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INTRODUCTION AND PRELIMINARIES

Definition 1.1: [2] By a BCH-algebra we shall mean an 
algebra (X,*,0) of type (2,0) satisfying the following 
axioms: for every x, y, z ∈X,

(I1) x x 0∗ = ,

(I2) x y 0 and y x 0implyx y∗ = ∗ = = ,

(I3) (x y) z (x z) y∗ ∗ = ∗ ∗ ,

Proposition 1.2: [1, 2, 3] In a BCH-algebra X, the
following holds for all x, y, z ∈X,

(1) x 0 x∗ = ,

(2) (x (x y)) y 0∗ ∗ ∗ = ,

(3) 0 (x y) (0 x) (0 y)∗ ∗ = ∗ ∗ ∗ ,

(4) 0 (0 (0 x)) 0 x∗ ∗ ∗ = ∗ ,

(5) x yimplies0 x 0 y≤ ∗ = ∗

[2] A BCH-algebra X is  called proper if it is not a 
BCI-algebra. It is known that proper BCH-algebras exist. 

In any BCH/BCI/BCK-algebra X we can define
a partial order ≤ by putting x≤y if and only if x*y=0,
[4, 5, 7].

Definition 1.3: [2] Let I be a nonempty subset of X.
Then I is called an ideal of X if it satisfies: 

(i) 0∈I
(ii) x*y∈I and y ∈I imply x∈I

Definition 1.4: An ideal I is called a closed ideal of X if
for every x∈I, we have 0*x∈I.

Definition 1.5: [2] Let S be a subset of X. S is called a 
subalgebra of X if for every x, y∈S, we have x*y∈S.

ATOMS OF BCH-ALGEBRAS

From now on X is a BCH-algebra, unless otherwise 
is stated.

Definition 2.1: A BCH-algebra X is called medial if

(x y) (z u) (x z) (y u)∗ ∗ ∗ = ∗ ∗ ∗

for all x, y, z, u∈X.

Definition 2.2: A BCH-algebra X that satisfying in 
condition 0*x=0⇒x=0 is called a P-semisimple BCH-
algebra.

Definition 2.3: A BCH-algebra X is called associative 
BCH-algebra if (x*y)*z = x* (y*z), for all x, y, z, u∈X.

Definition 2.4: In a BCH-algebra X, define

{ }X x X x 0+ = ∈ ≥

and
{ }KL (X): a X \{0}x a x a, x X\{0}+= ∈ ≤ ⇒ = ∀ ∈
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{PL (X): a X x a x a, x X}= ∈ ≤ ⇒ = ∀ ∈

{ }IL(X): a X\{0}x a x a, x X\{0}= ∈ ≤ ⇒ = ∀ ∈

P PL (X): L (X)\{0}∗ =

KL (X): L (X) {0}+ = ∪

IL{X}: L ( X ) {0}= ∪ .

Example 2.5: Let X= {0, a, b, c, d}. The following table 
shows the BCH-algebra structure on X

* 0 a b c d
0 0 0 0 0 d
a a 0 0 a d
b b b 0 0 d
c c c c 0 d
D d d d d 0

Then LK(X) = {a}, LP (X) = {0, d} and LI (X) = {a,d}.

Example 2.6: Let X = {0, 1, 2, 3}. The following table 
shows the BCH-algebra structure on X.

* 0 1 2 3
0 0 0 0 0
1 1 0 3 3
2 2 0 0 2
3 3 0 0 0

It is clear that LK(X) = {3}, LP (X) = {0} and LI (X) = {3}

Example 2.7: Let X={0,a,b,c,d,e,f,g,h,i,j,k,l,m,n}. The
following table shows the BCH-algebra structure on X.

* 0 a b c d e f g h i j k l m n
0 0 0 0 0 0 0 0 0 h h h h l l n
a a 0 a 0 a 0 a 0 h h h h m l n
b b b 0 0 f f f f i h k k l l n
c c b a 0 g f g f i h k k m l n
d d d 0 0 0 0 d d j h h j l l n
e e e a 0 a 0 e d j h h j m l n
f f f 0 0 0 0 0 0 k h h h l l n
g g f a 0 a 0 a 0 k h h h a l n
h h h h h h h h h 0 0 0 0 n n l
i i i h h k k k k b 0 f f n n l
j j j h h h h j j d 0 0 d n n l
k k k h h h h h h f 0 0 0 n n l
l l l l l l l l l n n n n 0 0 h
m m l m l m l m l n n n n a 0 h
n n n n n n n n n l l h l h h 0

Then K PL (X) {a,f}, L (X) {0,h,l,n}= =

and IL(X) {a,f,h,l,n}= .

Proposition 2.8: In X, the following properties hold:

(i) LP (X) = Med(X), where Med (X) = {x∈X| 0*(0*x) =
x} is the medial part of X,

(ii) K PL (X) L(X)∩ = φ,

(iii) K PL(X) L (X) L (X)= ∪ ,

(iv) X is a P-semisimple BCH-algebra if and only if LP(X)
= X.

Proof: (i) Let a∈ LP(X). Then 0*(0*a) = a follows from 
(0*(0*a))*a = 0. Hence a∈Med(X).

Conversely, let a∈Med(X) and x∈X be such that 
x*a=0. Then

a x (0 (0 a)) x (0 x) (0 a)
((x a) x) (0 a) ((x x) a) (0 a)
(0 a) (0 a) 0.

∗ = ∗ ∗ ∗ = ∗ ∗ ∗
= ∗ ∗ ∗ ∗ = ∗ ∗ ∗ ∗
= ∗ ∗ ∗ =

Hence a = x and a∈LP(x). Therefore LP(x) = Med (X).

(ii) If a ∈ LK(x)∩ LP(x), then a∈X+∩ LP(x) = {0} and so 
a = 0,   which   is   a   contradiction.  Hence LK(x)∩
LP(x) =φ.

(iii) Straightforward.

(iv) Let X be P-semisimple. Since X = Med(X), it follows 
from (i) that X = LP(x).

Conversely, if X = LP(x) then Med(X) = X.

Remark 2.9: If X is a BCK-algebra, then L(X) = L+(x).
But the converse is not true [6]. In Example 2.6 we have 
X+=X and L(X) = {0, 3} = L+(X). On the other hand we 
have (0*2)*(0*1) = 0 ≠ 3 = 1*2. Hence X is not a BCK-
algebra.

Definition 2.10: The elements of LK(X) (resp. I*P(X),
LI(X) are called a K-atom (resp. P-atom, I-atom) of X. For 
any a∈X. Let

V(a) {x Xa x}= ∈ ≤
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If a∈LK(X) (resp. LP(X), LI(X)), we say that V (a) is K-
branch (resp. P-branch, I-branch) of X with respect to a.

Note that {P-atoms} ∪{K-atoms} = {I-atoms}.
Obviously,V(a) V(0) X+⊆ = , for all a∈LKX and X

Pa L (X)V(a).∈=∪ But
Ia L ( X )X V(a),∗

∈≠∪ where X*= X\{0} as 

shown in the following example.

Example 2.11: Let X= {0, 1, 2, 3, 4}. The following table 
shows the BCH-algebra structure on X.

* 0 1 2 3 4
0 0 0 0 0 4
1 1 0 0 1 4
2 2 2 0 0 4
3 3 3 3 0 4
4 4 4 4 4 0

It is routine to check that LI(X) = {1, 4} and L(X) = {0, 1, 
4}. It is clear that

IaL(X) V(a) {1,2,4} X∗
∈∪ = ≠ .

Note: In the above example, we see that there exists x∈X
which is not contained in any I-branch of X.

Definition 2.12: If
IaL(X)X V(a)∗

∈=∪ , we call X the BCH-

algebra generated by I-atoms.

Example 2.13: Let X = {0, 1, 2, 3, 4, 5}. The following 
table shows the BCH-algebra structure on X.

* 0 1 2 3 4 5
0 0 0 0 0 4 4
1 1 0 0 1 4 4
2 2 2 0 2 5 4
3 3 3 3 0 4 4
4 4 4 4 4 0 0
5 5 5 4 5 2 0

It is routine to check that LI(X) = {1, 3, 4} and V
(1) = {1, 2}, V (3) ={3}, V (4) = {4, 5}. Thus 

*X V(1) V(3) V(4)= ∪ ∪

and so X is a BCH-algebra generated by I-atoms {1,3,4}.

Lemma 2.14: a∈LK(X) if and only if a∈ LI(X)∩X+.

Proof: By definition we have LK(X)⊆X+ and LI(X). The 
converse is clear. 

Lemma 2.15: If a∈ LI(X) satisfies the condition
x*(x*a)∈X+\{0} for some x∈X, then a∈X+

From above lemma we have the following theorem.

Theorem 2.16: Let a be an I-atom of X which satisfies in
the following condition x*(x*a)∈X+\{0} for some x∈X.
Then a is a K-atom of X.

Proof: We have from Lemma 2.15, a∈X+ also a∈LI(X)
hence a∈LI (X) ∩X+. By Lemma 2.14, we get that 
a∈LK(X) so a is a K-atom.

We have a characterization of P-atom by I-atom.

Theorem 2.17: Let a∈X. Then a is a P-atom of X if and 
only if a∈LI(X) and x*(x*a) ≠0, for all x∈X.

Proof: Let a be a P-atom and 
*
P Ia L(X) L(X) L(X) {0}∈ ⊆ = ∪

Then a∈LI(X), since (x*(x*a))*a=(x*a)*(x*a)=0 it follow 
that x*(x*a)=a≠0.

Conversely, let a∈LI(X) and x*(x*a)≠0, for all x∈X.
We show that a∉LK(X). If a∈ LK(X), then 0*a=0. So 
0*(0*a) =0. Which is a contradiction.

The following theorem is a characterization of an I-
atom in a BCH-algebra.

Theorem 2.18: Let a∈X* and X(a): {x X x (x a) 0}.= ∈ ∗ ∗ ≠

Then the following conditions are equivalent:

(i) A is an I-atom of X,
(ii) a = x*(x*a) for all x X(a),∈

(iii) (x*y)*(x*a) =a*y, for all y X,x X(a)∈ ∈ .

Proof: (i) ⇒(ii) By (x*(x*a))*a=0 and (i) we have a= 
x*(x*a).

(ii) ⇒(iii) By hypothesis we have (x*y)*(x*a) =
x*(x*a)*y=a*y.

(iii)⇒(ii) Let x X(a)∈  and y = 0. Then x*(x*a) =
(x*0)*(x*a) = a*0 = a.

(ii)⇒(i) Let b(≠0)∈X. Since w*a=0, then w*(w*a) = 
w*0 = w≠0 and so w X(a)∈ . It follow from (ii) that a = 
w*(w*a) =w. Therefore a is an I-atom of X.

Remark 2.19: [6] If X is  a BCI-algebra, then the
following conditions are equivalent:
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(i) a is an I-atom of X,
(ii) a = x*(x*a), for all x∈X
(iii) (x*y)*(x*a) =a*y for all y X,x X(a)∈ ∈ .

(iv) a*(x*z)≤z*(x*a), for all z X,x X(a)∈ ∈ ,

(v) (a*y)*(x*z) ≤(z*y)*(x*a), for all y,z X,∈ x X(a)∈ ,

(vi) x*(x*(a*y))=a*y, for all y∈X, x X(a)∈ .

We can see that these relations need not be true in 
BCH-algebras. Since in Example 2.7, if x∈X*, then X(a)=
{a, c, g,m} also a is an I-atom then (i) holds. If x = g then

a*(g*l) =0≤ l = l*(g*a).

So (iv) does not hold. If y = 0, x = g and z = l, then 
we have

(a 0) (g l) a (g l), (l 0) (g a) l (g a)∗ ∗ ∗ = ∗ ∗ ∗ ∗ ∗ = ∗ ∗ .

Then
a (g l) l (g a)∗ ∗ ≠ ∗ ∗ .

Furthermore if x = g X(a)∈ and y = m then

g (g (a m)) g (g l) g a f l a m∗ ∗ ∗ = ∗ ∗ = ∗ = ≠ = ∗ .

So that (v) is not true.

Theorem 2.20: If X is an associative BCH-algebra,
then the conditions (i),(ii),(iii),(iv),(v),(vi) of remark 2.19 
are hold.

Proof: Let X be an associative BCH-algebra. For all x, y, 
z∈X, we have

((x y) (x z)) (z y) ((x (x z)) y) (z y)
(((x x) z) y) (z y) ((0 z) y) (z y)
(0 (z y)) (z y) 0 (z y) (z y)
0 0 0.

∗ ∗ ∗ ∗ ∗ = ∗ ∗ ∗ ∗ ∗
= ∗ ∗ ∗ ∗ ∗ = ∗ ∗ ∗ ∗
= ∗ ∗ ∗ ∗ = ∗ ∗ ∗ ∗
= ∗ =

Then X is a BCI-algebra.

Corollary 2.21: For any nonzero element a of X, the 
following conditions are equivalent:

(i) a is a P-atom of X,
(ii) a = x*(x*a) for all x∈X,
(iii) (x*y)*(x*a)=a*y, for all x, y∈X.

Proof: Let a(≠0)∈X. If a is a P-atom of X, then 
(x*(x*a))*a=0 also a is an I-atom of X and x*(x*a) = x≠0,
for all x∈X. Thus conditions (ii), (iii) follows from
Theorem 2.18.

Conversely, assume that conditions (ii) and (iii)
holds. Then we know that x*(x*a) ≠0, for all x∈X. It 
follows from Theorem 2.18, that a is an I-atom of X.
Hence by Theorem 2.17, a is a P-atom of X. This 
completes the proof. 

Corollary 2.22: Let a(≠0)∈X and

X(a) : {x X x (x a) 0, x (x a) 0}+ = ∈ ∗ ∗ ≥ ∗ ∗ ≠ ≠φ.

Then the following conditions are equivalent:

(i) a is a K-atom of X,
(ii) a = x*(x*a), for all x∈X(a)+,
(iii) (x*y)*(x*a) =a*y, for all y∈X, x∈X (a)+ .

Proof: Assume that a is a K-atom of X, then a∈LI(X)
since I P KL(X) L(X) L (X).∗= ∪ Note that X(a) X(a),+ ⊆  so from 
Theorem 2.18, we get that any one of (ii)-(iii) holds. 

Conversely, if any one of the condition (ii)-(iii) holds, 
then 0≤x*(x*a) ≤a for any x∈X (a)+, i.e. a∈X+. Let
y X(a).∈  Then y*(y*a) ≠0, since y*(y*a) ≤a we have 

y*(y*a) ≥0. This show that y∈X (a)+ and so X(a)=
X(a)+. From Theorem 2.18 we get that a∈LI(X), so that 
a∈LI (X) ∩X+ = LK(X). Then a is a K-atom.

Theorem 2.23: Any finite BCH-algebra is generated by 
I-atoms.

Proof: Let X be a finite BCH-algebra and x∈X*. Let

(x]: {a X a x}.∗= ∈ ≤

Then clearly x ∈ (x] and so (x]≠φ. Hence we can take 
a minimal element of (x], say a0. We claim that. a0∈LI(X).
For any z∈X*, assume that z*a0 = 0. Then z≤a0≤xand so 
z ∈ (x]. Since a0 is a minimal element of (x] it follows that 
z = a0. Hence a0∈LI(X) and x∈V(a0). Therefore

Ib L (X)X V(b).∗
∈= ∪

Theorem 2.24: LP(X) and L+(X) are subalgebras of X.

Proof: Let a,b∈LP(X). We have LP(X) = Med(X), so 
0*(0*a) = a and 0*(0*b) = b, then
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0 (0 (a b)) 0 ((0 a) (0 b))
0 (0 a)) (0 (0 b)) a b

∗ ∗ ∗ = ∗ ∗ ∗ ∗
= ∗ ∗ ∗ ∗ ∗ = ∗

It follows that a*b∈Med(X) = LP(X).

Note: The following example shows that L(X) may not 
be a subalgebra of X.

Example 2.25: Let X be BCH-algebra in Example 2.7. 
Then L(X) = {0, a, f, h, l, n} is not subalgebra of X, since 
a, l∈ L(X), but a*l = m∉L(X)

Definition 2.26: An ideal I of X satisfies the following 
condition x∈ I and a∈X\I imply x*a∈I, is called a *-ideal
of X.

Note: Every *-ideal is an ideal.

Lemma 2.27: Let I be an ideal of X. Then I is a closed *-
ideal of X if and only if LP(X) ⊆I.

Theorem 2.28: In X, the following conditions are
equivalent:
(i) Every nonzero element of X is a K-atom of X, i.e.,

X = LK(X)∪{0},
(ii) x*y=x, for all x, y ∈ X with x≠y,
(iii) x*(x*y) = 0, for all x, y∈ X with x≠y,
(iv) every subalgebra of X is a *-ideal of X.

Proof: (i)⇒(ii) Assume that (i) holds and let x, y ∈ X be 
such that x≠y. Then x*y≤x, since y∈X = LK(X)∪{0}. If 
x = 0, then obviously x*y=0 = x. Assume that x≠0. Then
x∈LK(X). Note that x*y≠0, because if y = 0, then 
x*y=x≠0 and if y≠0 and x, y∈LK(X) we have LK(X) is a 
subset of X, then 0≠x*y∈LK(X). Therefore x*y=x.
(ii) ⇒(iii) It is clear. 
(iii)⇒(i) Assume that (iii) holds and x∈ X. If x = 0, then 
we are done. Suppose x≠0. Then by (iii), we have 
0*(0*x) =0 therefore 0*x =0*(0*(0*x) = 0*0 = 0, then 
X=X+ and so LI(X) = LK(X).

Finally if X≠ LI(X)∪{0} then there exists
z(≠0)∈X\LI(X) such that a*z=0, for some a(≠0), z∈X. It
follows that a*(a*z) = a*0= a≠0, which is a
contradiction. Therefore X = LI(X)∪{0}= LK(X)∪{0}.
(ii)⇒(iv). Let S be a subalgebra of X and x*y, y∈S.
If x = y, then clearly x ∈ S. If x≠y, then x=x*y∈S. Hence
S is an ideal of X.

(iv)⇒(i). Note that L+(X) is a subalgebra of X. It 
follows from (iv) that L+(X) is a *-ideal of X. Clearly 
L+(X) is closed. Hence LP(X)⊆ L+(X) and so LP(X)={0}

since LP(X)∩ L+(X)={0}. This shows that L(X) = L+(X).
Now let a be a nonzero element of X and 0≠z∈X be such 
that z*a=0. Note that S: = {0, a} is a subalgebra of X and 
hence S is a *-ideal of X by (iv). Since S is an ideal of X,
it follows from z*a=0 that z∈ S and so z = a. This means 
that a∈LI(X)⊆ L(X) = L+(X). Since a≠0, it follows that 
a∈LK(X), i.e., a is a K-atom of X.

In the following we study branches of X. Note that 
V(a)∩V(b)≠φ, for some a, b ∈ LI(X) with a≠b as shown 
in the following example.

Example 2.29: Let X = {0, 1, 2, 3, 4}. The following table 
shows the BCH-algebra structure on X.

* 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 0 2
3 3 2 1 0 3
4 4 4 4 4 0

Then LI(X) = {1, 2, 4} and V (1) = {1, 3}, V (2) =
{2, 3}. Therefore V (1) ∩V (2) = {3}.

Now, we want to define a proper I-branch of X and 
the proper I-branch BCH-algebra.

Definition 2.30: Let a∈LK(X). Then a branch V (a) is 
called a proper I-branch if for all b∈ LI(X), V(a)∩V(b) ≠ φ
whenever a≠b. If every I-branch of X is a proper I-
branch of X, we say that X is a proper I-branch BCH-
algebra.

Lemma 2.31: If Pa L (X).∗∈ , then 0*(0*x) =a, for all x∈V(a).

Proof: Let Pa L(X)∗∈ and 0*(0*x) =ax, for all x ∈V (a). 
Then 0*(0*ax) =0*(0*(0*(0*x))) =ax and so ax∈Med(X) = 
LP(X). Then

xa a (0 (0 a)) (0 (0 x)) 0 (0 (a x)) 0∗ = ∗ ∗ ∗ ∗ ∗ = ∗ ∗ ∗ =

Since ax∈LP(X), it follows that a=ax=0*(0*x)).

Theorem 2.32: If a BCH-algebra X satisfies the
following conditions:
(i) c*a=c for all a∈LK(X) and c∈V(a)\{a},
(ii) every subalgebra S of X with |S|≥3 is an ideal of X,

then X is a proper I-branch BCH-algebra.
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Proof: Let a∈LI(X). Then either a∈LK(X) or
Pa L (X).∗∈ Consider the case Pa L (X).∗∈ We claim that

V(a)∩V(b)=φ, for all b∈LI(X) with a≠b. In fact, if
V(a)∩V(b)≠φ, for some b∈LI(X) with a≠b, then there 
exits c∈V(a)∩V(b). It follows from above lemma that 
0*(0*c) =a. In this case, b must be in PL (X)∗  because if 
b∈LK(X), then 0≤b≤c and so c∈X+, which implies that
a=0*(0*c) = 0, which is a contradiction. By above
lemma, we have a = 0*(0*c) = b which is a contradiction. 
Therefore V(a)∩V(b)=φ, for all b∈LI(X) with a≠b.

Now, consider the remaining case, if a∈LK(X).
Assume that V(a)∩V(b)≠φ for some b∈LI(X) with a≠b,
then there exists c∈V(a)∩V(b). If c = a, then b≤a implies
b = a since a∈LK(X). If c≠a, then c*a=c by (i). Hence S =
{0, a, c} is a subalgebra of X. It follows from (ii) that S is 
an ideal of X. Hence b*c=0∈S and c∈S imply b ∈S. But
b∈LI(X) implies b≠0 and so b = c or b = a. Since c not in 
LI(X), it follows that b = a, which is a contradiction. This 
prove that every I-branch of X is proper so that X is a 
proper I-branch BCH-algebra.

Theorem 2.33: Let X be a proper I-branch BCH-algebra
and a,b∈LI(X). Then a*y=a, for all a∈LP(X) and y∈X+.

Proof: Let a∈LP(X) and y∈X+. We have a*y≤a, since 
a∈LP(X), then a*y=a.

SOME TYPES OF IDEALS IN BCH-ALGEBRA

Definition 3.1: A nonempty subset I of X is called a 
P-ideal of X if

(i) 0∈I,
(ii) (x*z)*(y*z)∈I and y ∈I imply x∈ I, for all x, y, z ∈ X.

Proposition 3.2: Any P-ideal of X is an ideal of X.

Proof: Let I be a P-ideal, x*y∈I and y∈ I. Then x*y= 
(x*0)*(y*0) ∈I and y ∈I imply that x∈ I. 

The following example shows that the converse of 
above proposition is not correct in general.

Example 3.3: Let X = {0, 1, 2, 3, 4}. The following table 
shows BCH-algebra structure on X.

* 0 1 2 3 4
0 0 0 0 0 4
1 1 0 0 1 4
2 2 2 0 0 4
3 3 3 3 0 4
4 4 4 4 4 0

Then I = {0, 1} is an ideal of X, but it is not a P-
ideal, since (2*2)*(1*2) = 0∈I and 1∈I, but 2∉I.

Lemma 3.4: If I is a P-ideal of X, then X+⊆I

Proof: Let I be a P-ideal and a∈X+. Then 0*a=0∈I and 
(a*a)*(0*a)=0∈I since I is a P-ideal, therefore a∈I.

Remark 3.5: In BCI-algebra converse of above lemma is 
true but in BCH-algebra is not true. In Example 2.7 it is 
routine to show that I ={0, a, b, c, d, e, f, g} is an ideal 
and X+⊆I. Which is not a P-ideal because (m*l)* (g*l) 
=a*a=0∈I and g ∈I, but m∉I.

Theorem 3.6: Every nonzero element of X is a P-atom if 
and only if every subalgebra of X is a P-ideal of X.

Proof: Assume that every nonzero element of X is a P-
atom and S is a subalgebra of X. Since X = LP(X),
therefore X is P-semisimple and hence is medial. It 
follows from Definition 2.1 that (x*y)*(0*y) =
(x*0)*(y*y) = x and 

(x z) (y z) (x y) (z z) (x y) 0 x y∗ ∗ ∗ = ∗ ∗ ∗ = ∗ ∗ = ∗

Let (x*z)*(y*z)∈S and y∈S, for all x, y, z∈ X. Then

x (x y) (0 y) ((x z) (y z)) (0 y) S= ∗ ∗ ∗ = ∗ ∗ ∗ ∗ ∗ ∈

Therefore S is a P-ideal of X.
Conversely, suppose that every subalgebra of X is 

a P-ideal of X. Since LP(X) is a subalgebra of X and so is 
a P-ideal of X. Then we get that X+⊆LP(X). Note that 
X+∩LP(X) = {0}, so that X+ = {0} and X=LP(X). This 
implies that every nonzero element of X is a P-atom of X.

Definition 3.7: A nonempty subset I of X is called an 
implicative ideal of X if

(i) 0∈ I,
(ii) (x*(y*x))*z∈I and z ∈I imply x ∈I, for all x, y, z ∈ X.

Proposition  3.8: Any implicative ideal of X is an ideal 
of X.

Proof: Let I be an implicative ideal, x*z∈I and z ∈I. Then 
x*z=(x*0)*z = (x*(x*x))*z∈I and z ∈ I imply x ∈I.
        Every ideal need not be an implicative ideal as 
shown in the following example.
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Example 3.9: In Example 2.7, we can check that I = {0, a, 
b, c, d, e, f, g} is an ideal of X but (h*(0*h))*a = (h*h)*a
= 0∈I and a ∈I, but h∉I. Hence I is not an implicative 
ideal.

By the following examples we show that notions of 
implicative ideal and P-ideal are independent.

Example 3.10: Let X = {0, a, b}. The following table 
shows the BCH-algebra structure on X.

* 0 a b

0 0 0 0

a a 0 a

b b b 0

Now, we can see that I = {0, a} is an implicative 
ideal but is not P-ideal, because (b*b)*(0*b)=0∈I and
0∈ I, but b∉I.

Example 3.11: Let X = {0, a, b, c}. The following table 
shows the BCH-algebra structure on X.

* 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Then I = {0, a} is a P-ideal, also (b*(0*b))*a =
(b*b)*a = a∈I and a∈ I, but b∉I. So I is not an 
implicative ideal.

Theorem 3.12: Let I be an ideal of X. Then I is an 
implicative ideal if and only if x*(y*x)∈I imply that x∈ I.

Proof: Assume that I is an implicative ideal and
x*(y*x)∈I. Consider (x*(y*x))*(x*(y*x)) = 0∈I, by
hypothesis we get that x ∈ I.

Conversely, let I be an ideal. Now, let (x*(y*x))*z∈I
and z∈ I and so x*(y*x)∈I, By hypothesis x ∈ I, 
therefore I is an implicative ideal.

Theorem 3.13: Any nonzero element of X is a K-atom if 
and only if every subset of X is an implicative ideal of X.

Proof: Assume that every nonzero element of X is a K-
atom, hence X = LK(X) and I are subalgebras of X. We 
have (x*(y*x))*x = 0*(y*x) = (0*y)* (0*x) = 0 for all x, y∈
X Since x is a K-atom therefore x = x*(y*x). Now,

consider (x*(y*x))*z∈I and z∈ I, then (x*(y*x))*z = 
x*z∈I, for all x, y, z ∈ X. Also we have (x*z)*x = 0*z = 0.
Since x is a K-atom therefore x*z = x, hence x∈ I. So S is 
an implicative ideal of X.

Conversely, suppose that every subalgebra of X is 
an implicative ideal of X. We first show that 0*x = 0 for
all x∈ X. Since A= {0} is nonempty subalgebra of X, 
therefore A is an implicative ideal. We deduce that

(0 x) (((0 x) x) (0 x))
(0 (((0 x) x)*(0 x))) x
((0 ((0 x) x)) (0 (0 x))) x
(((0 (0 x)) (0 x)) (0 (0 x))) x
(0 (0 x)) x
(0 x) (0 x) 0

∗ ∗ ∗ ∗ ∗ ∗
= ∗ ∗ ∗ ∗ ∗
= ∗ ∗ ∗ ∗ ∗ ∗ ∗
= ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
= ∗ ∗ ∗

= ∗ ∗ ∗ =

Hence ((0*x)*(((0*x)*x)*(0*x)))*0=0∈A and 0∈ A imply 
0*x∈A. Therefore 0*x=0. Further for x∈X\{0}, we get 
that I = {0, x} is subalgebra of X, then is an implicative 
ideal. Now let y*x=0 for some y∈X\{0}, then y*x = 
(y*(y*y))*x = 0∈I and x ∈I imply that y ∈ I. Hence y = x.
Therefore x is a K-atom.

Definition 3.14: A nonempty subset I of X is called a 
positive implicative ideal of X if

(i) 0∈ I,
(ii) (x*y)*z∈I and y*z∈I imply x*z∈I for all x, y, z ∈ X.

Proposition 3.15: Every positive implicative ideal is an 
ideal.

Proof: Let x*y∈I and y ∈ I. Then (x*y)*0 = x*y∈I and
y*0 = y∈I, by hypothesis we get that x = x*0∈I. Hence I 
is an ideal. 

Example 3.16: Let X = {0, 1, 2, 3}. The following table 
shows the BCH-algebra structure on X.

* 0 1 2 3

0 0 0 0 0

1 1 0 1 1

2 2 2 0 3

3 3 3 3 0

Then I = {0, 3} is an ideal of X, but is not a positive 
implicative ideal, since (2*3)*1 = 3∈I and 3*1 = 3∈I but 
2*1 = 2 is not in I.
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Remark 3.17: The next examples shows that the
notions positive implicative ideal, implicative ideal and 
P-ideal are independent.

(1) Let X = {0, a, b, e}. The following table shows 
the BCH-algebra structure on X.

* 0 a b e

0 0 0 0 0

a a 0 a 0

b b b 0 0

e e e e 0

We can check that I = {0, a} is a positive implicative 
ideal which is not an implicative ideal, since (b*(e*b))*a 
= (b*e)*a = 0∈I and a ∈I, but b I∉ .
Also I is not a P-ideal, since 

(b b) (a b) 0 a 0 I∗ ∗ ∗ = ∗ = ∈

and a ∈I, but b I∉

(2) In example 3.11, consider I = {0, a}. Then I is a P-
ideal, but is not a positive implicate ideal, since 

(a b) b c b a I∗ ∗ = ∗ = ∈

and b*b = 0∈I, but a*b = c is not in I.

Remark 3.18: We showed if every subset I of X is an 
implicative ideal, then every nonzero element a of X is 
K-atoms. Also if every subset I of X is P-ideal then a is 
P-atoms .
    In remark 3.16 we showed that a positive implicative 
ideal is not necessary implicative ideal or P-ideal. So 
there is no relationship between K-atoms and P-atoms
and positive implicative ideal.

Definition 3.19: An ideal I of X is called a normal ideal if 
x*(x*y)∈I implies y*(y*x)∈I, for all x, y∈X.

Example 3.20: Let X = {0, 1, 2, 3}. The following table 
shows the BCH-algebra structure on X.

* 0 1 2 3

0 0 0 0 0

1 1 0 0 1

2 2 3 0 3

3 3 0 0 0

Then I = {0, 3} is an ideal of X. But I is not a normal 
ideal, since 2*(2*1) ∈I, but 1 (1 2) I.∗ ∗ ∉

In the following example, we show that every
normal ideal need not be a P-ideal, implicative ideal or 
positive implicative ideal.

Example 3.21: Let X = {0, a, b, c}. The following table
shows the BCH-algebra structure on X.

* 0 a b c
0 0 0 0 0
a a 0 0 a
b b b 0 0
c c c b 0

Then I = {0, a} is a normal ideal. But I is not a P-
ideal, since (b*b)*(0*b) = 0∈I and 0∈ I, but b I∉ .

Also I is not an implicative ideal, since (b*(c*b))*0 
= (b*b)*0 = 0∈I and 0 ∈ I, but b is not in I.

I is not a positive implicative ideal, since (c*b)*b = 
b*b = 0∈I and b*b = 0 ∈I, but c b b I.∗ = ∉

Proposition 3.22: Let I be a normal ideal of X. Then I is 
a closed ideal.

Proof: Consider (0*x)*((0*x)*0) = (0*x)*(0*x) = 0∈I.
Since I is a normal ideal, we get that 0*x = (0*(0*(0*x))) 
∈I.

Remark 3.23: The converse of above proposition is 
not true in general, since in  Example 3.20, consider 
the ideal I = {0, 3}, which is a closed ideal but is not a 
normal ideal.

Definition 3.24: An element x ∈X is called positive if 
0≤x and an ideal I of X is called a positive ideal of X if 
any x∈ I be positive.

In the following example, we show that every
positive ideal need not be a P-ideal or positive
implicative ideal.

Example 3.25: Let X = {0, 1, 2, 3}. The following table 
shows the BCH-algebra structure on X.

* 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 3 0 3
3 3 0 0 0
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(1) We can check that I = {0, 3} is a positive ideal. 
(2) I is not a P-ideal, since (1*1)*(0*1) = 0∈I and 0∈I,

but 1 is not in I. 
(3) Also I is not a positive implicative ideal, since 

(1*2)*3 = 0∈I and 2*3 = 3∈I, but1 3 1 I∗ = ∉ .

In the following example we show that a normal 
ideal need not be a positive ideal.

Example 3.26: Let X = {0, 1, 2, 3}. The following table 
shows the BCH-algebra structure on X.

* 0 1 2 3
0 0 0 2 2
1 1 0 2 2
2 2 2 0 0
3 3 2 1 0

Then I = {0, 1, 2} is a normal ideal but is not a 
positive ideal, since 0*2=2≠0.

Definition 3.27: A nonempty subset I of X is called a 
fantastic ideal if

(i) 0∈I,
(ii) (x*y)*z∈I and z ∈I imply (x*(y*(y*x)))∈I, for all x, y, 

z∈X.

Lemma 3.28: Let I be an ideal of X. Then I is a fantastic 
ideal if and only if x*y∈I implies (x*(y*(y*x)))∈I.

Proof: Let I be a fantastic ideal and (x*y) = (x*y)*0∈I.
Since 0∈I then x*(y*(y*x))∈I.

Conversely, let (x*y)*z∈I and z∈I. Since I is an 
ideal, then x*y∈I. By hypothesis we get that
(x*(y*(y*x))) ∈I.

Definition 3.29: An ideal I of X is called an obstinate
ideal if x, y not in I imply x*y∈I or y*x∈I.

Remark 3.30: Every ideal is not an obstinate ideal 
because in Example 2.7, consider the ideal I = {0, a, b, c, 
d, e, f, g} of X. We can check that h,l I.∉ h l n I∗ = ∉

and l h n I.∗ = ∉

Proposition 3.31: Let x*(y*(y*x)) = x*y, for all
x,y I.∉ Then {0} is a fantastic ideal of X.

Proof: Let x*y∈I = {0}. If x = 0 then x*(y*(y*x)) = 
0*y*(y*0)) = 0∈I. therefore by Lemma 3.28 we conclude 
that I is a fantastic ideal. If y = 0 then x = x*0 = x*y = 0.

Hence x*(y*(y*x)) = 0∈I, therefore by lemma 3.28 we 
conclude that I is a fantastic ideal. If x,y 0,≠ by
hypothesis x*(y*(y*x)) = x*y∈I, then I is a fantastic 
ideal.

We show in the following example that the
converse of above proposition is not true in general. 

Example 3.32: Let X = {0, 1, 2, 3}. The following table 
shows the BCH-algebra structure on X.

* 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Then {0} is a fantastic ideal, but 1*(2*(2*1)) = 0 ≠ 3 
= 1*2.

In the following example, we show that every
obstinate ideal need not be a P-ideal, implicative ideal or 
positive implicative ideal.

Example 3.33: Let X = {0, 1, 2, 3}. The following table 
shows the BCH-algebra structure on X.

* 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 3 0 3
3 3 0 0 0

Then I = {0, 3} is an obstinate ideal of X. We know 
that (1*2)* (0*2) = 0∈I and 0 ∈I, but 1∉I then I is not a
P-ideal.

Also (2* (3*2))*3∈I and 3 ∈I, but 2 I∉ , then I is not an 
implicative ideal.

I is not positive implicative ideal, since (1*2)*3 = 0∈I
and 2*3 = 3∈I, but 1 3 1 I.∗ = ∉

CONCLUSION

We introduced the notion of K-atoms, P-atom and 
I-atom and research relations between them. Also we 
introduced the notion of (P, implicative, positive
implicative, normal, positive, obstinate and fantastic) 
ideals in BCH-algebras and gave characterizations of (P, 
implicative, positive implicative, normal, positive,
obstinate and fantastic) ideals. We also studied the 
relations between P-ideals, implicative ideals, positive
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implicative ideal, positive ideal, obstinate ideal, normal 
ideals and fantastic ideals. 
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