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Abstract: This paper considers performance of some smoothing parameter selection methods in Generalized
Estimating Equation-Smoothing Spline for nonparametric regression with binary data. We evaluated eight
methods, GCV given by Green and Silverman, GCV and AIC given by Ruppert et al, ACV and GACYV given by
Xiang and Wahba, AIC given by Chiou and Tsai, SCVD given by WU and Zhang and the last method 15 AIC*,
modification of AIC given by Chiou and Tsai. Using simulation we found that for nonlinear systematic
component (sinusoidal) AIC and AIC* of Chiou and Tsai are the best methods and the worst method 18 GCV
of Green and Silverman. For linear systematic component, GCV of Green and Silverman 1s the best, while AIC
and ATC* are the worst. Since mn practical situation we do not know the form of the systematic component,
hence we suggest the use of ACV and GACV of Xiang and Wahba or AIC of Ruppert ef al, which give
moderate results.
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INTRODUCTION

Recently, nonparametric regression has become
a popular method to analyze relationship between
dependent and independent variables. In nonparametric
regression, one relaxes some of the assumptions of
the parametric regression. One of the nonparametric
regression methods is smoothing spline. This method is
popular since the estimation can be made using simple
linear algebra. The roughness penalty can be stated as
multiplication of matrix and vector [3].

Performance of the smoothing spline estimator
depends on the smoothing parameter (4). It represents the
rate of exchange (trade-off) between goodness-of-fit of
data and the smoothness of the curve f If A is too
small then the curve will be too rough but the variance will
be low and vice versa. Thus this value is very important
in smoothing spline estimation. For continuous data,
there exist methods for smoothing parameter selection.
Some examples are: Cross Validation (CV), Generalized

Cross Validation (GCV), Akaike Information Criteria
(AIC), Mallow’s Cp,
Validated Deviance (SCVD), Leave-one-point out Cross
Validation (PCV). See [4,7,9,16 and 18].

For non-Gaussian data, selection of smoothing

Leave-cne-subject-out  Cross

parameter 1s more complicated since the relation

between responses and covariates are not linear.

Some authors have proposed smoothing parameter
selection method for model in the class of generalized
GCV  and AIC

been proposed [16], other

linear model for independent data.

using deviance have

methods  that
approximate of cross validaion and generalized
approximate cross validation (ACV and GACV) [19].
Motivated from Gaussian data, by applying working
responses instead of the real data, modified cross
validation has
methods are developed for independent non-Gaussian
data. The question is which method is the best to be
applied for correlated data. Correlated data are common in

have also been proposed are

also been proposed [4]. All these
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many areas of study, such as medical and clinical trial,
biology, and economic. The source of correlation comes
from repeated observations from the same subject, also
called as longitudinal study. Several examples of study
that result correlated data given below. Manjunath &
Telles [12] studied the effect of a cold chest pack for
30 minutes daily over period time to the bronchial
asthmatics patients, where the response measured at day
and day 21. Arora et al. [1] studied the characteristics of
diabetes induced by different doses of
streptozotocin in mice. The response 1s the blood glucose
concentration and this response was measured once a
Other
examples of longitudnal data are conducted by
Hashemi et of. [6] and Oduola et ad. [15]. Statistically, the
mnportant point of thewr studies is each subject 1s
measured repeatedly and this results correlated data.
Generalized estimating equation (GEE) 1s a parametric
method usually used to analyze longitudinal (correlated)
data, based on marginal model. GEE was initially
proposed by Liang and Zeger [11]. Suliadi, et al. [17]
extended the parametric GEE into nonparametric GEE

mellitus

week from week O until week 5 for each mice.

using smoothing spline, called GEE-Smoothing Spline.
Smoothing parameter selection for GEE-Smoothing Spline
is rather complicated, since GEE do not assume the
distribution of the response. As known, GEE is the
extension of the quasi-likelihood for correlated data
[3,11] by introducing working correlation mto the
estimation. Thus it does not have real deviance as in
GLM. Chiou and Tsai [1] modified the improved AIC
given by Naik and Tsai [11] and applied it to quasi-
likelihood models for Local Polynomial Kernel (LPK)-GEE.
Another method that has been proposed 15 SCVD. This
method was proposed by Wu and Zhang [18] (p. 326) and
has been applied to the LPK-GEE.

The purpose of this paper is to evaluate the
performance of smoothing parameter selection methods
m the GEE-Smoothing Spline of Suliadi et al. [17].
We evaluate the performances by simulation.

Smoothing Parameter Selection

For Non-Gaussian Data: Ruppert et al. [16] (p.220)
proposed to use GCV and AIC in selection of smoothing
parameter for non-Gaussian data. Let 4 be the smoother
matrix (“hat matrix™), D(3, ) be the deviance of the model
and 7 be the sample size. Then GCV based on deviance is

defined by

# Dy, y)

e TR 0

Another selection method is AIC criterion, which is

defined as
AIC (M) =w"'[D{y, 9)+ 2tr(A)¢] (2)

where ¢ is the scale parameter. The optimal A 1s
obtained by minimizing GCV(A) or AIC(A).

Hiang and Wahba [15] also gave the approximation
of CV and GCV. Suppose the responses y’s are from
exponential family with canonical parameter 8 = nfx).
Thus E(y) = &(né)) and var(y) = b7 (nix).a(d).
Let % =Diag(d”’(nix,), ...,b nfx,)) = Diag(w,, ..., w,) and
H is the inverse of Hessian matrix with A, is the i-th
diagonal element of H. The approximate of cross
validation and generalized approximate cross validation
(ACV and GACYV) are defined as

ACV = 2L+ b0 ,))]+n§{ 1_h”b,,(n(xj))}

(3)

and

i=1

H*I?"(WUZHWUZ)
(4)

CMCVW(@:ii[—m(ﬁe)%(n(&bh

i=l

The forms of (3) and (4) were designed with the
assumption that covariates have different values
(different design time points ). Little modification is needed
if there are some points of the covariates that have the
same design time points. One selects A by mimmizing
ACV(A) or GACV(A).

Green and Silverman [3] proposed the approximated
Cross Validation that 15 applied to the working response
instead of response data. Suliadi ef al. [17] applied this
method to the GEE-Smoothing Spline for correlated binary
data and found that this method had poor performance. Tt
produces over smooth curve. The approximate generalized
cross validation 1s motivated from GCV for Gaussian data,
defined as

GOV (A) = ;i{(l S (ﬁ))z }

&)

where the working response z = (y— fi)g'(,) + xf}f
and A4 1s the “hat matrix™.
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Chiou and Tsai [1] proposed smoothing parameter
selection using Alkaike Information Criteria (AIC) by
extending the improved version of AIC given by Naik
and Tsai [11] and applied it to the quasi-likelihood
nonparametric models. The extension is based on the
extended quasi-likelihood. The method can be described
as follows. Let H, be a smoother matrix such that
nXP)=H, Y. H,=MQM VM) M" where ;,_on o5
H=H,+H,-H H, 6 with g =v"g " and
v =b"0)=V(j)  The improved AIC based on quasi-
likelihood models is defined by

l+w(H) n
AIC.. (A)y=log(¢* )+ W ©
where 6% =(y— )V (y - fi)/n -

Smoothing parameter selection methods which are
discussed above are proposed for mdividual observation.
Wu and Zhang [18] (p.326) proposed smoothing
parameter selection method for discrete longitudinal data
and applied it to the local polynomial kemel (LPK)-GEE.
This method is called leave-one-subject-out cross
validated deviance (SCVD) and defined by

noH
SCVDy, (A) =2 D d(y,. i) nm, @

i=1 j=1

The ;" is the estimate value for the i~th subject
and the j-th time observation when the estimation of
f is cbtained without the #t observation, /. Let i and
U be the Hessian matrix and the estimating equation matrix
from the final iteration respectively. Given a smoothing
parameter A, the approximate of /% is given by

f( D {H( i)} U(*f) s

where H™ and U™ are obtained from H and I/ by
removing the i-th observation. Computation of (7) 1s time
consuming since one must compute f‘(ﬂ) as many as the
number of subjects there are.

Smoothing Spline for
Longitudinal Categorical Data: Suliadi et al. [17]
proposed GEE-Smoothing Spline to analyze longitudinal
binary data nonparametrically by combimng natural cubic
spline [3] and generalized estimating equation given by
Liang and Zeger [9].

Suppose there are 7 subjects and for the i-#h subject,
s, measurement 1s taken. Let realization of the outcome

and time measurement for the i-th subject and the j-th time
measurement be y, and ¢, respectively. Observations from
the same subject are correlated following a specific form,
but observations from different subject are mdependent.
Consider the nonparametric population average model. In
this model, the systematic compenent relates to the mean
of response i the form of
g(;iLU) =n,= f(.ty), i=L2,..,mj=12..n

where fis an unknown smooth function and gfu) is
the link function. Tn this paper we use the canonical link
function.

Let &y, tg, ... , Ly be the different time points for all £’s
such that ,, < £, < .. < f, and let X', be the n > ¢
incidence matrix forall #’s. The relation #,’s to x, are
x,=11 t, = tyand x, = 0 otherwise, for k=1, .., g.
Letx, = (%, ..., x,,)” and vector of the unknown function
at different design point is /= [f{t,,), fit,), ..., fit,)]". Thus
f@)= x;"_f Set X = (x,,... m}) s V=W Y Y,
=001, Y =X, # . Following Green and Silverman
[3], the roughness penalty
j[fn(r)] dr*f Kf - The matrix X is obtained as follows

(see [4] p.1

can be stated as

Let b = t{,ﬂ)f ty,fori=12, ., ¢g-1. Let Gbethe g
X (¢-2) matrix with elements g, i = 1,.., gandj =2, ..., ¢-
1, given by
&1y :h;-ll;gm :h;-ll _h;l;gﬁu = h;l'

The P matrix 13 defined as follows. The symmetric
matrix P is (g-2) x (g-2) with elements p,, for i and f
runmng from 2 to (g-1), given by

p,=(h_+h)/3, fori=2 &, g1
Piin = P = hi6, fori=2, &, q2

Matrix P and G are numbered in non standard way.
The matrix P 1s strictly diagonal dommant, in which |p,| >
Y.l Thus P is strictly positive-definite, hence P exist.
Defined a matrix X by

K=gP'G"

The generalized estimating
spline is defined as

equation-smoothing

U(f)= ZDTV‘IS { ALFl dr}

= ZD,TV;IS, ~ AKf (8)

i=1
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where S(f, 3, = u(P) DP = Hu@VF - W, (@
AX, = WX, (where A, =I, 30/ since for the canonical
link function @ = n), W, = diag{p, (- )} and
v, =W R(GW " R(&) working covariance matrix and
¢ is the association parameter. The iterative procedure
using modified Fisher scoring for f for a given current

estimate of & 1s

+1

i=1 i=1

” I w n
Fu=f {ZW V- X, +M<} [ZXW V'S, — AKF,

©)

where ¥, ¥ and S are evaluated at 7 . Expression (9)
can be written as an iteratively re-weighted least
square (IRWLS). Using the IRWLS form, we can obtain
the “hat” or smoother matrix. Defined ¥ = (Xf’,___,Xf; J

PO W = diagWW,,. ) V = diag(Vi,.. V)
and , _ XF AW (v ) then (9) can be written as

Fo = (XTHWV WX + AKY XTWV Wz (10)

The smoothing parameter selection methods (1) —(7),
need adjustment before they can be applied to (10).

The first adjustment is the deviance part in (1), (2)
and (7). Tt is known that there is no deviance in GEE. Since
GEE 1s based on quasi-likelihood thus the deviance part
m (1), (2) and (7) 1s based on quasi-likelihood (see: [5] Ch.
4, [13] Ch. 9).

Ancther adjustment is the hat or smoother matrix.
The hat matrix for a linear medel 1s defined as matrix A,
such that ¥ = 4y. This defimtion 1s no longer applicable
to the class of all exponential family distributions, except
for normal distribution. Following Green and Silverman [4]
(Ch. 5) and Ruppert et al. [16] (p.212), the hat or smoother
matrix for (10) 18 4 = XXV WX + AKY ' XTWV W .

Computation for ;-0 in(7)1is basedon f'(*l) where J?(*')
is the estimate of fwithout the i-th subject. Let W and V
be obtamned from the final estimate of f Then
= W(’f)(f‘) and e = V(ﬁ)(fﬁ') are W and
respectively, after the deletion of the #th subject.
Matrices X and z¥ are obtained using the same way.
Then,

fﬂ'(*i) ~( Y OO g 3 00 lK)ﬁl YOVt S0

Simulation Study: We run simulations to evaluate the
performance of these smoothing parameter selection
methods, by using correlated binary data. The data were
generated using R Language 2.5.0 [8]. The simulation was
done m two conditions of systematic component, the
sinus curve and linear curvature. We evaluate the eight

methods, GCV 5, given by Green and Silverman (5), GCVy
and ATC; given by Ruppert et al, (1) and (2) respectively,
ACV 4 and GACVy given by Xiang and Wahba, (3) and
(4) respectively, AIC.; given by Chiou and Tsai (&),
SCVDy, given by WU and Zhang (7). The last method is
ATC* o, the ATC given by Chiou and Tsai (6) by replacing
Vin ¢* with 7RV | Here we introduced the within
subject correlation into §°.

The sinus cwve is formed with systematic
component}{(f) =sin(w 1/90), t = 9, 18, ..., 180. Number
of (independent) subject is 10 with the structure of the
correlation taken as exchangeable with ¢ = p, = 0.1, i= ;.
The second data structure has systematic component
n(t) =-1.1818+(2/99)t, t = 9, 18, ..., 108. The number of
subject is 10, with exchangeable correlation structure with
o =r, =035 i+#j Thesetwo models were replicated 100
times. To assess the performance of these methods, we
considered the square root of the average deviation of the
mean (SRAD) and the average of absolute deviation of
mean (AAD), both are defined as follows:

12
2

SRAD=| Y Y A%, 1lx, T A F )

i=1 j=1

AAD:ni
1

i=1 j=1

Al x| )
Method with lower SRAD or AAD is better than
method with higher SRAD or AAD.

RESULTS AND DISCUSSION

Table 1 shows the statistical descriptive of the SRAD
and AAD for model 1. Result of SRAD and AAD are
similar. These results show that for nonlinear (simus)
curve, AIC of Chiou and Tsai [1] and its modified are the
best methods. It gives lowest mean and median of SRAD
and AAD. Whilst GCV gives the worst method since it
gives the highest mean and median of SRAD and AAD.
Others have almost the same performance, which can be
seenl from their means and medians of SRAD and AAD.

Table 1: Statistical Descriptive of Model 1

SRAD AAD
Method Mean Median Mean Median
GCVgg 0.1085 0.1069 0.0914 0.0907
GCVy 0.0909 0.0916 0.0762 0.0780
AICy 0.0870 0.0850 0.0722 0.0690
ACVyy 0.0861 0.0823 0.0712 0.0667
GACVyw 0.0854 0.0829 0.0708 0.0680
AlCer 0.0817 0.0776 0.0687 0.0628
SCVDy, 0.0879 0.0860 0.0729 0.0670
ALC* 0.0816 0.0776 0.0686 0.0628
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Table 2: Statistical Descriptive of Model 2

SRAD AAD
Method Mean Median Mean Median
GCVqs 0.1194 01071 0.0797 0.0720
GCVy 0.1207 01071 0.0818 0.0741
AICE 0.1207 01071 0.0818 0.0736
ACVyy 0.1204 0.1070 0.0820 0.0734
GACVyy 0.1203 0.1070 0.0816 0.0728
AlCcr 01227 0.1081 0.0850 0.0751
SCVDyz 0.1250 01113 0.0882 0.0805
AlC*g 0.1325 0.1247 0.1173 0.1079

The second model is model with linear systematic
component. From Table 2, GCV g gives minimum value of
mean, but for the value of median, the performance of this
method 1s no different with GCVy AIC; ACVyy and
GACVy,. Median values of these five methods are almost
the same. Whilst, the last three methods, AIC., SCVDy,
and AIC* .., are the worst. They give lughest value of the
mean and median of SRAD and AAD.

CONCLUSION

According to the results of Model 1 and Model 2,
the methods seemed to have opposing performances.
A method might have a good performance in nonlinear
curve, but bad performance for linear case.

Since mn practice we actually do not know the form of
curvature {(function), we recommend using ACV or GCV of
Kiang and Wahba [15] or AIC of Ruppert et al. [12] for
GEE-Smoothing Spline. These methods are not the best
for nonlinear curve, but they do not give the worst
performance. They have moderate performances.
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