# Ideal Theory of BCH-Algebras 

${ }^{1}$ A. Borumand Saeid, ${ }^{2}$ A. Namdar and ${ }^{3}$ R.A. Borzooei

${ }^{1}$ Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
${ }^{2}$ Department of Mathematics, Islamic Azad University Zarin Dasht Branch, Iran
${ }^{3}$ Department of Mathematics, Shahid Beheshti University of Tehran, Tehran, Iran


#### Abstract

In this paper, we introduce the notions of atoms and some types of ideals in BCH -algebras and we stated and proved some theorems which determine the relationship between these ideals and other ideals of BCH -algebras and by some examples we show that these notions are different.


Key words: BCH-algebra . BCI/BCK-algebra . atom ideal . implicative ideal . positive implicative ideal . fantastic ideals.p-ideal. positive ideal. normal ideal

2000 mathematics subject classification: 06F35.03G25

## INTRODUCTION AND PRELIMINARIES

Definition 1.1: [2] By a BCH-algebra we shall mean an algebra $\left(X,{ }^{*}, 0\right)$ of type $(2,0)$ satisfying the following axioms: for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$,
(I1) $\mathrm{x} * \mathrm{x}=0$,
(I2) $x * y=0$ and $y * x=0 i m p l y x=y$,
(I3) $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y}$,
Proposition 1.2: [1, 2, 3] In a $B C H$-algebra $X$, the following holds for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$,
(1) $x * 0=x$,
(2) $(x *(x * y)) * y=0$,
(3) $0 *(x * y)=(0 * x) *(0 * y)$,
(4) $0 *(0 *(0 * x))=0 * x$,
(5) $x \leq y i m p l i e s 0 * x=0 * y$
[2] A BCH-algebra X is called proper if it is not a BCI -algebra. It is known that proper BCH -algebras exist.

In any $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebra X we can define a partial order $\leq$ by putting $x \leq y$ if and only if $x * y=0$, $[4,5,7]$.

Definition 1.3: [2] Let I be a nonempty subset of $X$. Then $I$ is called an ideal of $X$ if it satisfies:
(i) $0 \in \mathrm{I}$
(ii) $\mathrm{x} * \mathrm{y} \in \mathrm{I}$ and $\mathrm{y} \in \mathrm{I}$ imply $\mathrm{x} \in \mathrm{I}$

Definition 1.4: An ideal $I$ is called a closed ideal of $X$ if for every $x \in I$, we have $0 * x \in I$.

Definition 1.5: [2] Let $S$ be a subset of $X$. $S$ is called a subalgebra of $X$ if for every $x, y \in S$, we have $x * y \in S$.

## ATOMS OF BCH-ALGEBRAS

From now on X is a BCH -algebra, unless otherwise is stated.

Definition 2.1: A BCH-algebra $X$ is called medial if

$$
(x * y) *(z * u)=(x * z) *(y * u)
$$

for all $x, y, z, u \in X$.

Definition 2.2: A BCH-algebra $X$ that satisfying in condition $0 * x=0 \Rightarrow x=0$ is called a P-semisimple BCHalgebra.

Definition 2.3: A BCH-algebra $X$ is called associative BCH-algebra if $\left(x^{*} y\right)^{*} z=x^{*}\left(y^{*} z\right)$, for all $x, y, z, u \in X$.

Definition 2.4: In a BCH -algebra X , define

$$
X_{+}=\{x \in X \mid x \geq 0\}
$$

and

$$
\mathrm{L}_{\mathrm{K}}(\mathrm{X}):=\left\{\mathrm{a} \in \mathrm{X}_{+} \backslash\{0\} \mathrm{x} \leq \mathrm{a} \Rightarrow \mathrm{x}=\mathrm{a}, \forall \mathrm{x} \in \mathrm{X} \backslash\{0\}\right\}
$$

Corresponding Author: Dr. Arsham Borumand Saeid, Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran, email: arsham@mail.uk.ac.ir

$$
\begin{gathered}
L_{p}(X):=\{a \in X \mid x \leq a \Rightarrow x=a, \forall x \in X\} \\
L_{l}(X):=\{a \in X \backslash\{0\} \mid x \leq a \Rightarrow x=a \forall \quad x \in X \backslash\{0\}\} \\
L_{p}^{*}(X):=L_{P}(X) \backslash\{0\} \\
L_{+}(X):=L_{K}(X) \cup\{0\} \\
L\{X\}:=L_{l}(X) \cup\{0\} .
\end{gathered}
$$

Example 2.5: Let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. The following table shows the BCH -algebra structure on X

| $*$ | 0 | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | d |
| a | a | 0 | 0 | a | d |
| b | b | b | 0 | 0 | d |
| c | c | c | c | 0 | d |
| D | d | d | d | d | 0 |

Then $L_{K}(X)=\{a\}, L_{P}(X)=\{0, d\}$ and $L_{1}(X)=\{a, d\}$.

Example 2.6: Let $\mathrm{X}=\{0,1,2,3\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 3 | 3 |
| 2 | 2 | 0 | 0 | 2 |
| 3 | 3 | 0 | 0 | 0 |

It is clear that $\mathrm{L}_{\mathrm{K}}(\mathrm{X})=\{3\}, \mathrm{L}_{P}(\mathrm{X})=\{0\}$ and $\mathrm{L}_{\mathrm{I}}(\mathrm{X})=\{3\}$
Example 2.7: Let $X=\{0, a, b, c, d, e, f, g, h, i, j, k, 1, m, n\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | a | b | c | d | e | f | g | h | i | j | k | l | m | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | h | h | h | h | l | l | n |
| a | a | 0 | a | 0 | a | 0 | a | 0 | h | h | h | h | m | l | n |
| b | b | b | 0 | 0 | f | f | f | f | i | h | k | k | l | l | n |
| c | c | b | a | 0 | g | f | g | f | i | h | k | k | m | l | n |
| d | d | d | 0 | 0 | 0 | 0 | d | d | j | h | h | j | l | l | n |
| e | e | e | a | 0 | a | 0 | e | d | j | h | h | j | m | l | n |
| f | f | f | 0 | 0 | 0 | 0 | 0 | 0 | k | h | h | h | l | l | n |
| g | g | f | a | 0 | a | 0 | a | 0 | k | h | h | h | a | l | n |
| h | h | h | h | h | h | h | h | h | 0 | 0 | 0 | 0 | n | n | l |
| i | i | i | h | h | k | k | k | k | b | 0 | f | f | n | n | l |
| j | j | j | h | h | h | h | j | j | d | 0 | 0 | d | n | n | l |
| k | k | k | h | h | h | h | h | h | f | 0 | 0 | 0 | n | n | l |
| l | l | l | l | l | l | l | l | l | n | n | n | n | 0 | 0 | h |
| m | m | l | m | l | m | l | m | l | n | n | n | n | a | 0 | h |
| n | n | n | n | n | n | n | n | n | l | l | h | l | h | h | 0 |

Then $\quad L_{K}(X)=\{a, f\}, L_{P}(X)=\{0, h, 1, n\}$
and $\quad \mathrm{L}(\mathrm{X})=\{$ a,f,h,l, n$\}$.

Proposition 2.8: In $X$, the following properties hold:
(i) $\mathrm{L}_{\mathrm{P}}(\mathrm{X})=\operatorname{Med}(\mathrm{X})$, where $\operatorname{Med}(\mathrm{X})=\left\{\mathrm{x} \in \mathrm{X} \mid 0^{*}\left(0^{*} \mathrm{x}\right)=\right.$ $\mathrm{x}\}$ is the medial part of $X$,
(ii) $\left.\mathrm{L}_{\mathrm{K}}(\mathrm{X}) \cap \mathrm{L}_{\mathrm{K}} \mathrm{X}\right)=\phi$,
(iii) $\mathrm{L}(\mathrm{X})=\mathrm{L}_{\mathrm{K}}(\mathrm{X}) \cup \mathrm{L}_{\mathrm{P}}(\mathrm{X})$,
(iv) X is a P -semisimple BCH -algebra if and only if $\mathrm{L}_{\mathrm{P}}(\mathrm{X})$ $=\mathrm{X}$.

Proof: (i) Let $\mathrm{a} \in \mathrm{L}_{\mathrm{P}}(\mathrm{X})$. Then $0^{*}\left(0^{*} \mathrm{a}\right)=$ a follows from $\left(0^{*}(0 * a)\right)^{*} a=0$. Hence $a \in \operatorname{Med}(X)$.

Conversely, let $a \in \operatorname{Med}(X)$ and $x \in X$ be such that $x * a=0$. Then

$$
\begin{aligned}
& a * x=(0 *(0 * a)) * x=(0 * x) *(0 * a) \\
& =((x * a) * x) *(0 * a)=((x * x) * a) *(0 * a) \\
& =(0 * a) *(0 * a)=0 .
\end{aligned}
$$

Hence $a=x$ and $a \in L_{P}(x)$. Therefore $L_{P}(x)=\operatorname{Med}(X)$.
(ii) If a $\in L_{K}(x) \cap L_{P}(x)$, then $a \in X_{+} \cap L_{P}(x)=\{0\}$ and so $a=0$, which is $a$ contradiction. Hence $L_{K}(x) \cap$ $L_{P}(x)=\phi$.
(iii) Straightforward.
(iv) Let X be P -semisimple. Since $\mathrm{X}=\operatorname{Med}(\mathrm{X})$, it follows from (i) that $\mathrm{X}=\mathrm{L}_{\mathrm{P}}(\mathrm{x})$.
Conversely, if $\mathrm{X}=\mathrm{L}_{\mathrm{P}}(\mathrm{x})$ then $\operatorname{Med}(\mathrm{X})=\mathrm{X}$.

Remark 2.9: If $X$ is a BCK-algebra, then $L(X)=L_{+}(x)$. But the converse is not true [6]. In Example 2.6 we have $X_{+}=X$ and $L(X)=\{0,3\}=L_{+}(X)$. On the other hand we have $(0 * 2) *(0 * 1)=0 \neq 3=1 * 2$. Hence $X$ is not a BCKalgebra.

Definition 2.10: The elements of $\mathrm{L}_{\mathrm{K}}(\mathrm{X})$ (resp. $\mathrm{I}_{\mathrm{P}}(\mathrm{X})$, $\mathrm{L}_{\mathrm{I}}(\mathrm{X})$ are called a K-atom (resp. P-atom, I-atom) of X. For any $\mathrm{a} \in \mathrm{X}$. Let

$$
V(a)=\{x \in X \mid a \leq x\}
$$

If $\mathrm{a} \in \mathrm{L}_{\mathrm{K}}(\mathrm{X})$ (resp. $\mathrm{L}_{\mathrm{P}}(\mathrm{X}), \mathrm{L}_{\mathrm{l}}(\mathrm{X})$ ), we say that V (a) is K branch (resp. P-branch, I-branch) of X with respect to a.

Note that $\{\mathrm{P}$-atoms $\} \cup\{\mathrm{K}$-atoms $\}=\{$ I-atoms $\}$. Obviously, $V(a) \subseteq V(0)=X_{+}$, for all $a \in L_{K} X$ and $X$ $=\cup_{\text {at }_{L_{P}(X)}} V(a)$. But $X^{*} \neq \cup_{\text {a£ }(X)} V(a)$, where $X^{*}=X \backslash\{0\}$ as shown in the following example.

Example 2.11: Let $\mathrm{X}=\{0,1,2,3,4\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 4 |
| 1 | 1 | 0 | 0 | 1 | 4 |
| 2 | 2 | 2 | 0 | 0 | 4 |
| 3 | 3 | 3 | 3 | 0 | 4 |
| 4 | 4 | 4 | 4 | 4 | 0 |

It is routine to check that $\mathrm{L}_{\mathrm{I}}(\mathrm{X})=\{1,4\}$ and $\mathrm{L}(\mathrm{X})=\{0,1$, $4\}$. It is clear that $\cup_{\text {位 }(\mathbb{X})} V(a)=\{1,4\} \neq X^{*}$.

Note: In the above example, we see that there exists $x \in X$ which is not contained in any I-branch of X.

Definition 2.12: If $X^{*}=\cup_{a \in(X)} V(a)$, we call $X$ the $B C H-$ algebra generated by I-atoms.

Example 2.13: Let $\mathrm{X}=\{0,1,2,3,4,5\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 4 | 4 |
| 1 | 1 | 0 | 0 | 1 | 4 | 4 |
| 2 | 2 | 2 | 0 | 2 | 5 | 4 |
| 3 | 3 | 3 | 3 | 0 | 4 | 4 |
| 4 | 4 | 4 | 4 | 4 | 0 | 0 |
| 5 | 5 | 5 | 4 | 5 | 2 | 0 |

It is routine to check that $\mathrm{L}_{1}(\mathrm{X})=\{1,3,4\}$ and V $(1)=\{1,2\}, V(3)=\{3\}, V(4)=\{4,5\}$. Thus

$$
X^{*}=V(1) \cup V(3) \cup V(4)
$$

and so X is a BCH -algebra generated by I -atoms $\{1,3,4\}$.
Lemma 2.14: $a \in L_{K}(X)$ if and only if $a \in L_{I}(X) \cap X_{+}$.

Proof: By definition we have $\mathrm{L}_{\mathrm{K}}(\mathrm{X}) \subseteq \mathrm{X}_{+}$and $\mathrm{L}_{\mathrm{H}}(\mathrm{X})$. The converse is clear.

Lemma 2.15: If $a \in L_{4}(X)$ satisfies the condition $x^{*}\left(x^{*} a\right) \in X_{+} \backslash\{0\}$ for some $x \in X$, then $a \in X_{+}$

From above lemma we have the following theorem.
Theorem 2.16: Let a be an I-atom of $X$ which satisfies in the following condition $x *(x * a) \in X_{+} \backslash\{0\}$ for some $x \in X$. Then a is a K-atom of X.

Proof: We have from Lemma 2.15, $\mathrm{a} \in \mathrm{X}_{+}$also $\mathrm{a} \in \mathrm{L}_{\mathrm{I}}(\mathrm{X})$ hence $a \in L_{1}(X) \cap X_{+}$. By Lemma 2.14, we get that $a \in L_{K}(X)$ so a is a $K$-atom.

We have a characterization of P-atom by I-atom.
Theorem 2.17: Let $a \in X$. Then a is a $P$-atom of $X$ if and only if $a \in L_{1}(X)$ and $x^{*}\left(x^{*} a\right) \neq 0$, for all $x \in X$.

Proof: Let a be a P-atom and

$$
\mathrm{a} \in \mathrm{~L}_{k}^{*}(\mathrm{X}) \subseteq \mathrm{L}(\mathrm{X})=\mathrm{L}_{1}(\mathrm{X}) \cup\{0\}
$$

Then $a \in L_{1}(X)$, since $(x *(x * a)) * a=(x * a) *(x * a)=0$ it follow that $x^{*}\left(x^{*} a\right)=a \neq 0$.

Conversely, let $a \in L_{I}(X)$ and $x^{*}\left(x^{*} a\right) \neq 0$, for all $x \in X$. We show that $a \notin L_{K}(X)$. If $a \in L_{K}(X)$, then $0 * a=0$. So $0^{*}\left(0^{*} a\right)=0$. Which is a contradiction.

The following theorem is a characterization of an Iatom in a BCH -algebra.

Theorem 2.18: Let $a \in X^{*}$ and $\overline{X(a)}:=\{x \in X \mid x *(x * a) \neq 0\}$. Then the following conditions are equivalent:
(i) A is an I -atom of X ,
(ii) $\mathrm{a}=\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{a}\right)$ for all $\mathrm{x} \in \overline{\mathrm{X}(\mathrm{a})}$,
(iii) $\left(x^{*} y\right) *(x * a)=a^{*} y$, for all $y \in X, x \in \overline{X(a)}$.

Proof: (i) $\Rightarrow$ (ii) By $\left(x^{*}\left(x^{*} a\right)\right)^{*}=0$ and (i) we have $\mathrm{a}=$ $x^{*}\left(x^{*}\right)$.
(ii) $\Rightarrow$ (iii) By hypothesis we have $(x * y) *(x * a)=$ $x^{*}\left(x^{*} a\right) * y=a * y$.
(iii) $\Rightarrow$ (ii) Let $\mathrm{x} \in \overline{\mathrm{X}(\mathrm{a})}$ and $\mathrm{y}=0$. Then $\mathrm{x}^{*}(\mathrm{x} * \mathrm{a})=$ $(x * 0) *(x * a)=a * 0=a$.
(ii) $\Rightarrow$ (i) Let $b(\neq 0) \in X$. Since $w^{*} a=0$, then $w^{*}\left(w^{*} a\right)=$ $w^{*} 0=w \neq 0$ and so $w \in \overline{X(a)}$. It follow from (ii) that $a=$ $w^{*}\left(w^{*} a\right)=w$. Therefore $a$ is an I-atom of $X$.

Remark 2.19: [6] If $X$ is a BCI -algebra, then the following conditions are equivalent:
(i) a is an I-atom of X ,
(ii) $a=x^{*}\left(x^{*} a\right)$, for all $x \in X$
(iii) $(x * y) *(x * a)=a * y$ for all $y \in X, x \in \bar{X}(a)$.
(iv) $a^{*}\left(x^{*} z\right) \leq z^{*}\left(x^{*} a\right)$, for all $z \in X, x \in \overline{X(a)}$,
(v) $(a * y) *(x * z) \leq\left(z^{*} y\right) *(x * a)$, for all $y, z \in X, x \in \overline{X(a)}$,
(vi) $x^{*}\left(x^{*}\left(a^{*} y\right)\right)=a^{*} y$, for all $y \in X, x \in \overline{X(a)}$.

We can see that these relations need not be true in BCH -algebras. Since in Example 2.7, if $\mathrm{x} \in \mathrm{X}^{*}$, then $\overline{\mathrm{X}(\mathrm{a})}=$ $\{\mathrm{a}, \mathrm{c}, \mathrm{g}, \mathrm{m}\}$ also a is an I-atom then (i) holds. If $\mathrm{x}=\mathrm{g}$ then

$$
\mathrm{a}^{*}\left(\mathrm{~g}^{*} \mathrm{l}\right)=0 \leftrightharpoons 1=\mathrm{l}^{*}\left(\mathrm{~g}^{*} \mathrm{a}\right) .
$$

So (iv) does not hold. If $y=0, x=g$ and $z=1$, then we have

$$
(\mathrm{a} * 0) *(\mathrm{~g} * \mathrm{l})=\mathrm{a} *(\mathrm{~g} * \mathrm{l}),(\mathrm{l} * 0) *(\mathrm{~g} * \mathrm{a})=1 *(\mathrm{~g} * \mathrm{a}) .
$$

Then

$$
a *(g * l) \neq 1 *(g * a) .
$$

Furthermore if $x=g \in \overline{X(a)}$ and $y=m$ then

$$
\mathrm{g} *(\mathrm{~g} *(\mathrm{a} * \mathrm{~m}))=\mathrm{g} *(\mathrm{~g} * \mathrm{l})=\mathrm{g} * \mathrm{a}=\mathrm{f} \neq \mathrm{l}=\mathrm{a} * \mathrm{~m} .
$$

So that (v) is not true.

Theorem 2.20: If $X$ is an associative BCH -algebra, then the conditions (i),(ii),(iii),(iv),(v),(vi) of remark 2.19 are hold.

Proof: Let X be an associative BCH -algebra. For all $\mathrm{x}, \mathrm{y}$, $z \in X$, we have

$$
\begin{aligned}
& ((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})) *(\mathrm{z} * \mathrm{y})=((\mathrm{x} *(\mathrm{x} * \mathrm{z})) * \mathrm{y}) *(\mathrm{z} * \mathrm{y}) \\
& =(((\mathrm{x} * \mathrm{x}) * \mathrm{z}) * \mathrm{y}) *(\mathrm{z} * \mathrm{y})=((0 * \mathrm{z}) * \mathrm{y}) *(\mathrm{z} * \mathrm{y}) \\
& =(0 *(\mathrm{z} * \mathrm{y}) *(\mathrm{z} * \mathrm{y})=0 *(\mathrm{z} * \mathrm{y}) *(\mathrm{z} * \mathrm{y}) \\
& =0 * 0=0 .
\end{aligned}
$$

Then X is a BCI-algebra.

Corollary 2.21: For any nonzero element a of $X$, the following conditions are equivalent:
(i) a is a P -atom of X ,
(ii) $a=x^{*}\left(x^{*} a\right)$ for all $x \in X$,
(iii) $(x * y) *(x * a)=a * y$, for all $x, y \in X$.

Proof: Let $\mathrm{a}(\neq 0) \in X$. If a is a P -atom of $X$, then $\left(x^{*}\left(x^{*} a\right)\right){ }^{*}=0$ also $a$ is an I-atom of $X$ and $x^{*}\left(x^{*} a\right)=x \neq 0$, for all $x \in X$. Thus conditions (ii), (iii) follows from Theorem 2.18.

Conversely, assume that conditions (ii) and (iii) holds. Then we know that $x *(x * a) \neq 0$, for all $x \in X$. It follows from Theorem 2.18, that a is an I-atom of X. Hence by Theorem 2.17, a is a P-atom of X. This completes the proof.

Corollary 2.22: Let $a(\neq 0) \in X$ and

$$
X(a)_{+}:=\{x \in X \mid x *(x * a) \geq 0, x *(x * a) \neq 0\} \neq \phi
$$

Then the following conditions are equivalent:
(i) a is a K -atom of X ,
(ii) $a=x^{*}\left(x^{*} a\right)$, for all $x \in X(a)_{+}$,
(iii) $(x * y)^{*}\left(x^{*} a\right)=a^{*} y$, for all $y \in X, x \in X(a)_{+}$.

Proof: Assume that a is a $K$-atom of $X$, then $a \in L_{1}(X)$ since $L_{1}(X)=L_{k}^{*}(X) \cup L_{K}(X)$. Note that $X(a)_{+} \subseteq \overline{X(a)}$, so from Theorem 2.18, we get that any one of (ii)-(iii) holds.

Conversely, if any one of the condition (ii)-(iii) holds, then $0 \leq x^{*}\left(x^{*} a\right) \leq a$ for any $x \in X(a)_{+}$, i.e. $a \in X_{+}$. Let $y \in \bar{X}(a)$. Then $y^{*}\left(y^{*} a\right) \neq 0$, since $y^{*}\left(y^{*} a\right) \leq a$ we have $y^{*}\left(y^{*} a\right) \geq 0$. This show that $y \in X(a)_{+}$and so $\overline{X(a)}=$ $X(a)_{+}$. From Theorem 2.18 we get that $a \in L_{l}(X)$, so that $a \in L_{I}(X) \cap X_{+}=L_{K}(X)$. Then a is a K-atom.

Theorem 2.23: Any finite BCH-algebra is generated by I-atoms.

Proof: Let X be a finite BCH -algebra and $\mathrm{x} \in \mathrm{X}^{*}$. Let

$$
(x]:=\left\{a \in X^{*} \mid a \leq x\right\}
$$

Then clearly $\mathrm{x} \in(\mathrm{x}]$ and so $(\mathrm{x}] \neq \phi$. Hence we can take a minimal element of ( $x$ ], say $a_{0}$. We claim that. $a_{0} \in L_{1}(X)$. For any $z \in X^{*}$, assume that $z^{*} a_{0}=0$. Then $z \leq a_{0} \leq x$ and so $z \in(x]$. Since $a_{0}$ is a minimal element of ( $\left.x\right]$ it follows that $z=a_{0}$. Hence $a_{0} \in L_{1}(X)$ and $x \in V\left(a_{0}\right)$. Therefore $X^{*}=\cup_{b \in L_{1}(X)} V(b)$.

Theorem 2.24: $L_{P}(X)$ and $L_{+}(X)$ are subalgebras of $X$.

Proof: Let $a, b \in L_{P}(X)$. We have $L_{P}(X)=\operatorname{Med}(X)$, so $0 *(0 * a)=\mathrm{a}$ and $0^{*}(0 * \mathrm{~b})=\mathrm{b}$, then

$$
\begin{aligned}
0 *(0 *(a * b)) & =0 *((0 * a) *(0 * b)) \\
& =0 *(0 * a)) *(0 *(0 * b) \neq a * b
\end{aligned}
$$

It follows that $a^{*} b \in \operatorname{Med}(X)=L_{P}(X)$.

Note: The following example shows that $\mathrm{L}(\mathrm{X})$ may not be a subalgebra of X .

Example 2.25: Let X be BCH -algebra in Example 2.7. Then $L(X)=\{0, a, f, h, 1, n\}$ is not subalgebra of $X$, since a, $1 \in \mathrm{~L}(\mathrm{X})$, but $\mathrm{a}^{*} \mathrm{l}=\mathrm{m} \notin \mathrm{L}(\mathrm{X})$

Definition 2.26: An ideal $I$ of $X$ satisfies the following condition $x \in I$ and $a \in X \backslash I$ imply $x * a \in I$, is called a *-ideal of X.

Note: Every *-ideal is an ideal.
Lemma 2.27: Let I be an ideal of $X$. Then I is a closed *ideal of X if and only if $\mathrm{L}_{\mathrm{P}}(\mathrm{X}) \subseteq \mathrm{I}$.

Theorem 2.28: In $X$, the following conditions are equivalent:
(i) Every nonzero element of X is a K -atom of X , i.e., $\mathrm{X}=\mathrm{L}_{\mathrm{K}}(\mathrm{X}) \cup\{0\}$,
(ii) $x^{*} y=x$, for all $x, y \in X$ with $x \neq y$,
(iii) $\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{y}\right)=0$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$,
(iv) every subalgebra of $X$ is a *-ideal of $X$.

Proof: (i) $\Rightarrow$ (ii) Assume that (i) holds and let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ be such that $x \neq y$. Then $x * y \leq x$, since $y \in X=L_{K}(X) \cup\{0\}$. If $x=0$, then obviously $x * y=0=x$. Assume that $x \neq 0$. Then $x \in L_{K}(X)$. Note that $x^{*} y \neq 0$, because if $y=0$, then $x^{*} y=x \neq 0$ and if $y \neq 0$ and $x, y \in L_{K}(X)$ we have $L_{K}(X)$ is a subset of $X$, then $0 \neq x * y \in L_{K}(X)$. Therefore $x * y=x$.
(ii) $\Rightarrow$ (iii) It is clear.
(iii) $\Rightarrow$ (i) Assume that (iii) holds and $x \in X$. If $x=0$, then we are done. Suppose $x \neq 0$. Then by (iii), we have $0 *(0 * x)=0$ therefore $0^{*} x=0 *(0 *(0 * x)=0 * 0=0$, then $\mathrm{X}=\mathrm{X}_{+}$and so $\mathrm{L}_{\mathrm{I}}(\mathrm{X})=\mathrm{L}_{\mathrm{K}}(\mathrm{X})$.

Finally if $X \neq L_{l}(X) \cup\{0\}$ then there exists $z(\neq 0) \in X \backslash L_{I}(X)$ such that $a^{*} z=0$, for some $a(\neq 0), z \in X$. It follows that $a^{*}\left(a^{*} z\right)=a * 0=a \neq 0$, which is $a$ contradiction. Therefore $\mathrm{X}=\mathrm{L}_{1}(\mathrm{X}) \cup\{0\}=\mathrm{L}_{\mathrm{K}}(\mathrm{X}) \cup\{0\}$.
(ii) $\Rightarrow$ (iv). Let $S$ be a subalgebra of $X$ and $x * y, y \in S$. If $x=y$, then clearly $x \in S$. If $x \neq y$, then $x=x * y \in S$. Hence $S$ is an ideal of $X$.
(iv) $\Rightarrow(\mathrm{i})$. Note that $\mathrm{L}(\mathrm{X})$ is a subalgebra of X . It follows from (iv) that $\mathrm{L}_{4}(\mathrm{X})$ is a *-ideal of X . Clearly $\mathrm{L}_{+}(\mathrm{X})$ is closed. Hence $\mathrm{L}_{\mathrm{P}}(\mathrm{X}) \subseteq \mathrm{L}_{+}(\mathrm{X})$ and so $\mathrm{L}_{\mathrm{P}}(\mathrm{X})=\{0\}$
since $L_{P}(X) \cap L_{+}(X)=\{0\}$. This shows that $L(X)=L_{+}(X)$. Now let a be a nonzero element of $X$ and $0 \neq z \in X$ be such that $z^{*} a=0$. Note that $S:=\{0, a\}$ is a subalgebra of $X$ and hence $S$ is a *-ideal of $X$ by (iv). Since $S$ is an ideal of $X$, it follows from $z^{*} a=0$ that $z \in S$ and so $z=a$. This means that $\mathrm{a} \in \mathrm{L}_{\mathrm{I}}(\mathrm{X}) \subseteq \mathrm{L}(\mathrm{X})=\mathrm{L}(\mathrm{X})$. Since $\not \approx 0$, it follows that $a \in L_{K}(X)$, i.e., $a$ is a $K$-atom of $X$.

In the following we study branches of X . Note that $\mathrm{V}(\mathrm{a}) \cap \mathrm{V}(\mathrm{b}) \neq \phi$, for some $\mathrm{a}, \mathrm{b} \in \mathrm{L}_{\mathrm{I}}(\mathrm{X})$ with $a \neq \mathrm{b}$ as shown in the following example.

Example 2.29: Let $\mathrm{X}=\{0,1,2,3,4\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 2 | 2 | 2 | 0 | 0 | 2 |
| 3 | 3 | 2 | 1 | 0 | 3 |
| 4 | 4 | 4 | 4 | 4 | 0 |

Then $\mathrm{L}_{\mathrm{I}}(\mathrm{X})=\{1,2,4\}$ and $\mathrm{V}(1)=\{1,3\}, \mathrm{V}(2)=$ $\{2,3\}$. Therefore $\mathrm{V}(1) \cap \mathrm{V}(2)=\{3\}$.

Now, we want to define a proper I-branch of X and the proper I-branch BCH -algebra.

Definition 2.30: Let $a \in L_{K}(X)$. Then a branch $V$ (a) is called a proper I-branch if for all $b \in L_{I}(X), V(a) \cap V(b) \neq \phi$ whenever $a \neq b$. If every $I$-branch of $X$ is a proper $I$ branch of X , we say that X is a proper I-branch BCH algebra.

Lemma 2.31: If $\in L_{p}^{*}(X)$., then $0^{*}\left(0^{*} x\right)=a$, for all $x \in V(a)$.

Proof: Let $a \in L_{1}^{*}(X)$ and $0^{*}\left(0^{*} x\right)=a_{x}$, for all $x \in V(a)$. Then $0^{*}\left(0^{*} \mathrm{a}_{\mathrm{x}}\right)=0 *(0 *(0 *(0 * x)))=\mathrm{a}_{\mathrm{x}}$ and so $\mathrm{a}_{\mathrm{x}} \in \operatorname{Med}(\mathrm{X})=$ $L_{P}(X)$. Then

$$
\mathrm{a} * \mathrm{a}_{\mathrm{x}}=(0 *(0 * a)) *(0 *(0 * x))=0 *(0 *(a * x))=0
$$

Since $a_{x} \in L_{P}(X)$, it follows that $a=a_{x}=0 *\left(0^{*} x\right)$ ).
Theorem 2.32: If a BCH -algebra X satisfies the following conditions:
(i) $\mathrm{c}^{*} \mathrm{a}=\mathrm{c}$ for all $\mathrm{a} \in \mathrm{L}_{\mathrm{K}}(\mathrm{X})$ and $\mathrm{c} \in \mathrm{V}(\mathrm{a}) \backslash\{\mathrm{a}\}$,
(ii) every subalgebra $S$ of $X$ with $|S| \geq 3$ is an ideal of $X$, then X is a proper I -branch BCH -algebra.

Proof: Let $a \in L_{1}(X)$. Then either $a \in L_{K}(X)$ or $a \in L_{p}^{*}(X)$. Consider the case $a \in L_{p}^{*}(X)$. We claim that $V(a) \cap V(b)=\phi$, for all $b \in L_{1}(X)$ with $a \neq b$. In fact, if $V(a) \cap V(b) \neq \phi$, for some $b \in L_{I}(X)$ with $a \neq b$, then there exits $c \in V(a) \cap V(b)$. It follows from above lemma that $0^{*}\left(0^{*} \mathrm{c}\right)=\mathrm{a}$. In this case, b must be in $\mathrm{L}_{\mathrm{p}}^{*}(\mathrm{X})$ because if $\mathrm{b} \in \mathrm{L}_{K}(\mathrm{X})$, then $0 \leq \mathrm{b} \leq \mathrm{c}$ and so $\mathrm{c} \in \mathrm{X}_{+}$, which implies that $\mathrm{a}=0^{*}\left(0^{*} \mathrm{c}\right)=0$, which is a contradiction. By above lemma, we have $\mathrm{a}=0^{*}\left(0^{*} \mathrm{c}\right)=\mathrm{b}$ which is a contradiction. Therefore $\mathrm{V}(\mathrm{a}) \cap \mathrm{V}(\mathrm{b})=\phi$, for all $\mathrm{b} \in \mathrm{L}_{\mathrm{l}}(\mathrm{X})$ with $\mathrm{a} \neq \mathrm{b}$.

Now, consider the remaining case, if $a \in L_{K}(X)$. Assume that $\mathrm{V}(\mathrm{a}) \cap \mathrm{V}(\mathrm{b}) \neq \phi$ for some $\mathrm{b} \in \mathrm{L}_{\mathrm{l}}(\mathrm{X})$ with $\mathrm{a} \neq \mathrm{b}$, then there exists $c \in V(a) \cap V(b)$. If $c=a$, then $b \leq a$ implies $b=a$ since $a \in L_{K}(X)$. If $c \neq a$, then $c^{*} a=c$ by (i). Hence $S=$ $\{0, a, c\}$ is a subalgebra of $X$. It follows from (ii) that $S$ is an ideal of $X$. Hence $b^{*} c=0 \in S$ and $c \in S$ imply $b \in S$. But $b \in L_{1}(X)$ implies $b \neq 0$ and so $b=c$ or $b=a$. Since $c$ not in $\mathrm{L}_{\mathrm{l}}(\mathrm{X})$, it follows that $\mathrm{b}=\mathrm{a}$, which is a contradiction. This prove that every I-branch of X is proper so that X is a proper I-branch BCH-algebra.

Theorem 2.33: Let X be a proper I-branch BCH -algebra and $a, b \in L_{1}(X)$. Then $a * y=a$, for all $a \in L_{P}(X)$ and $y \in X_{+}$.

Proof: Let $a \in L_{P}(X)$ and $y \in X_{+}$. We have $a * y \leq a$, since $a \in L_{P}(X)$, then $a * y=a$.

## SOME TYPES OF IDEALS IN BCH-ALGEBRA

Definition 3.1: A nonempty subset $I$ of $X$ is called a P-ideal of X if
(i) $0 \in \mathrm{I}$,
(ii) $\left(x^{*} z\right)^{*}\left(y^{*} z\right) \in I$ and $y \in I$ imply $x \in I$, for all $x, y, z \in X$.

Proposition 3.2: Any P-ideal of $X$ is an ideal of $X$.
Proof: Let $I$ be a P-ideal, $x * y \in I$ and $y \in I$. Then $x^{*} y=$ $\left(x^{*} 0\right) *\left(y^{*} 0\right) \in I$ and $y \in I$ imply that $x \in I$.

The following example shows that the converse of above proposition is not correct in general.

Example 3.3: Let $\mathrm{X}=\{0,1,2,3,4\}$. The following table shows BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 4 |
| 1 | 1 | 0 | 0 | 1 | 4 |
| 2 | 2 | 2 | 0 | 0 | 4 |
| 3 | 3 | 3 | 3 | 0 | 4 |
| 4 | 4 | 4 | 4 | 4 | 0 |

Then $\mathrm{I}=\{0,1\}$ is an ideal of X , but it is not a P ideal, since $(2 * 2) *(1 * 2)=0 \in I$ and $1 \in I$, but $2 \notin I$.

Lemma 3.4: If $I$ is a P-ideal of $X$, then $X_{+} \subseteq I$

Proof: Let I be a P-ideal and $\mathrm{a} \in \mathrm{X}_{+}$. Then $0^{*} \mathrm{a}=0 \in \mathrm{I}$ and $\left(a^{*} a\right)^{*}\left(0^{*} a\right)=0 \in I$ since $I$ is a P-ideal, therefore $a \in I$.

Remark 3.5: In BCI-algebra converse of above lemma is true but in BCH -algebra is not true. In Example 2.7 it is routine to show that $I=\{0, a, b, c, d, e, f, g\}$ is an ideal and $\mathrm{X}_{+} \subseteq \mathrm{I}$. Which is not a P-ideal because $\left(\mathrm{m}^{*}\right)^{*}\left(\mathrm{~g}^{*} \mathrm{l}\right)$ $=a^{*} a=0 \in I$ and $g \in I$, but $m \notin I$.

Theorem 3.6: Every nonzero element of $X$ is a $P$-atom if and only if every subalgebra of X is a P -ideal of X .

Proof: Assume that every nonzero element of X is a P atom and $S$ is a subalgebra of $X$. Since $X=L_{P}(X)$, therefore X is P -semisimple and hence is medial. It follows from Definition 2.1 that $(x * y) *(0 * y)=$ $(x * 0) *(y * y)=x$ and

$$
(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})=(\mathrm{x} * \mathrm{y})^{*}\left(\mathrm{z}^{*} \mathrm{z}\right)=\left(\mathrm{x}^{*} \text { y } \quad \theta=\mathrm{x} * \mathrm{y}\right.
$$

Let $\left(x^{*} z\right)^{*}\left(y^{*} z\right) \in S$ and $y \in S$, for all $x, y, z \in X$. Then

$$
x=(x * y) *(0 * y)=((x * z) *(y * z)) *(0 * y) \in S
$$

Therefore S is a P-ideal of X .
Conversely, suppose that every subalgebra of $X$ is a P-ideal of $X$. Since $L_{P}(X)$ is a subalgebra of $X$ and so is a P-ideal of $X$. Then we get that $\mathrm{X}_{+} \subseteq \mathrm{L}_{P}(\mathrm{X})$. Note that $X_{+} \cap L_{P}(X)=\{0\}$, so that $X_{+}=\{0\}$ and $X=L_{P}(X)$. This implies that every nonzero element of X is a P -atom of X .

Definition 3.7: A nonempty subset $I$ of $X$ is called an implicative ideal of X if
(i) $0 \in \mathrm{I}$,
(ii) $\left(x^{*}\left(y^{*} x\right)\right) * z \in I$ and $z \in I$ imply $x \in I$, for all $x, y, z \in X$.

Proposition 3.8: Any implicative ideal of X is an ideal of X.

Proof: Let $I$ be an implicative ideal, $x * z \in I$ and $z \in I$. Then $\left.\mathrm{x}^{*} \mathrm{z}=\left(\mathrm{x}^{*} 0\right)\right)^{*} \mathrm{z}=\left(\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$ imply $\mathrm{x} \in \mathrm{I}$.

Every ideal need not be an implicative ideal as shown in the following example.

Example 3.9: In Example 2.7, we can check that $I=\{0$, a, $\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}\}$ is an ideal of X but $\left(\mathrm{h}^{*}\left(0^{*} \mathrm{~h}\right)\right)^{*} \mathrm{a}=\left(\mathrm{h}^{*} \mathrm{~h}\right)^{*} \mathrm{a}$ $=0 \in \mathrm{I}$ and $\mathrm{a} \in \mathrm{I}$, but $\mathrm{h} \notin \mathrm{I}$. Hence I is not an implicative ideal.

By the following examples we show that notions of implicative ideal and P-ideal are independent.

Example 3.10: Let $X=\{0, a, b\}$. The following table shows the BCH-algebra structure on X .

| $*$ | 0 | a | b |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| a | a | 0 | a |
| b | b | b | 0 |

Now, we can see that $I=\{0, a\}$ is an implicative ideal but is not P -ideal, because $\left(\mathrm{b}^{*} \mathrm{~b}\right) *(0 * \mathrm{~b})=0 \in \mathrm{I}$ and $0 \in \mathrm{I}$, but $\mathrm{b} \notin \mathrm{I}$.

Example 3.11: Let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$. The following table shows the BCH -algebra structure on X .

| * | 0 | a | b | c |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | a | b | c |
| a | a | 0 | c | b |
| b | b | c | 0 | a |
| c | c | b | a | 0 |

Then $\mathrm{I}=\{0, \mathrm{a}\}$ is a P-ideal, also $\left(\mathrm{b}^{*}\left(0^{*} \mathrm{~b}\right)\right)^{*} \mathrm{a}=$ (b*b)*a $a \in I$ and $a \in I$, but $b \notin I$. So $I$ is not an implicative ideal.

Theorem 3.12: Let $I$ be an ideal of $X$. Then $I$ is an implicative ideal if and only if $x *\left(y^{*} x\right) \in I$ imply that $x \in I$.

Proof: Assume that I is an implicative ideal and $\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}$. Consider $\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*}\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)=0 \in \mathrm{I}$, by hypothesis we get that $x \in I$.

Conversely, let I be an ideal. Now, let $\left(x^{*}\left(y^{*} x\right)\right)^{*} z \in I$ and $z \in I$ and so $x^{*}\left(y^{*} x\right) \in I$, By hypothesis $x \in I$, therefore I is an implicative ideal.

Theorem 3.13: Any nonzero element of $X$ is a $K$-atom if and only if every subset of $X$ is an implicative ideal of $X$.

Proof: Assume that every nonzero element of X is a K atom, hence $X=L_{K}(X)$ and $I$ are subalgebras of $X$. We have $\left(x^{*}\left(y^{*} x\right)\right)^{*} x=0 *(y * x)=(0 * y) *(0 * x)=0$ for all $x, y \in$ $X$ Since $x$ is a K-atom therefore $x=x *\left(y^{*} x\right)$. Now,
consider $\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right)^{*} \mathrm{z} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$, then $\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right)^{*} \mathrm{z}=$ $x^{*} z \in I$, for all $x, y, z \in X$. Also we have $\left(x^{*} z\right)^{*} x=0 * z=0$. Since $x$ is a K-atom therefore $x^{*} z=x$, hence $x \in I$. So $S$ is an implicative ideal of X .

Conversely, suppose that every subalgebra of $X$ is an implicative ideal of X . We first show that $0 * \mathrm{X}=0$ for all $x \in X$. Since $A=\{0\}$ is nonempty subalgebra of $X$, therefore A is an implicative ideal. We deduce that

$$
\begin{aligned}
& (0 * x) *(((0 * x) * x) *(0 * x)) \\
& =(0 *(((0 * x) * x) *(0 * x))) * x \\
& =((0 *((0 * x) * x)) *(0 *(0 * x))) * x \\
& =(((0 *(0 * x)) *(0 * x)) *(0 *(0 * x))) * x \\
& =(0 *(0 * x)) * x \\
& =(0 * x) *(0 * x)=0
\end{aligned}
$$

Hence $\left(\left(0^{*} \mathrm{x}\right)^{*}\left(\left(\left(0^{*} \mathrm{x}\right)^{*} \mathrm{x}\right) *\left(0^{*} \mathrm{x}\right)\right)\right)^{*} 0=0 \in \mathrm{~A}$ and $0 \in \mathrm{~A}$ imply $0 * x \in A$. Therefore $0^{*} x=0$. Further for $x \in X \backslash\{0\}$, we get that $I=\{0, x\}$ is subalgebra of $X$, then is an implicative ideal. Now let $y^{*} x=0$ for some $\mathrm{y} \in \mathrm{X} \backslash\{0\}$, then $\mathrm{y}^{*} \mathrm{x}=$ $\left(y^{*}\left(y^{*} y\right)\right)^{*} x=0 \in I$ and $x \in I$ imply that $y \in I$. Hence $y=x$. Therefore x is a K-atom.

Definition 3.14: A nonempty subset $I$ of $X$ is called a positive implicative ideal of X if
(i) $0 \in \mathrm{I}$,
(ii) $(\mathrm{x} * \mathrm{y}) * \mathrm{z} \in \mathrm{I}$ and $\mathrm{y} * \mathrm{z} \in \mathrm{I}$ imply $\mathrm{x} * \mathrm{z} \in \mathrm{I}$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Proposition 3.15: Every positive implicative ideal is an ideal.

Proof: Let $x^{*} y \in I$ and $y \in I$. Then $\left(x^{*} y\right)^{*} 0=x * y \in I$ and $y^{*} 0=y \in I$, by hypothesis we get that $x=x * 0 \in I$. Hence $I$ is an ideal.

Example 3.16: Let $\mathrm{X}=\{0,1,2,3\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 2 | 2 | 2 | 0 | 3 |
| 3 | 3 | 3 | 3 | 0 |

Then $\mathrm{I}=\{0,3\}$ is an ideal of X , but is not a positive implicative ideal, since $(2 * 3) * 1=3 \in \mathrm{I}$ and $3 * 1=3 \in \mathrm{I}$ but $2 * 1=2$ is not in I .

Remark 3.17: The next examples shows that the notions positive implicative ideal, implicative ideal and P-ideal are independent.
(1) Let $X=\{0, a, b, e\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | $a$ | $b$ | $e$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| a | a | 0 | $a$ | 0 |
| b | b | b | 0 | 0 |
| e | e | e | e | 0 |

We can check that $\mathrm{I}=\{0, a\}$ is a positive implicative ideal which is not an implicative ideal, since $\left(b^{*}\left(e^{*} b\right)\right)^{*} a$ $=\left(b^{*} \mathrm{e}\right)^{*} \mathrm{a}=0 \in \mathrm{I}$ and $\mathrm{a} \in \mathrm{I}$, but $\mathrm{b} \notin \mathrm{I}$.
Also I is not a P-ideal, since

$$
(\mathrm{b} * \mathrm{~b}) *(\mathrm{a} * \mathrm{~b})=0 * \mathrm{a}=0 \in \mathrm{I}
$$

and $\mathrm{a} \in \mathrm{I}$, but $\mathrm{b} \notin \mathrm{I}$
(2) In example 3.11, consider $I=\{0, a\}$. Then $I$ is a $P-$ ideal, but is not a positive implicate ideal, since

$$
(a * b) * b=c * b=a \in I
$$

and $\mathrm{b}^{*} \mathrm{~b}=0 \in \mathrm{I}$, but $\mathrm{a} * \mathrm{~b}=\mathrm{c}$ is not in I .

Remark 3.18: We showed if every subset $I$ of $X$ is an implicative ideal, then every nonzero element a of X is K-atoms. Also if every subset I of X is P -ideal then a is P-atoms.

In remark 3.16 we showed that a positive implicative ideal is not necessary implicative ideal or P-ideal. So there is no relationship between K -atoms and P -atoms and positive implicative ideal.

Definition 3.19: An ideal $I$ of $X$ is called a normal ideal if $x^{*}\left(x^{*} y\right) \in \mathrm{I}$ implies $y^{*}\left(y^{*} x\right) \in \mathrm{I}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Example 3.20: Let $\mathrm{X}=\{0,1,2,3\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 2 | 2 | 3 | 0 | 3 |
| 3 | 3 | 0 | 0 | 0 |

Then $\mathrm{I}=\{0,3\}$ is an ideal of X . But I is not a normal ideal, since $2 *(2 * 1) \in \mathrm{I}$, but $1 *(1 * 2) \notin \mathrm{I}$.

In the following example, we show that every normal ideal need not be a P-ideal, implicative ideal or positive implicative ideal.

Example 3.21: Let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | a | b | c |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| a | a | 0 | 0 | a |
| b | b | b | 0 | 0 |
| c | c | c | b | 0 |

Then $\mathrm{I}=\{0, \mathrm{a}\}$ is a normal ideal. But I is not a P ideal, since $\left(b^{*} b\right)^{*}\left(0^{*} b\right)=0 \in I$ and $0 \in I$, but $b \notin I$.

Also I is not an implicative ideal, since $\left(\mathrm{b}^{*}\left(\mathrm{c}^{*} \mathrm{~b}\right)\right)^{*} 0$ $=\left(\mathrm{b}^{*} \mathrm{~b}\right)^{*} 0=0 \in \mathrm{I}$ and $0 \in \mathrm{I}$, but b is not in I .

I is not a positive implicative ideal, since $\left(\mathrm{c}^{*} \mathrm{~b}\right)^{*} \mathrm{~b}=$ $\mathrm{b}^{*} \mathrm{~b}=0 \in \mathrm{I}$ and $\mathrm{b} * \mathrm{~b}=0 \in \mathrm{I}$, but $\mathrm{c} * \mathrm{~b}=\mathrm{b} \notin \mathrm{I}$.

Proposition 3.22: Let I be a normal ideal of $X$. Then I is a closed ideal.

Proof: Consider $\left(0^{*} \mathrm{x}\right) *\left(\left(0^{*} \mathrm{x}\right)^{*} 0\right)=(0 * x)^{*}\left(0^{*} \mathrm{x}\right)=0 \in \mathrm{I}$. Since $I$ is a normal ideal, we get that $0^{*} x=\left(0^{*}\left(0^{*}\left(0^{*} x\right)\right)\right)$ $\in \mathrm{I}$.

Remark 3.23: The converse of above proposition is not true in general, since in Example 3.20, consider the ideal $\mathrm{I}=\{0,3\}$, which is a closed ideal but is not a normal ideal.

Definition 3.24: An element $x \in X$ is called positive if $0 \leq x$ and an ideal $I$ of $X$ is called a positive ideal of $X$ if any $x \in I$ be positive.

In the following example, we show that every positive ideal need not be a P-ideal or positive implicative ideal.

Example 3.25: Let $\mathrm{X}=\{0,1,2,3\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 2 | 2 | 3 | 0 | 3 |
| 3 | 3 | 0 | 0 | 0 |

(1) We can check that $\mathrm{I}=\{0,3\}$ is a positive ideal.
(2) I is not a P-ideal, since $\left(1^{*} 1\right)^{*}\left(0^{*} 1\right)=0 \in \mathrm{I}$ and $0 \in \mathrm{I}$, but 1 is not in I .
(3) Also I is not a positive implicative ideal, since $(1 * 2)^{*} 3=0 \in \mathrm{I}$ and $2 * 3=3 \in \mathrm{I}$, but $1 * 3=1 \notin \mathrm{I}$.

In the following example we show that a normal ideal need not be a positive ideal.

Example 3.26: Let $\mathrm{X}=\{0,1,2,3\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 2 | 2 |
| 1 | 1 | 0 | 2 | 2 |
| 2 | 2 | 2 | 0 | 0 |
| 3 | 3 | 2 | 1 | 0 |

Then $\mathrm{I}=\{0,1,2\}$ is a normal ideal but is not a positive ideal, since $0 * 2=2 \neq 0$.

Definition 3.27: A nonempty subset $I$ of $X$ is called a fantastic ideal if
(i) $0 \in \mathrm{I}$,
(ii) $\left(x^{*} y\right)^{*} z \in \operatorname{I}$ and $\mathrm{z} \in \mathrm{I}$ imply $\left(\mathrm{x}^{*}\left(\mathrm{y}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)\right) \in \mathrm{I}$, for all $\mathrm{x}, \mathrm{y}$, $\mathrm{z} \in \mathrm{X}$.

Lemma 3.28: Let $I$ be an ideal of $X$. Then $I$ is a fantastic ideal if and only if $x * y \in I$ implies $\left(x^{*}\left(y^{*}\left(y^{*} x\right)\right)\right) \in \mathrm{I}$.

Proof: Let I be a fantastic ideal and $\left(x^{*} y\right)=(x * y) * 0 \in \mathrm{I}$. Since $0 \in I$ then $x *\left(y^{*}\left(y^{*} x\right)\right) \in I$.

Conversely, let $\left(x^{*} y\right)^{*} z \in I$ and $z \in I$. Since $I$ is an ideal, then $x * y \in I$. By hypothesis we get that $\left(x^{*}\left(y^{*}\left(y^{*} x\right)\right)\right) \in \mathrm{I}$.

Definition 3.29: An ideal I of $X$ is called an obstinate ideal if $x$, $y$ not in I imply $x * y \in I$ or $y * x \in I$.

Remark 3.30: Every ideal is not an obstinate ideal because in Example 2.7, consider the ideal $\mathrm{I}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}$, d, e, f, g\} of X. We can check that $h, l \notin I . h * l=n \notin I$ and $1 * \mathrm{~h}=\mathrm{n} \notin \mathrm{I}$.

Proposition 3.31: Let $x^{*}\left(y^{*}\left(y^{*} x\right)\right)=x * y$, for all $\mathrm{x}, \mathrm{y} \notin \mathrm{I}$. Then $\{0\}$ is a fantastic ideal of X .

Proof: Let $x * y \in I=\{0\}$. If $x=0$ then $x^{*}\left(y^{*}\left(y^{*} x\right)\right)=$ $\left.0^{*} y^{*}\left(y^{*} 0\right)\right)=0 \in \mathrm{I}$. therefore by Lemma 3.28 we conclude that I is a fantastic ideal. If $\mathrm{y}=0$ then $\mathrm{x}=\mathrm{x}^{*} 0=\mathrm{x}^{*} \mathrm{y}=0$.

Hence $x^{*}\left(y^{*}\left(y^{*} x\right)\right)=0 \in I$, therefore by lemma 3.28 we conclude that $I$ is a fantastic ideal. If $x, y \neq 0$, by hypothesis $x^{*}\left(y^{*}\left(y^{*} x\right)\right)=x * y \in I$, then $I$ is a fantastic ideal.

We show in the following example that the converse of above proposition is not true in general.

Example 3.32: Let $\mathrm{X}=\{0,1,2,3\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 0 | 3 | 2 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 2 | 1 | 0 |

Then $\{0\}$ is a fantastic ideal, but $1^{*}\left(2^{*}\left(2^{*} 1\right)\right)=0 \neq 3$ $=1 * 2$.

In the following example, we show that every obstinate ideal need not be a P-ideal, implicative ideal or positive implicative ideal.

Example 3.33: Let $\mathrm{X}=\{0,1,2,3\}$. The following table shows the BCH -algebra structure on X .

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 2 | 2 | 3 | 0 | 3 |
| 3 | 3 | 0 | 0 | 0 |

Then $\mathrm{I}=\{0,3\}$ is an obstinate ideal of X . We know that $(1 * 2)^{*}(0 * 2)=0 \in \mathrm{I}$ and $0 \in \mathrm{I}$, but $1 \notin \mathrm{I}$ then I is not a P-ideal.

Also (2* (3*2))*3 3 I and $3 \in I$, but $2 \notin I$, then $I$ is not an implicative ideal.

I is not positive implicative ideal, since $(1 * 2)^{*} 3=0 \in \mathrm{I}$ and $2 * 3=3 \in \mathrm{I}$, but $1 * 3=1 \notin \mathrm{I}$.

## CONCLUSION

We introduced the notion of K-atoms, P-atom and I-atom and research relations between them. Also we introduced the notion of ( P , implicative, positive implicative, normal, positive, obstinate and fantastic) ideals in BCH-algebras and gave characterizations of ( P , implicative, positive implicative, normal, positive, obstinate and fantastic) ideals. We also studied the relations between P-ideals, implicative ideals, positive
implicative ideal, positive ideal, obstinate ideal, normal ideals and fantastic ideals.

## ACKNOWLEDGEMENT

The authors would like to express their sincere thanks to the referees for their valuable suggestions and comments.

## REFERENCES

1. Chaudhry, M.A. and H. Fakhar-Ud-Din, 2001. On some classes of BCH-algebra, J. I. M. M. S. 25: 205-211.
2. Chaudhry, M.A., 1991. On BCH-algebras, Math. Japonicae, 36: 665-676.
3. Dar, K. H. and M. Akram, 2006. On Endomorphisms of BCH-algebras. Annals of Univercity of Craiova. Comp. Ser. 33: 227-234.
4. Huang, Y.S., 2006. BCI-algebras, Science Press, China.
5. Imai, Y. and K. Iseki, 1966. On axiom systems of propositional calculi, XIV, Proc. Japan Academy, 42: 19-22.
6. Jun, Y.B. and X. Xin and H. Roh, 2004. The rol of atoms in BCI-algebras. Soochow Journal of Mathematics, 30: 491-506.
7. Meng, J. and Y.B. Jun, 1994, BCK-algebras, Kyungmoon Sa Co . Korea.
