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Abstract: In this paper, we consider the node-restricted minmax regret 1-median problem on a tree 
network where node weights are deterministic and edge lengths are subject to uncertainty with unknown 
symmetric distribution. There have been proposed some complicated and time-consuming algorithms to 
obtain robust solutions for robust 1-median problem. We formulate the robust regret function as a mixed
integer problem and extend the linear counterpart such that the complexity of our proposed model is the 
same as the traditional 1-median problem. We use a numerical example to demonstrate the performance of 
our proposed method.
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INTRODUCTION

During the past few decades, 1-median problem
has been used among practitioners for different
applications as an efficient tool to reduce transportation 
cost. A typical 1-median problem is  demonstrated as a 
tree T = (V, E) with node set V and edge set E. Let 
P(x, y) be the unique path connecting two points x and
y on the tree and d (x, y) be the length of the path. For 
any node νi∈V, a nonnegative deterministic weight wi
is given. The 1-median of the tree is a point x on the 
tree such that the total weighted distance from x to all 
nodes,

i
i iv V

w d ( x , v )
∈∑ , is minimized. When the

facilities are relocated, the minmax regret approach 
becomes a promising tool to reduce transportation cost.
The minmax regret approach was first applied to a
robust location problem by Kouvelis et al. [1] where the 
uncertainty on the input parameters were handled using 
the advances on robust optimization. Averbakh and 
Berman [2] extended the 1-median robust problem for 
network applications. Chen and Lin [3] developed an
algorithm to reduce the burden of the computation of 
1-median problem. Goldman [4] studied an especial
form of 1-median problem where center location on a 
general network was located. One of the primary
assumptions on classical 1-median problem is to
consider all input parameters in deterministic form.
However, this simple assumption has been argued by 
many since the input parameters may always suffer
from the existing noise. Therefore, we need to develop 
a method to assure us that a small perturbation on the 
data does not change the feasibility of the optimal
solution. There are different  methods to handle the

uncertainty in the data which lead us to have more 
complicated problem formulation. The proposed robust 
1-median problem formulation of this paper has the
capability to handle the uncertainty without changing 
the structure of the original mixed integer problem. The 
proposed robust optimization developed by Bertsimas 
and Thiele [5] uses a linear counterpart as part of the 
original problem. We use the linear counterpart as part 
of our robust 1-median problem to find the maximum 
regret for all nodes in all possible scenarios. This paper 
is organized as follows. We first present the problem 
statement and the necessary notations and the solution 
procedure and the implementation of the proposed
method is illustrated using a numerical example.
Finally, the conclusion remarks are given at the end to 
summarize the contribution of the paper. 

MINMAX-REGRET 1-MEDIAN APPROACH

One of the primary assumptions on many 1-median
problems is to have all input parameters in deterministic 
form. This simple assumption may often make our final 
optimal solution infeasible. Ben-Tal and Nemirovski
[6] used some benchmark problems from NETLIB
library and showed that a small perturbation on input 
data could make the final solutions useless since most 
of them were not even feasible. They also applied their 
robust method on the perturbed problems. While the 
optimal solutions of the robust problems were almost 
the same as the original ones, the final solutions
remained immune against the perturbation on the 
data. The uncertainty in 1-median problem may be
considered on the distance among various nodes which



World Appl. Sci. J., 7 (11): 1460-1463, 2009

1461

corresponds to uncertainty in transportation times or 
travel costs along the edges. Let u, ν∈V, [u,v]∈E and d
(u,v) be the corresponding edge length. For edge
[u,ν]∈E, we assume that d (u,v) is random with
unknown distribution and can take any value in the 
interval [d(u,v),d(u,v)] . Values d(u,v) and d(u,v)

represent the upper and the lower bounds on the
[u,v]∈E length and the interval [d(u,v),d(u,v)]  is called 
the interval of uncertainty for the length of edge
[u,v]∈E. Let l be length-scenario for each feasible
realization of edge lengths and L be the set of all
feasible scenarios. A feasible lengths-scenario l∈L
happens if d(u,v) d(u,v) d(u,v)≤ ≤  for all [u,v]∈E. We 
denote ml as the scenario median for tree T under 
scenario l∈L withF*(l) as the optimal objective value. A
scenario median is an 1-median for some scenario l∈L.
For a point x∈T, value F (l,x)–F*(l) is called the regret 
for location x under scenario l denoted by Rl(x). The 
worst-case regret of x with respect to ml is given by the 
following problem:

*

l L
MAXREG(x) max(F(l,x) F(l))

∈
= − (1)

If dl(x,νi) shows the length of unique path P(x,νi)
that connects x and vi under scenario l, then F(l,x) can
be given by:

i

l
i i

v V
F(l,x) w d ( x , v )

∈

= ∑ (2)

Therefore, we can show the optimization problem (1) as 

i i

l l l
i i i il L v V v V

MAXREG(x) max w d ( x , v ) w d ( m , v )
∈ ∈ ∈

= −∑ ∑ (3)

Clearly, F (l,x), Rl(x) are convex functions on tree 
T. The definition of convexity on tree and related 
properties can be found in work by Tansel et al. [7].
The minmax regret 1-median x* is defined as a point 
with the minimum value of optimization problem (3) 
where it has the least maximum regret compared with 
the best location of each scenario. When the minmax 
regret 1-median is restricted to be a node, it is called the 
node-restricted minmax-regret 1-median denoted by ν*.
In next section, we first propose a stochastic version of 
the optimization problem (3) and then propose a
linearization approach to solve the resulted problem.

STOCHASTIC MINMAX-REGRET
1-MEDIAN PROBLEM

Given a node ν∈V, we are interested in the
worst-case scenario l which gives the maximum regret 

of ν among all scenarios L. For edge [u,v]∈E, we 
assume that d(u,v) is random variable with unknown
distribution and can take any value in the interval
[d(u,v),d(u,v)] . In other words, d(u,v)  shows any

realization of [u,v]∈E length. Therefore we have:

i i

*
i i i i

v V v V
MAXREG(x) max w d( v ,v) w d ( v , v )

∈ ∈

= −∑ ∑  (4)

In problem (4), we are interested in determining the 
node ν* which obtains the maximum regret of node ν
among any realization of edge lengths in tree T. The
optimization problem (4) is  called as a robust version of 
the maximum regret of a node in which the edge
lengths of tree T are assumed to belong to an interval of 
uncertainty. In robust optimization problems, uncertain 
parameters may be modeled as either discrete or
continuous. Discrete parameters are modeled using the 
scenario approach and continuous parameters are often 
assumed to lie in some prespecified intervals. The
benefits and the disadvantages of each approach
(scenario approach and prespecified intervals) as well 
as a comprehensive survey of location models under 
uncertainty are presented by Snyder [8]. The idea of 
robust optimization on traditional Linear Programming 
(LP) problems was first introduced by Soyster [9] who 
proposed a worst case model for LP optimization. Since
then, many people look for less conservative methods 
of robust optimization and the least conservative
methods were proposed by Ben-Tal and Nemirovski 
[10] and Goldfarb and Iyangar [11]. Bertsimas and Sim 
[12, 13] developed a new robust optimization where the 
structure of the robust formulation remains the same as 
the original one. The robust counterparts of the nominal 
problems generally are in the form of conic quadratic 
problems and even linear optimization problems of
slightly larger size (see Bertsimas and Sim, 2004b). The 
proposed 1-median problem of this paper is formulated 
using the robust method introduced by Bertsimas and 
Thiele [5]. Let i)d(v,v  be the scaled deviation of
distance from its lower value. Therefore we have

ij i i i iz ((d(v,v) d(v,v)) (d(v,v) d(v,v))= − −

The scaled deviation takes value in [0, 1]. Moreover, 
we impose a budget of uncertainty in the following 
sense: The total scaled variation of the uncertain
parameters (here are the edge lengths) cannot exceed 
some threshold Γ which is not necessarily integer:

i

i
E ( v , v ) T

z
∈

≤ Γ∑ (5)
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The value of Γ can change from zero, all edge
lengths take their lower values, to T, where they take
their upper values. Obviously, by taking Γ = T, we can
obtain the worst case which is the optimal solution for 
the optimization problem (4). In other words, the
uncertainty budget (Γ), is an adjusting parameter which
adjusts the robustness of solution with the degree 
decision maker's conservativeness. Before defining the 
stochastic model, consider the following set,

i i i

i i

i V i i

d d (v ,v ) d(v,v) ,d(v,v) i V,
D d(v,v) d ( v , v )

d(v,v) d ( v , v )∈

  ∈ ∀ ∈  
=  −

≤ Γ 
− 

∑



 (6)

Therefore, the proposed robust optimization
problem can be formulated as follows:

i i j

j

i i i j i j
v V v , v V

j j i i
v V

max wd(v ,v ) w d ( v , v ) y

s.t. y 1, y {0,1}, d(v ,v) D, v V

∈ ∈

∈

−

= ∈ ∈ ∈

∑ ∑

∑

 

 (7)

In model (7), the uncertainty happens in variable's 
coefficients in the objective function and it shows the 
uncertainty in edge lengths for our case. Also, yj is a 
binary variable which takes 1 if the optimal median 
solution under uncertainty falls  in node νj and zero 
otherwise. Next section, we propose a linearization 
approach to obtain the robust linear counterpart for the 
proposed optimization problem.

THE ROBUST MINMAX REGRET 
COUNTERPART

In this section, we propose the robust minmax
regret linear counterpart for robust minmax-regret
problem presented in the previous section. Bertsimas 
and Thiele [5] presented a robust counterpart which is 
of the same class as the nominal problem. It is also 
shown that the robust counterpart of a mixed-integer
programming problem is itself another mixed-integer
programming problem. The most attractive features of 
this approach are the possibility of solving the robust 
counterpart by standard optimization packages and also 
considering the level of conservativeness of the
solution. The stochastic regret problem (7) has the 
following robust linear counterpart:

i i j j i

j

v

i i i j i j ij v
v V v , v V E ( v , v ) J

ij i j ij i i

j j ij ij
v V

max R

s.t. w d ( v , v ) w d ( v , v ) y q r R

ˆq r d ( v , v ) . u , y u

y 1, y {0,1}, q 0, r 0, u 0

∈ ∈ ∈

∈

− + Γ + =

+ ≤ ≤

= ∈ ≥ ≥ ≥

∑ ∑ ∑

∑

(8)

In model (8), i j i j i jd̂ ( v , v ) d ( v , v ) d ( v , v )= − is the

interval length of edge E (νi, νj)∈T. The role of
uncertainty budget (Γ), is to provide the trade-off
between robustness and the performance of the
solutions. As we are interested in the worst case
scenario to obtain the maximum regret for each node 
(Rv), the upper value of uncertainty budget, Γ = T, must
be considered in optimization problem (8). If J shows 
the set of all uncertain edges in tree T, then we place 
Γ= |J| in (8). To show the performance of our proposed 
model, let us present a simple but illustrative 1-median
problem with 3 nodes.

ILLUSTRATIVE EXAMPLE

Consider the 3-vertex network given in Fig. 1,
where 6.5, 3 and 5 are the demands to be covered. All 
node weights are deterministic and all edge lengths are 
uncertain and may take any value within the given 
intervals.

In node-restricted minmax regret approach, we first 
calculate the regret for all nodes for all feasible
scenarios and then choose the node with the smallest 
maximum regret. To show the performance of the
model presented in this paper, let us compare the results 
in Table 1 to what is  achieved through our proposed 
model. In Table 1, we calculate the regret of each node 
in any feasible scenario. Note that we list only those 
scenarios in which the edge lengths can take their upper 
values.

The minmax-regret 1-median is the node with the 
smallest maximum regret that is ν3 with the maximum 
regret 6 in Table 1. If the optimization problem (8) is 
solved for each node, the maximum regret 13, 40 and 6 
will be achieved for ν1, ν2 and ν3, respectively.

CONCLUSIONS AND FUTURE 
RESEARCH DIRECTIONS

We have presented a new robust 1-median problem 
where the edge lengths are subject to

Fig. 1: A 3-node network with uncertain edge lengths

2v

3v1v

(6, 8)

(6, 10)

(7, 10)



World Appl. Sci. J., 7 (11): 1460-1463, 2009

1463

Table 1: The maximum scenario regret of each node

Scenario ν* F(ν*) F(l,ν1)
1vR F(l,ν2)

2vR F(l,ν3)
3vR

12d ν3 51 60 9 82 31 51 0

13d ν3 71 78 7 72 1 71 0

23d ν1 54 54 0 90 36 60 6

12 13d , d ν3 71 84 13 82 11 71 0

12 23d , d ν1, ν3 60 60 0 100 40 60 0

13 23d , d ν1 78 78 0 90 12 80 2

12 13 23d , d , d ν3 80 4 100 20 80 0

ii vMAXREG ( v ) max R= 13 40 6

uncertainty. The proposed method of this paper uses the 
recent advances of robust optimization techniques to 
handle the uncertainty with input parameters. The
proposed robust 1-median optimization has the same 
mixed integer structure. Therefore, one may use a direct 
optimization method to solve the resulted problem. This 
work can be extended in different forms. Since the
proposed method of this paper is classified as mixed 
integer problem, a direct implementation of the branch 
and bound is not possible for large-scale problems. 
Therefore, one may use some well known meta-
heuristics such as genetic algorithm, ant colony, etc to 
find the near optimal solutions. The other interesting 
research area is to consider uncertainty in all input 
parameters such as demand and we leave it for
interested researchers as future work.
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