model using an optimization technique. Depending on 
the level of uncertainty, sensitivity analyses are 
performed to evaluate the appropriateness of the 
selected project portfolios. 
 

ROBUST OPTIMIZATION APPROACH  
FOR MODELLING UNCERTAINTY 

 
 We rely extensively on the robust optimization 
tools developed by Bertsimas and Sim to handle 
uncertain parameters. Therefore, we review this subject 
briefly in this section. 
 
Uncertainty structure: To begin, consider the 
following problem subject to data uncertainty: 

                              Minimize c x 
                              Subject to Ax b (1) 
                              1 x u

 We assume without any loss of generality that the 
data uncertainty only affects the elements in matrix A. 
Later we show how to rewrite the model, if there is 
uncertainty on b or c. 
 We model data uncertainty in A as follows. Each 
uncertain coefficient aij is known to belong to an 
interval centered at its nominal value ija and of half-
length ij�a , but its exact value is unknown. As much as it 
is unlikely that all coefficients are equal to their 
nominal value, it is also unlikely that they are all equal 
to their worst-case value. For this reason, the �safest� 
approach, where all parameters are taken equal to their 
worst bound, leads to a severe deterioration of the cost 
without necessarily being justified in practice. Hence, 
we wish to adjust the uncertainty level of the solution, 
so that a reasonable trade-off between robustness and 
performance is achieved.  
 To quantify this concept in mathematical terms, we 
define the scaled deviation of parameter aij from its 
nominal value as ij ij ij ij�z (a a ) / a . The scaled deviation 
takes a value in interval [-1,1]. Moreover, we impose a 
budget  of  uncertainty  in the following sense: The total 
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(scaled) variation of the parameters cannot exceed some 
threshold , not necessarily integer: 

ij
(i, j) J

| z |

 
where J is the set of indices of the uncertain parameters. 
By taking  = 0 (  = |J|) we obtain the nominal (worst) 
case. Bertsimas and Sim show that having the threshold 

 vary in (0, |J|) allows greater flexibility to build a 
robust model without excessively affecting the optimal 
cost [19]. Intuitively, the budget of uncertainty rules out 
large deviations in jaijxj which play a predominant role 
in worst-case analysis but actually occur with low 
probability, since large deviations in the aij tend to 
cancel each other out as the number of parameters 
increases. 
 
The robust approach 
Let 
 

m n
ij ij ij ij ij

ij ij

(i, j) J ij

� �R | a [a a , a a ] i, j,

a a
�a

A

 

 
The robust problem is then formulated as: 
 
                       Minimize c x 
                       Subject to Ax b A  (2) 
                       1 x u 
 
 Theorem 1 [19]: Uncertain linear programming 
problem (2) has the following robust, linear 
counterpart:  
 
Minimize c x  
 
Subject to ij j i ij i

j j:(i, j) J
a x q r b i  

i ij ij j�q r a y (i, j) J  (3) 
y x y, 1 x u  

q 0, r 0, y 0.  
 
Proof: [19]. 

 The above robust counterpart is of the same class 
as the nominal problem, that is, a linear programming 
problem. This is a highly attractive feature of this 
approach, since linear programming problems are 
readily solved by standard optimization packages. 
Moreover, if in the original problem (2) some of the 
variables   were   constrained   to  be  integers,  then  the  

 
robust counterpart (3) would retain the same properties, 
i.e., the robust counterpart of a mixed integer 
programming problem is itself another mixed integer 
programming problem. 
 
Note: If there is uncertainty on b or c, we can rewrite 
the linear programming problem as: 
 
                             Minimize c x

                             Subject to Ax 0  (4) 
                            1 x u  
 with 

 
(z, , y) , (1, ,0) , ( M, ,1) , (M, ,1)x x c 0 1 1 u u  

 
where M is a large constant and  

1 0c
A

0 A b
 

ROBUST OPTIMIZATION FRAMEWORK  
FOR R&D PROJECT SELECTION 

 Selecting among a set of candidate R&D projects is 
the main problem of this paper, while the input data is 
uncertain and no prior details of parameters 
distributions exist. By adopting the approach as well as 
the results developed by [24] and [7], we first show 
how each project is valuated on the basis of real options 
concept. Then the robust optimization model is 
developed in subsection 4.1 in order to handle the 
original as well as estimated uncertain parameters. 
 Consider an R&D project with two subsequent 
growth opportunity, as depicted in Fig. 1. Once phase 1 
of the project is accomplished successfully, the 
company has the option to invest in the second phase of 
the project. In pharmaceutical industry for example, 
phase 1 of the project might serve for identifying 
promising active pharmaceutical ingredients (APIs) out 
of numerous possible compounds. Phase 2 is then 
equivalent to the four sequential tests from pre-clinical 
testing to clinical testing III. After identifying the API, 
the company has the option to invest in further testing. 
Thus, the option to invest in testing (phase 2) serves as 
the first option, whereas the second option is 
represented  by  the  investment  in  production  and 
market introduction (phase 3). These two opportunities 
together form a compound option. 
 The first call option with a time to maturity of * is 
determined on the value of the first investment 
opportunity, which in turn depends on the second 
investment. The exercise price of the first option is 
equal  to  the  negative  net present value resulting from 
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Follow up 
Investment (K*) 

Time (t)  
In Years Follow up Investment

In Production (K) 
Initial 

Investment 

Present Value of  
Cash Inflows (F)  

t = t = * t = 0 

Fig. 1: Simplified illustration of an R&D project 

the testing phase, defined as K*. If the first option is 
exercised, the company will receive a second call 
option with a time to maturity of - *. The first option is 
a compound option since it is the completion of the first 
investment which provides another option. F is defined 
as the present value of cash inflows following the 
second investment (K). 
 Assuming that the value follows the usual 
geometric Brownian motion process, these compound 
options can be valued analytically using Geske�s 
valuation approach, which is based on the Black-
Scholes formula and adjusted for real option valuation 
by Kemna as follows [25]: 
 

             
r r *

* r * *

Fe M(k,h; ) Ke M(k ,h

; ) K e N(k )
 (5) 

where: 
v = real option value 

21ln(F / K)
2h

 
2 *

c

*

1ln(F / F )
2k  

 
 N (.) = univariate cumulative normal distribution 
function 
 M (a, b; ) = Bivariate cumulative normal 
distribution function with a and b as upper and lower 
integral limits and correlation coefficient . 

*

 

  = Time to maturity of the simple option 
*  = Maturity date of the first option (within the 

compound option) 
F  = Present value of cash inflows of the commercial 

venture as of year  
FC = Critical value of the project above which the first 

call option will be exercised 

K = Present value of capital expenditures of the 
commercial venture as of year  

K* = Present value of capital expenditures of the 
pioneer venture as of year * 

 = Volatility of the rate of change of the 
commercial venture 

r  = Riskless rate of interest 
 
 In the following formulation, we employ the above 
approach in order to valuate each R&D project. 
 
Model formulation of the R&D portfolio selection: 
The  R&D  portfolio  selection  problem  is  to  select a 
set of projects from a pool of candidate projects to 
maximize the expected benefits during the planning 
horizon. Each candidate project has specific duration 
and its execution requires the exclusive use of a number 
of resources (e.g., budget, labor, etc.) while the 
availability of each resource type is usually limited. To 
effectively utilize limited resources, it is important to 
link portfolio selection decisions to the key corporate 
strategies and to maintain the balance of R&D project 
portfolio. For example, a balanced portfolio of projects 
may include investments in breakthrough products, new 
platforms, derivates and current product support. The 
percentages of spending on each project category may 
depend on the goals of the individual companies.  
 Since uncertainty and flexibility are encountered in 
making R&D portfolio selection, a robust zero-one 
integer programming model is proposed here to 
optimize R&D portfolio decisions in an uncertain R&D 
environment. 
 
Notation 
n The total number of candidate projects 
T The number of development phases 
vi The uncertain real options value of candidate 

project i 
Bt The budget available for stage t 
cit The uncertain investment cost of candidate project 

i during stage t 
lit Labor (in working months) required to implement 

project i at stage t 
Lt Labor (in working months) available to staff 

projects at stage t 
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Sj

U The  maximum  budget  percentage that can be 
spent on projects contributing to achievement of 
strategy j 

Sj
L The  minimum  budget  percentage  that can be 

spent on projects contributing to achievement of 
strategy j 

 

ijS
1  if project  contributes to strategy 
0  otherwise

i j
 

iR
1  if project  is required to implement
0  otherwise

i
 

ipP
1 if project is required for implementing project 
0 otherwise

i p

ix
1 if project  is selected for funding
0 otherwise

i
 

 
The robust model: In the beginning of section 4, we 
addressed how each project is evaluated individually 
based on real options valuation concept. However, 
since the resources are limited and the parameters are 
uncertain, we develop a robust optimization model to 
determine the most appropriate portfolio of projects, as 
follows: 
 

 
n

i i1 i
i 1

Max (v c ) x  (I) (6) 

s.t. 

 
n

it i t
i 1

c x B t  (II)  

 

 
n

it i t
i 1

l x L t  (III)  

 

 
n T T

U
ij it i j t

i 1 t 1 t 1

S c x S B j  (IV)  

 

 
n T T

L
ij it i j t

i 1 t 1 t 1

S c x S B j  (V)  

 

 
n n

i i i
i 1 i 1

R x R i  (VI)  

 
 i px x 0 i,p  such that pip = 1 (VII)  

ix {0,1} i  (VIII)  

 
 The objective (I) of this model is to maximize the 
total benefit of the R&D investment portfolio. The 
benefit of each project is the project real option value 
minus its initial investment cost (cost of real options). 
Constraints (II) ensure that the project spending during 
the planning horizon does not exceed the predetermined 
budget for each stage (e.g., project materials, capital 
equipments, staffing, etc.). Constraints (III) ensure that 
the required personnel should be within the available 
man-power capacity for each stage. Constraints (IV) 
and (V) enforce the desired balance in spending 
between different R&D strategic goals. The maximum 
as well as minimum spending required for each 
strategic goal is specified. Constraints (VI) force to 
select certain projects. Constraints (VII) ensure that 
project p can only be selected if all its precedent 
projects i are selected. Finally, constraints (VIII) 
specify decision variables as binary variables with the 
value equal to zero or one. 
 Note that the investment costs (cit) and option 
values (vi) are uncertain and described as intervals. We 
consider all other parameters, including labor work 
parameters, to be certain. This is because portfolio 
decisions are most sensitive to financial metrics and 
other limitations can typically be overcome by support 
of top level managers. It's however easy to show that 
when some of these parameters are uncertain, the 
structure of the problem remains the same. Therefore, 
the above approach can be employed without major 
modifications. It must be mentioned that solving this 
type of model using robust optimization approach is 
totally overlooked in the literature.  
 To refuse over conservative solutions, we add the 
following constraint to the proposed model (6):  

n T
it it i i

i 1 t 1 it i

c c v v
� �c v

 (7) 

[0,n (T 1)]  

while  stands for the common budget of uncertainty 
for all uncertain parameters of the problem. By 
sensitivity analysis of , one can simulate various levels 
of conservativeness to determine appropriate portfolio 
of projects for different uncertain environments. 

ILUSTRATIVE EXAMPLE 

 In this section, an example of R&D project 
portfolio selection problem in the pharmaceutical 
industry is presented to illustrate the developed 
approach. We adapt the data used by [26] and [4] with 
some modifications. This example can demonstrate 
how robust optimization technique assists top managers 
in forming their optimal portfolio of projects. 
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Fig. 2: Objective function value versus  

Table 1: Estimated R&D staff required for development phases and 
projects volatilities 

 Required staff (in working months) 
 ------------------------------------------- 
Projects Phase 1 Phase 2 Phase 3 Volatility (%) 

P1 6 72 50 80 
P2 12 80 48 70 
P3 24 95 70 50 
P4 12 100 70 60 
P5 32 120 80 50 
P6 26 105 75 20 
P7 20 85 52 50 
P8 12 110 75 70 
P9 24 150 90 55 
P10 30 155 100 35 
P11 14 90 60 45 
P12 15 75 70 80 
P13 30 180 120 30 
P14 45 200 130 40 
P15 40 160 110 35 
P16 35 190 125 100 
P17 36 190 120 60 
P18 38 200 130 30 
P19 36 220 150 60 
P20 48 230 160 20 

 There are 20 R&D projects that a pharmaceutical 
company  can  select  among  them.  Each  one  has 
three stages: drug discovery, testing and market 
introduction. For simplicity, we assume that the times 
to maturities of the first and second options ( * and ) 
for all projects are set to 3 and 10 years, respectively. 

The preferred development budgets for stages 1, 2 and 
3 are (in millions) 270, 985 and 1975, respectively. 
Similarly, the preferred capacities of R&D staff for 
three stages are (in working months) 375, 1965 and 
1320, respectively. We assume no further constraints 
for the problem.  
 Table 1 lists estimated volatility (based on 
historical data) as well as the estimates of required 
R&D staff for different phases of each project. Table 2 
presents the uncertain development costs and estimated 
present value of cash inflows of each project as interval 
numbers.  
 We first employ Geske�s valuation approach 
(section 4) for each of 20 projects to analytically 
determine their compound option value. We used �R� 
software to calculate required bivariate cumulative 
normal distributions. Furthermore, a program in Visual 
Basic was coded to determine compound option values 
as intervals. It must be noted that the highest (lowest) 
option value of a project is realized when highest 
(lowest) present value of cash inflows and lowest 
(highest) investment costs in all stages of the project are 
realized. The last column of Table 2 summarizes the 
results. 
 Following option valuation of each project, the 
problem was formulated, while taking the proposed 
budget of uncertainty approach. Figure 2 shows the 
realized value of selected portfolios with respect to 
different values of  in [0, 80]. The non-increasing 
shape of the objective function verifies the fact that as 
uncertainty of the environment grows, the uncertain 
problem parameters gain more volatility. This 
essentially  results  in  a  worse objective function, due 
to the  conservative  nature  of  the  robust  optimization  
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Table 2: Costs, present value of cash inflows and calculated option values 

 Investment costs 
 ------------------------------------------------------------------------------- 
Projects Initial (ct1)  Phase 2 (ct2) Phase 3 (ct3)  NPV of inflows at t = 0 Project option value  

P1 (1.8, 2.2) (27.0, 33.0) (27.0, 33.0) (45, 55) (24.0, 33.9) 
P2 (2.7, 3.3) (45.0, 55.0) (40.5, 49.5) (90, 110) (46.5, 68.2) 
P3 (9.0, 11.0) (67.5, 82.5) (90.0, 110.0) (180, 220) (78.6, 124.9) 
P4 (4.5, 5.5) (58.5, 71.5) (153.0, 187.0) (180, 220) (84.8, 128.3) 
P5 (18.0, 22.0) (76.5, 93.5) (180.0, 220.0) (540, 660) (354.7, 495.0) 
P6 (13.5, 16.5) (36.0, 44.0) (40.5, 49.5) (90, 110) (21.7, 50.7) 
P7 (6.3, 7.7) (31.5, 38.5) (27.0, 33.0) (72, 88) (31.6, 49.7) 
P8 (4.5, 5.5) (49.5, 60.5) (45.0, 55.0) (90, 110) (44.2, 65.5) 
P9 (9.0, 11.0) (67.5, 82.5) (72.0, 88.0) (162, 198) (74.9, 115.4) 
P10 (16.2, 19.8) (76.5, 93.5) (108.0, 132.0) (342, 418) (182.0, 279.9) 
P11 (4.5, 5.5) (31.5, 38.5) (27.0, 33.0) (72, 88) (29.4, 47.9) 
P12 (6.3, 7.7) (36.0, 44.0) (54.0, 66.0) (90, 110) (53.9, 75.3) 
P13 (13.5, 16.5) (85.5, 104.5) (162.0, 198.0) (360, 440) (153.6, 259.2) 
P14 (31.5, 38.5) (108.0, 132.0) (252.0, 308.0) (630, 770) (352.2, 524.2) 
P15 (22.5, 27.5) (63.0, 77.0) (90.0, 110.0) (450, 550) (309.1, 431.1) 
P16 (13.5, 16.5) (85.5, 104.5) (135.0, 165.0) (270, 330) (199.2, 261.5) 
P17 (15.3, 18.7) (72.0, 88.0) (162.0, 198.0) (315, 385) (184.6, 263.6) 
P18 (18.0, 22.0) (81.0, 99.0) (198.0, 242.0) (495, 605) (258.9, 402.2) 
P19 (31.5, 38.5) (108.0, 132.0) (225.0, 275.0) (720, 880) (501.7, 682.8) 
P20 (45.0, 55.0) (117.0, 143.0) (315.0, 385.0) (1035, 1265) (643.7, 940.8) 

Table 3: Optimal project portfolios for diverse uncertain environments 

 Portfolio of selected projects Portfolio size Portfolio value 

0 2, 4, 5, 7, 10, 12, 14, 15, 16, 18, 19, 20 12 3439.1 
[0.01, 0.14] 1, 5, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20 12 [3390.7, 3430.2] 
[0.15, 0.38] 2, 3, 5, 10, 11, 12, 14, 15, 17, 18, 19, 20 12 [3300.3, 3373.4] 
[0.39, 0.76] 1, 2, 3, 5, 10, 12, 14, 15, 17, 18, 19, 20 12 [3173.0, 3290.5] 
[0.77, 1.16] 1, 2, 5, 7, 10, 11, 12, 14, 15, 17, 18, 19, 20 13 [3045.4, 3151.5] 
1.17 1, 3, 5, 10, 11, 12, 14, 15, 17, 18, 19, 20 12 3038.1 
[1.18, 1.19] 1, 3, 5, 7, 10, 12, 14, 15, 17, 18, 19, 20 12 [3033.7, 3035.9] 
[1.20, 1.32] 1, 3, 5, 10, 11, 12, 14, 15, 17, 18, 19, 20 12 [3004.7, 3031.4] 
[1.33, 1.41] 1, 3, 5, 7, 10, 12, 14, 15, 17, 18, 19, 20 12 [2984.6, 3002.4] 
[1.42, 1.71] 1, 3, 5, 10, 11, 12, 14, 15, 17, 18, 19, 20 12 [2917.7, 2982.3] 
[1.72, 2.00] 2, 3, 5, 10, 12, 14, 15, 16, 18, 19, 20 11 [2843.5, 2905.5] 
[2.01, 2.28] 2, 3, 5, 10, 12, 14, 15, 17, 18, 19, 20 11 [2786.1, 2839.2] 
[2.29, 2.41] 2, 5, 7, 10, 11, 12, 14, 15, 16, 18, 19, 20 12 [2754.1, 2778.6] 
[2.42, 3.88] 2, 5, 7, 10, 11, 12, 14, 15, 17, 18, 19, 20 12 [2498.6, 2751.5] 
[3.89, 4.00] 1, 2, 5, 7, 10, 12, 14, 15, 17, 18, 19, 20 12 [2462.9, 2481.2] 
[4.01, 4.38] 1, 5, 7, 10, 11, 12, 14, 15, 16, 18, 19, 20 12 [2397.0, 2452.5] 
[4.39, 4.75] 1, 5, 7, 10, 11, 12, 14, 15, 17, 18, 19, 20 12 [2336.5, 2389.6] 
[4.76, 5.05] 1, 2, 5, 7, 10, 11, 14, 15, 17, 18, 19, 20 12 [2289.4, 2330.6] 
[5.06, 6.11] 2, 5, 7, 10, 12, 14, 15, 16, 18, 19, 20 11 [2133.2, 2261.1] 
[6.12, 6.70] 1, 2, 5, 10, 12, 14, 15, 16, 18, 19, 20 11 [2058.6, 2116.0] 
[6.71, 8.12] 5, 7, 10, 11, 12, 14, 15, 16, 18, 19, 20 11 [1924.0, 2028.2] 
[8.13, 9.42] 1, 5, 7, 10, 12, 14, 15, 16, 18, 19, 20 11 [1870.1, 1909.5] 
[9.43, 10.42] 1, 2, 5, 7, 11, 12, 14, 15, 16, 18, 19, 20 12 [1841.2, 1863.4] 
[10.43, 11.79] 1, 2, 5, 7, 10, 11, 12, 14, 15, 18, 19, 20 12 [1812.2, 1831.9] 
[11.80, 20.00] 2, 3, 5, 12, 14, 15, 16, 18, 19, 20 10 [1797.9, 1812.1] 
[20.00, 80.00] 2, 3, 5, 12, 14, 15, 16, 18, 19, 20 10 1797.9 
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Table 4: Brief recipe for project selection based on uncertainty level 

 Uncertainty level 
 ------------------------------------------------------------- 
Selected projects Low Medium High Comments 

5, 12, 14, 15, 18, 19, 20    Project 12 is not selected only if 4.76    5.05 
2    
16    
10   | | 
11   | | 
3  | |  
1, 7   | | 
17  | | | | 
4, 6, 8, 9, 13 | | | | | | Project 4 is selected only if  = 0 

Legend:  always  often  occasionally | | never 
 

 
 
Fig. 3: Schematic of selected projects for various values of  
 
which tends to the worst instances of the problem. It's 
however obvious that for 11.80, the objective 
function fairly remains constant while 20.00 can 
impose no further decline on the realized objective 
function value (1797.9). 
 Table 3 shows the portfolio of selected projects 
along with corresponding values and sizes for interval 
values of  with 0.01 approximations. It is observed 
that when uncertainty is low ( 5), the projects 
combination of the optimal portfolio changes erratically 
and the portfolio value drops rapidly, while medium 
uncertainty (5 10) gives rise to more "robust" 
portfolios. Furthermore, there is an inclination to form 
smaller portfolios as the uncertainty grows. This is 
inevitable, because when parameters uncertainty 
increases, the look-for-feasible nature of robust 
optimization confronts tighter budget constraints to 
satisfy and therefore, fewer projects qualify to enroll 
the optimal portfolio. 
 Figure 3 represents the abovementioned results in 
brief. The black (white) regions in each row indicate the 

uncertain environments in which the corresponding 
project is selected (rejected). In addition to the above 
results, it's immediately observed that inclusion of some 
projects in the optimal portfolio is less vulnerable to 
uncertainty (some projects are always or never 
selected). The remaining projects which are less 
sensitive to uncertainty show different behaviors under 
different uncertainty levels, which is a key observation 
to the project portfolio selection. 
 Table 4 presents the abovementioned important 
observation more practically. Following each 
uncertainty level (column) in the table, it's easy to 
decide on which projects must be added to the optimal 
portfolio.  

CONLUSIONS 

 In this paper, a robust optimization approach was 
developed to select a set of R&D projects from a pool 
of candidate projects in order to maximize the expected 
benefits  while  coping  with  the uncertain nature of the  
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projects. We adopted real option valuation approach to 
compensate the deficiencies of classical valuation 
models. Applying the proposed robust optimization 
approach on a real-world example from pharmaceutical 
industry, we showed how detailed projects data can 
sum up to a simple project selection recipe supported 
by sophisticated mathematical formulas which account 
for uncertainty. This in essence provides a very useful 
decision making instrument for managers who are 
typically not interested in detailed data and 
mathematical formulas and rather decide based on 
descriptive and qualitative tools. 
 There are many clues hidden in this paper for the 
observant reader. As an example, we didn't discuss the 
dynamic nature of the proposed approach. As selected 
projects evolve from early phases toward completion, 
more data on projects are collected. Moreover, new 
project opportunities may arise which must be 
evaluated and added to the portfolio in case of 
competency. To update the portfolio, similar 
approaches can be employed with trivial adjustments to 
determine projects that must be sacrificed for the 
promising new ones. As a future direction, we motivate 
the interested readers to look into this issue in the 
selection of the R&D portfolio. We also direct them to 
apply similar approaches on the multiple objective 
R&D portfolio selection problem. 
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