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INTRODUCTION

Summarization of statistical data without loosing 
information is one of the fundamental objectives of
statistical data analysis i.e. to choose an adequate model 
to describe the observed values obtained in an
experiment. For this purpose the characterization
theorems of distributions can be useful. They form an 
essential tool of statistical inference. For a detailed 
account of history of the theory of characterizations see 
[1, 2, 3, 4]. The survey by [5] covers a substantial 
number of results in the field. 

[6, 7] prove that equality of the mean and variance 
characterizes the Poisson distribution among the power
series distributions (PSD). [8] extends the PSD to
multivariate distributions and shows that knowledge of 
first two moments (or, equivalently, the first two
factorial moments; cumulants, or factorial cumulants) 
as functions of a parameter is sufficient to determine 
the distribution. [9] gives the mean-variance result by 
proving that within PSD, µ2 = m (1-mc) if and only if X
has a binomial, Poisson, or negative binomial
distribution according to whether c is a positive integer, 
zero, or negative integer, respectively. [10] obtain
characterizations for the binomial, Grassia I-binomial,
(carrier-borne epidemic) and randomized occupancy
distributions via their factorial moments. 

We in this paper have characterized the binomial, 
negative binomial, geometric, Poisson-binomial,
Hermite and Poisson distributions via their factorial
cumulants.

CHARACTERIZATIONS BASED
ON FACTORIAL CUMULANTS

Theorem 2.1: Let
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if and only if X has binomial distribution with
probability mass function (pmf)

n
P(X x) p q ,q 1 p

x
x n x 

= = = − 
 

− (2.2)

Proof: Suppose X has binomial distribution with pmf
(2.2), then by definition 
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and after differentiating w.r.t ‘p’ we get (2.1).
Suppose (2.1) holds and after integration we have
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where Cr is a constant of integration.
Since lim lnG(z) 0
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→
, the limiting factorial cumulant

generating function (fcgf) is
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which implies that Cr = 0, 1≤r≤n Hence the fcgf is 
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Theorem 2.2: Let
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distribution with support 0, 1, 2,… and parameters k, 
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if and only if X has negative binomial distribution with 
pmf
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Proof: Suppose X has negative binomial distribution 
with pmf (2.4), then by definition 
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differentiating w.r.t ‘p’ we get (2.3).
Suppose (2.3) holds and after integration we have
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where Cr is a constant of integration.
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Corollary 2.1: Let
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if and only if X has geometric distribution with pmf

P(X x) p q , x 0,1,2,x= = = ⋅ ⋅ ⋅ ⋅ (2.6)

Proof: Since geometric distribution is a special case of 
negative binomial distribution at k = 1, therefore if we 
put k = 1 in Theorem 2.2 we get Corollary 2.1.

Theorem 2.3: Let
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if and only if X has Poisson-binomial distribution with 
pmf

m
x nm x

m 0

nm
P(X x) e p q , x 0,1, ,nm.

xm!

∞
−λ −

=

 λ
= = = ⋅ ⋅ ⋅ ⋅ 

 
∑  (2.8)

Proof: Suppose X has Poisson-binomial distribution 
with pmf (2.8), then by definition
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Corollary 2.2: Let
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parameters λ, λ>0 and p, 0<p<1 such
that
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if and only if X has Hermite distribution with pmf
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Proof: If we put n = 2 in Theorem 2.3, we get
Corollary 2.2.

Theorem 2.4: Let
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if and only if X has Poisson distribution with pmf
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