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INTRODUCTION

As it is well known, BCK/BCI-algebras are two 
classes of algebras of logic. They were introduced by 
Imai and Iseki [6-8]. BCI-algebras are generalizations 
of  BCK-algebras  Most  of  the  algebras related to the 
t-norm based logic, such as MTL-algebras, BL-algebras
[3, 4], hoop, MV-algebras and Boolean algebras et al.
are extensions of BCK-algebras.

In 1965, Zadeh [13] introduced the notion of a 
fuzzy subset of a set; fuzzy sets are a kind of useful 
mathematical structure to represent a collection of
objects whose boundary is vague. Since then it has 
become a vigorous area of research in different
domains, There have been a number of generalizations 
of  this  fundamental concept such as intuitionistic 
fuzzy sets, interval-valued fuzzy sets, vague sets, soft 
sets etc [2]. 

Lee [10] introduced the notion of bipolar-valued
fuzzy sets. Bipolar-valued fuzzy sets are an extension
of fuzzy sets whose membership degree range is
enlarged from the interval [0,1] to [-1,1].

In a bipolar-valued fuzzy set, the membership
degree 0 means that elements are irrelevant to the
corresponding property, the membership degree (0,1] 
indicates that elements somewhat satisfy the property 
and the membership degree [-1,0) indicates that
elements somewhat satisfy the implicit counter-
property. Bipolar-valued fuzzy sets and intuitionistic 
fuzzy sets look similar each other. However, they are 
different each other [10, 11].

Now, in this note we use the notion of Bipolar-
valued fuzzy set to establish the notion of bipolar-
valued fuzzy BCK/BCI-algebras; then we obtain some-
related which have been mentioned in the abstract. 

PRELIMINARIES

In this section, we present now some preliminaries 
on the theory of bipolar-valued fuzzy set. In his pioneer 
work [13], Zadeh proposed the theory of fuzzy sets. 
Since then it has been applied in wide varieties of fields 
like Computer Science, Management Science, Medical
Sciences, Engineering problems etc. to list a few only. 

Definition 2.1: [10] Let G be a nonempty set. A
bipolar-valued fuzzy set B in G is an object having the 
form

( ){ }B x, (x), (x) x G+ −= µ ν ∈

Where µ+: G→[0,1] and v−: G→[-1,0] are mappings. 
The positive membership degree µ+(x) denotes the 

satisfaction degree of an element x to the property 
corresponding to a bipolar-valued fuzzy set 

( ){ }B x, (x), (x) x G+ −= µ ν ∈

and the negative membership degree ν−(x) denotes the 
satisfaction degree of an element x to some implicit 
counter-property corresponding to a bipolar-valued
fuzzy set 

( ){ }B x, (x), (x) x G+ −= µ ν ∈

If µ+(x)≠0 and v−(x)= 0, it is the situation that x is 
regarded as having only positive satisfaction for 
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( ){ }B x, (x), (x) x G+ −= µ ν ∈

If µ−(x)=0 and v−(x)≠0, it is the situation that x
does not satisfy the property of

( ){ }B x, (x), (x) x G+ −= µ ν ∈

but somewhat satisfies the counter property of 

( ){ }B x, (x), (x) x G+ −= µ ν ∈

It is possible for an element x to be such that 
µ+(x)≠0 and v−(x)≠0 when the membership function of 
the  property  overlaps  that  of  its counter  property 
over some portion of G. For the sake of simplicity, we 
shall use the symbol B = (µ+,ν−) for the bipolar-valued
fuzzy set 

( ){ }B x, (x), (x) x G+ −= µ ν ∈ .

Definition 2.2: [6]. Let X be a non-empty set with a 
binary operation "*" and a constant "0". Then (X,*,0) is 
called a BCI-algebra if it satisfies the following
conditions:

(i) ((x*y)*(x*z))*(z*y) = 0
(ii) (x*(x*y))*y = 0
(iii) x*x = 0
(iv) x*y = 0

and y*x = 0 imply x = y, for all x, y, z∈ X

We can define a partial ordering ≤ by x≤y if and 
only if x*y = 0.

If a BCI-algebra X satisfies 0*x=0, for all x∈X,
then we say that X is a BCK-algebra.

A nonempty subset S of X is called a subalgebra of 
X if x*y∈S, for all x, y∈S.

We refer the reader to the books [5, 12] for further 
information regarding BCK/BCI-algebra X. 

Definition 2.3: [12] Let µ be a fuzzy set in a BCK/BCI-
algebra. Then µ is called a fuzzy BCK/BCI-subalgebra
of X if 

{ }(x y) min (x), (y)µ ∗ ≥ µ µ

for all x, y∈X.

BIPOLAR-VALUED FUZZY 
SUBALGEBRAS OF BCK-ALGEBRAS

From now on (X,*,0) is a BCK/BCI-algebra, unless 
otherwise is stated. 

Definition 3.1: A bipolar-valued fuzzy set B = (µ+,ν−)
is said to be a bipolar-valued fuzzy subalgebra a
BCK/BCI-algebras X if it satisfies the following
conditions:

(BF1) { }(x y) min (x), (y)+ + +µ ∗ ≥ µ µ

(BF2) { }(x y) max (x), (y)− − −ν ∗ ≤ ν ν

for all x, y∈X.

Example 3.2: Consider a BCI-algebra X = {0, a, b, c} 
with the following Cayley table: 

* 0 a b c

0 0 a b c

a a 0 c b
b b c 0 a
c c b a 0

Let B = (µ+,ν−) be a bipolar-valued fuzzy set in X 
with the mappings µ+ and ν− defined by: 

0.7 if x 0
(x)

0.3 if x 0
+ =

µ =  ≠
and

0.4 if x 0
(x)

0.2 if x 0
− − =

ν = − ≠

It is routine to verify that B is a bipolar-valued
fuzzy subalgebra of X.

Lemma 3.3: If B is a bipolar-valued fuzzy subalgebra 
of X, then µ+(0)≥ µ+(x) and v−(0)≤v−(x) for all x∈X.

Proposition 3.4: Let B be a bipolar-valued fuzzy
subalgebra of X and let n∈N. Then

(i)

n

n

( x x) (x)

and ( x x) (x)

foranyoddnumbern

+ +

− −

µ ∗ ≥ µ

ν ∗ ≤ ν

∏

∏
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(ii)

n

n

( x x) (x)

and ( x x) (x)

foranyevennumbern

+ +

− −

µ ∗ = µ

ν ∗ = ν

∏
∏

n timesn

where x x x x x
−

∗ = ∗ ∗ ∗∏




Proof: Let x∈X and assume that n is odd. Then n = 2k-
1 for some positive integer k. We prove by induction, 
definition and above lemma imply that 

(x x) (0) (x)+ + +µ ∗ = µ ≥µ

Now suppose that 

2k 1

( x x) (x)
−

+ +µ ∗ ≥ µ∏

Then by assumption

2(k 1) 1 2k 1

( x x) ( x x)
+ − +

+ +µ ∗ = µ ∗∏ ∏
( )

2k 1

( x x (x x))
−

+= µ ∗ ∗ ∗∏
2k 1

( x x)
−

+= µ ∗∏
(x)+≥ µ .

also
2(k 1) 1 2k 1

( x x) ( x x)
+ − +

− −ν ∗ = ν ∗∏ ∏
( )

2k 1

( x x (x x))
−

−= ν ∗ ∗ ∗∏
2k 1

( x x)
−

−= ν ∗∏
(x)−≤ ν

Which proves (i). Similarly we can prove (ii). 

Theorem 3.5: Let B be a bipolar-valued fuzzy
subalgebra of X. If there exists a sequence {xn} in X, 
such that 

n nn n
lim (x ) 1 and lim (x ) 1+ −
→∞ →∞

µ = ν = − .

Then (0) 1and (0) 1+ −µ = ν = − .

Proof: By above lemma we have µ+(0)≥ µ+(x), for all 
x∈X, thus µ+(0)≥ µ+(x), for every positive integer n. 
Consider

nn
1 (0) lim (x ) 1+ +

→∞
≥ µ ≥ µ =

Hence µ+(0) = 1 and similarly we have v−(0) =-1.

Theorem 3.6: The family of bipolar-valued fuzzy
subalgebras of X  forms  a  complete  distributive 
lattice under the ordering of bipolar-valued fuzzy set 
inclusion ⊂.

Proof: Let {Bi | i∈I} be a family of bipolar-valued
fuzzy subalgebras of X. Since [0,1] is a completely 
distributive lattice with respect to the usual ordering in 

[0,1], it is sufficient to show that ( )i i iB ,+ −= ∨µ ∧ν  is a 

bipolar-valued fuzzy subalgebra of X. Let x∈X. Then 

{ }i i( )(x y) sup (x y) i I+ +∨µ ∗ = µ ∗ ∈

{ }{ }i isup max (x), (y) i I+ +≥ µ µ ∈

{ } { }( )i imax sup (x) i I ,sup (y) i I+ += µ ∈ µ ∈

( )i imax (x), (y)+ += ∨µ ∨ µ

Also we have 

{ }i i( )(x y) inf (x y) i I− −∧ν ∗ = ν ∗ ∈

{ }{ }i iinf min (x), (y) i I− −≤ ν ν ∈

{ } { }( )i imin inf (x) i I ,inf (y) i I− −= ν ∈ ν ∈

( )i imin (x), (y)− −= ∧ν ∧ν

Hence ( )i i iB ,+ −= ∨µ ∧ν  is a bipolar-valued fuzzy

subalgebra of X.
A fuzzy set µ of X is called anti fuzzy subalgebra 

of X, if µ(x*y)≤max {µ(x), µ(y)}, for all x, y∈X.

Proposition 3.7: A bipolar-valued fuzzy set B of X is a 
bipolar-valued fuzzy subalgebra of X if and only if µ+ is 
a fuzzy subalgebra and ν− is an anti fuzzy subalgebra of 
X.

Definition 3.8: Let B = (µ+,ν−) be a bipolar-valued
fuzzy set and (s, t)∈[-1,0]×[0,1].
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1) The sets { }tB x X (x) t+ += ∈ µ ≥ and

{ }sB x G (x) s− −= ∈ ν ≤ which are called positive t-

cut of B = (µ+,ν−) and negative s-cut of B = (µ+,ν−),
respectively,

2) The sets { }tB x X (x) t> + += ∈ µ > and

{ }sB x G (x) s< − −= ∈ ν < which are called strong

positive t-cut of B = (µ+,ν−) and the strong negative 
s-cut of B = (µ+,ν−), respectively, 

3) The set { }(t,s)
BX x X (x) t, (x) s+ −= ∈ µ ≥ ν ≤ is

called an (s, t)-level subset of B, 

4) The set { }(t,s)S
BX x X (x) t, (x) s+ −= ∈ µ > ν < is

called a strong (s, t)-level subset of B,
5) The set of all (s, t)∈Im(µ+)×Im(v−) is called the 

image of B = (µ+,ν−).

Theorem 3.9: Let B be a bipolar-valued fuzzy subset of 
X such that the least upper bound to of Im (µ+) and the 
greatest lower bound s0 of Im(v−) exist. Then the
following conditions are equivalent:

(i) B is a bipolar-valued fuzzy subalgebra of X,

(i) For all (s, t)∈Im(v−)×Im(µ+), the nonempty strong 

level subset (t,s)
BX  of B is a (crisp) subalgebra of X.

(iii) For all (s, t)∈Im(v−)×Im(µ−+)\(s0,t0), the nonempty 

strong level subset (t,s)S
BX  of B is a (crisp)

subalgebra of X.
(iv) For all (s, t)∈-1,0×0,1, the nonempty strong 

level subset (t,s)S
BX  of B is a (crisp) subalgebra of 

X.
(v) For all (s, t)∈[-1,0]×[0,1], the nonempty level

subset (t,s)
BX  of B is a (crisp) subalgebra of .

Proof: (i→iv) Let B be a bipolar-valued fuzzy
subalgebra of X, (s, t)∈[-1,0] ×[0,1] and

(t,s)S
Bx,y X∈ .Then we have 

{ } { }(x y) min (x), (y) min t,t t+ + +µ ∗ ≥ µ µ > =

and

{ } { }(x y) max (x), (y) max s,s s− − −ν ∗ ≤ ν ν < =

Thus (t,s)S
Bx y X∗ ∈ . Hence (t,s)S

BX  is a (crisp)
subalgebra of X.

(iv→iii) It is clear

(iii→ii) Let (s, t)∈Im(µ+)×Im(v−). Then (t,s)
BX is

nonempty. Since 

(t,s) ( , )S
B B

t ,s

X X β α

>β <α

= 

where β∈Im (µ+)\t0 and α∈Im (v−)\s0. Then by (iii) we 
get that (t,s)

BX is a (crisp) subalgebra of X.

(ii→v) Let (s, t)∈[-1,0]×[0,1] and (t,s)
BX  be

nonempty. Suppose that (t,s)
Bx,y X∈ . Let

{ }min (x), (y)+ +α = µ µ  and { }max (x), (y)− −β = ν ν . It is 

clear that α≥s and β≤t. Thus (t,s)
Bx,y X∈  and α∈Im(µ+)

and β∈Im(v−), by (ii) ( , )
BX α β  is a subalgebra of X, hence 

( , )
Bx y X α β∗ ∈ . Then we have

{ }
{ }

(x y) min (x), (y)

min , s

+ + +µ ∗ ≥ µ µ

> α α = α ≥

and

{ }
{ }

(x y) max (x), (y)

max , t

− − −ν ∗ ≤ ν ν

≤ β β = β ≤

Therefore (t,s)
Bx y X∗ ∈ . Then (t,s)

BX is a (crisp)
subalgebra of X.

(v→i) Assume that the nonempty set (t,s)
BX is a 

(crisp) subalgebra of X, for any (s, t)∈[-1,0]×[0,1]. In 
contrary, let x0, y0∈X be such that 

{ }0 0 0 0(x y ) min (x ), (y )+ + +µ ∗ < µ µ

and

{ }0 0 0 0(x y ) max (x ), (y )− − −ν ∗ > ν ν .

Let

0 0 0 0

0 0

(x ) , (y ) , (x y )

(x ) , (y )

+ + +

− −

µ = α µ = β µ ∗ = λ

ν = θ ν = γ
and

0 0(x y )−ν ∗ = ν

Then
{ } { }min , max ,λ < α β ν > θ γ

put

{ }( )1 0 0 0 0
1

(x y ) min (x ), (y )
2

+ + +λ = µ ∗ + µ µ

and

{ }( )1 0 0 0 0
1

v (x y ) max (x ), (y )
2

− − −ν = ∗ + ν ν
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Therefore

{ }( )

{ }( )

1

1

1 min ,
2
1

max ,
2

λ = λ + α β

ν = ν+ θ γ
.

Hence

{ }( )

{ }( )

1

1

1 min ,
2
1

max ,
2

α > λ = λ + α β > λ

ν > ν = ν + θ γ > θ

Thus
{ }
{ }

1 0 0

1 0 0

min , (x y )

max , (x y )

+

−

α β > λ > λ = µ ∗

θ γ < ν < ν = ν ∗

so that 
11 1( , )

0 0 B(x y ) X λ ν∗ ∉

Which is a contradiction, since 

{ }
{ }

0 1

0 1

(x ) min ,

(y ) min ,

+

+

µ = α ≥ α β > λ

µ = β ≥ α β > λ

and
{ }
{ }

0 1

0 1

(x ) max ,

(y ) max ,

−

−

ν = θ ≤ γ θ < ν

ν = γ ≤ γ θ < ν
,

imply that ),(
00

11)( BXyx ∈∗ . Thus

{ }(x y) min (x), (y)+ + +µ ∗ ≥ µ µ

and

{ }(x y) max (x), (y)− − −ν ∗ ≤ ν ν

For all x, y∈X. Now the proof is completed. 

Theorem 3.10: Each subalgebra of X is a level
subalgebra of a bipolar-valued fuzzy subalgebra of X.

Proof: Let Y be subalgebra of X and B be a bipolar-
valued fuzzy subset of X which is defined is defined by: 

if x Y
(x)

0 otherwise
+ α ∈

µ = 


if x Y
(x)

0 otherwise
− β ∈

ν = 


Where α∈[0,1] and β∈[-1,0]. It is clear that (t,s)
BX Y= .

Let x,y∈X. We consider the following cases: 

Case 1) If x, y∈Y, then x*y∈Y, therefore

{ } { }(x y) min , min (x), (y)+ + +µ ∗ = α = α α = µ µ

and
{ } { }(x y) max , max (x), (y)− − −ν ∗ = β = β β = ν ν

Case 2) If x, y∉Y, then µ+(x) = 0 = µ+(y) and v−(x) = 0 
= v−(y) and so 

{ } { }(x y) 0 min 0,0 min (x), (y)+ + +µ ∗ ≥ = = µ µ

and
{ } { }(x y) 0 max 0,0 max (x), (y)− − −ν ∗ ≤ = = ν ν

Case 3) If x∈Y and y∉Y, then 

(y) 0 (y), (x)+ − +µ = = ν µ = α

and v−(x) = β. Thus 

{ }(x y) 0 min (x), (y)+ + +µ ∗ ≥ = µ µ

and

{ }(x y) 0 max (x), (y)− − −ν ∗ ≤ = ν ν

Case 4) If x∉Y and y∈Y, then by the same argument as 
in case 3, we can conclude the results. 

Therefore  B  is  a  bipolar-valued fuzzy subalgebra 
of X. 

Theorem 3.11: Let S be a subset of X and B be a 
bipolar-valued subset of X which is given in the proof 
of Theorem 3. 10. If B is a bipolar-valued fuzzy
subalgebra of X, then S is a subalgebra of X. 

Proof: Let B be a bipolar-valued fuzzy subalgebra of X 
and x, y∈S. Then µ+(x) = α = µ+(y) and v−(x) = β = 
v−(y), thus 

{ } { }(x y) min (x), (y) min ,+ + +µ ∗ ≥ µ µ = α α = α

and

{ } { }(x y) max (x), (y) max ,− − −ν ∗ ≤ ν ν = β β = β

Which implies that x*y∈S.
Now we generalize the Theorem 3. 10

Theorem 3.12: For any chain of subalgebras  of X
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0 1 rS S S X⊂ ⊂ =

There exists a bipolar-valued fuzzy subalgebra B of
X whose level subalgebras are exactly the subalgebras 
of this chain.

Proof: Consider the following sets of numbers 

0 1 rp p p> > >
and

0 1 rq q q< < <

where each p i∈[0,1] and qi∈[-1,0]. Define µ+ and v− by: 

i i 1 i(A \ A ) p+
−µ =  for all 0<i≤r and 0 0(A ) p+µ =  and 

v−(Ai\Ai-1) = qi, for all 0<t≤r and v−(A0) = q0.
We prove that B = (µ+,  v−) is a bipolar-valued

fuzzy subalgebra of X. Let x, y∈X, we consider the 
following cases: 

Case 1) If x, y∈Ai\Ai-1, then µ+(x) = pi = µ+(y) and 
v−(x) = qi = qi = v−(y). Since Ai is a subalgebra thus 
x*y∈Ai so x*y∈Ai\Ai-1 or x*y∈Ai-1 and in each of then 
we have 

{ }i(x y) p min (x), (y)+ + +µ ∗ ≥ = µ µ

and

{ }i(x y) q max (x), (y)− − −ν ∗ ≤ = ν ν

Case 2) If x, y∈Ai\Ai-1 and y∈Ai\Ai-1, where i<j. Then 
µ+(x) = pi = µ+(y) = pj and v−(y) = qj. Since Aj⊆Ai and 
Ai is a subalgebra of X, then x*y∈Ai. Hence 

{ }i(x y) p min (x), (y)+ + +µ ∗ ≥ = µ µ

and

{ }i(x y) q max (x), (y)− − −ν ∗ ≤ = ν ν

It is clear that 
{ }0 1 rIm( ) p , p , , p+µ = 

and
{ }0 1 rIm( ) q , q , ,q−ν = 

therefore the level subalgebras of µ+ and v− are given 
by the chain of subalgebras 

0 0 1 1 r rp q p q p q( , ) ( , ) ( , ) X+ − + − + −µ ν ⊂ µ ν ⊂ ⊂ µ ν =

We have 

{ }0 0p q 0 0 0( , ) x X (x) p , (x) q A+ − + −µ ν = ∈ µ ≥ ν ≤ =

It is clear that 
i ii p qA ( , )+ −⊆ µ ν . Let 

i ip qx ( , )+ −∈ µ ν .

Then µ+(x)≥pj and v−(x)≤qj then x∉Aj for j>i. So µ+(x)
∈ {p0, p1,…,pr} and v−(x) ∈ {q0, q1,…,qr}, thus x∈Ak

for k≤i, since Ak⊆Ai we get that x∈Ai. Hence

i ii p qA ( , ),+ −= µ ν  for 0≤i≤r.

Theorem 3.13: If B = (µ+, v−) is a bipolar-valued fuzzy 
subalgebra of X, then the set 

{ }BX x X (x) (0), (0) (x)+ + − −= ∈ µ = µ ν = ν

is a subalgebra of X.

Proof: Let x, y∈XB. Then µ+(x) = µ+(0) = µ+(y) and 
v−(x) = v−(0) = v−(y) and so 

{ }
{ }

(x y) min (x), (y)

min (0), (0) (0)

+ + +

+ + +

µ ∗ ≥ µ µ

= µ µ = µ

and

{ }
{ }

(x y) max (x), (y)

max (0), (0) (0)

− − −

− − −

ν ∗ ≤ ν ν

= ν ν = ν

By lemma 3.3, we get that µ+(x*y) = µ+(0) and 
v−(x*y) = v−(0) which means that x*y∈XB.

Theorem 3.14: Let M be a subset of X. Suppose the N 
is a bipolar-valued fuzzy set of X defined by: 

N
if M

(x)
otherwise

+ α α ∈
µ = β

and

N
if x M

(x)
otherwise

− γ ∈
ν = δ

For all α, β∈ [0,1] and γ, δ ∈ [-1,0] with α≥β and 
γ≤δ. Then N is  a  bipolar-valued fuzzy subalgebra if 
and only if M is a subalgebra of X. Moreover, in this 
case XN = M. 

Proof: Let N be a bipolar-valued fuzzy subalgebra. Let 
x, y∈X be such that x, y∈M. Then 

{ }
{ }

N N N(x y) min (x), (y)

min ,

+ + +µ ∗ ≥ µ µ

= α α = α

and
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{ }
{ }

N N N(x y) max (x), (y)

min ,

− − −ν ∗ ≤ ν ν

= γ γ = γ

Therefore x*y∈M
Conversely, suppose that M is a subalgebra of X, 

let x, y∈X.
(i) If x, y∈M, then x*y∈M, thus 

{ }N N N(x y) min (x), (y)+ + +µ ∗ = α = µ µ

and

{ }N N N(x y) max (x), (y)− − −ν ∗ = γ = ν ν

(ii) If x∉M or y∉M, them

{ }N N N(x y) min (x), (y)+ + +µ ∗ ≥ β = µ µ

and

{ }N N N(x y) max (x), (y)− − −ν ∗ ≤ δ = ν ν

This shows that N is a bipolar-valued fuzzy
subalgebra.
Moreover, we have 

{ }
{ }
N N N N N

N N

X : x X (x) (0), (x) (0)

x X (x) , (x) M

+ + − +

+ −

= ∈ µ = µ ν = µ

= ∈ µ = α ν = γ =

Definition 3.15: X is said to be Artinian if it satisfies
the descending chain condition on subalgebras (simply 
written as DCC), that is, for every chain
Ii⊇I2⊇…⊇In⊇… of subalgebras of X, there is a natural 
number i such that Ii = Ii+1 = …. 

Theorem 3.16: Each bipolar-valued fuzzy subalgebra 
X has finite values if and only if X is Artinian. 

Proof: Suppose that each bipolar-valued fuzzy
subalgebra of X has finite values. If X is not Artinian 
then there is a strictly descending chain

......21 ⊃⊃⊃⊃= nIIIX

of subalgebras of X, where ji II ⊃ expresses Ii⊇Ij but 

Ii≠Ij. We now construct the bipolar-valued fuzzy set B = 
(µ+, v−) of X by 

n n 1

n
n 1

n
if x I \ I ,n 1,2, ,

n 1
(x):

1 if x I ,

+
+

∞

=

 ∈ = +µ = 
 ∈







(x): (x)− +ν =−µ .

We first prove that B is a bipolar-valued fuzzy 
subalgebra of X. For this purpose, we need to verify 
that µ+ is a fuzzy subalgebra of X. We assume that x, 
y∈X. Now, we consider the following cases: 

Case 1: x, y∈In\In+1. In this case, x, y∈In and x*y∈In.
Thus

{ }n
(x y) min (x), (y)

n 1
+ + +µ ∗ ≥ = µ µ

+

Case 2: x∈In\In+1 and y∈Im\Im+1(n<m). In this case, x, 

y∈In and x*y∈In. Thus 

{ }n
(x y) min (x), (y)

n 1
+ + +µ ∗ ≥ = µ µ

+

Case 3: x∈In\In+1 and y∈Im\Im+1 (n>m). In this case, x, 

y∈Im and x*y∈Im. Thus 

{ }m
(x y) min (x), (y)

m 1
+ + +µ ∗ ≥ = µ µ

+

Therefore µ+ satisfies (BF1) and so µ+ is a fuzzy 
subalgebra of X. This shows that B is a bipolar-valued
fuzzy subalgebra of X, but the values of B are infinite, 
which is a contradiction. Thus X is Artinian. 

Conversely, suppose that X is Artinian. If there is a 
bipolar-valued fuzzy subalgebra B = (µ+, v−) of X with 
|Im(B)| = +∞, then |Im(µ+)| = +∞ or |Im(v−)| = +∞.
Without loss of generality, we may assume that |Im(µ+)|
= +∞. Select si∈|Im(µ+)|(i = 1,2,…) and s1<s2<…. Then 
U(µ+; si)(i = 1,2,…) are subalgebras of X and
U(µ;s1)⊇U(µ+;s2)⊇… with U(µ+;  si)≠ U(µ+;  si+1)(i = 
1,2,…) which is a contradiction. Similarly for Im(v−).
The proof is completed.

Definition 3.17: X is said to be Noetherian if every 
subalgebra of X is finitely generated. X is said to satisfy 
the ascending chain condition (briefly, ACC) if for
every ascending sequence I1⊆I2⊆… of subalgebras of X 
there is a natural number n such that Ii = In , for all i≥n.

Theorem 3.18: X is Noetherian if and only if for for 
any bipolar-valued fuzzy subalgebra B, the set Im(B) is 
a well ordered subset, that is, (Im(µ+),≤) and (Im(v−),≥)
are well ordered subsets of [0,1] and [-1,0],
respectively.
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Proof: (⇒) Suppose that X is Noetherian. For any 
chain t1>t2>… of Im(µ+), let t0 = inf {ti | i=1,2,…}. 
Then I:={x∈G | µ+(x)>t0} is a subalgebra of X and so I 
is finitely generated. Let I = (a1,…,ak]. Then
µ+(a1)∧…∧µ+(ak) is the least element of the chain
t1>t2>…. Thus (Im(µ+),≤) is a well ordered subset of 
[0,1]. By using the same argument as above, we can 
easily show that (Im(v−),≥) is a  well ordered subset of 
[-1,0]. Therefore, Im (B) is a well ordered subset.

(⇐) Let Im (B) be well ordered subset. If X is not 
Noetherian, then there is a strictly ascending sequence 
of subalgebras of X such that I1⊂I2⊂….
We construct the bipolar-valued fuzzy set B = (µ+,ν−) of 
X by 

n n 1

n
n 1

1
if x I \ I ,n 1,2, ,

n
(x):

0 if a I ,

−
+

∞

=

 ∈ =
µ = 
 ∉







(x): (x)− +ν =−µ

where I0=φ. By using similar method as the necessity 
part of Theorem 3.16, we can prove that B is a bipolar-
valued fuzzy subalgebra of X. Because Im(B) is not 
well ordered, which is a contradiction. This completes 
the proof.

CONCLUSION

Bipolar-valued fuzzy set is a generalization of
fuzzy sets. In the present paper, we have introduced the 
concept of bipolar-valued fuzzy subalgebras of
BCK/BCI-algebras and investigated some of their
useful properties. In our opinion, these definitions and 
main results can be similarly extended to some other 
algebraic systems such as groups, semigroups, rings, 
nearrings, semirings (hemirings), lattices and Lie
algebras. It is our hops that this work would other 
foundations for further study of the theory of
BCK/BCI-algebras. Our obtained results can be perhaps 
applied in engineering, soft computing or even in
medical diagnosis [1, 9].

In our future study of fuzzy structure of BCK/BCI-
algebras may be the following topics should be
considered:

• To establish a bipolar-valued fuzzy ideals of
BCK/BCI-algebras;

• To consider the structure of quotient BCK/BCI-
algebras by using these bipolar-valued fuzzy
ideals;

• To get more results in bipolar-valued fuzzy
BCK/BCI-algebras and application.
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