World Applied Sciences Journal 6 (Supplement 1): 01-06, 2009

ISSN 1818-4952
© IDOSI Publications, 2009

The Analytical Comparison of Qualitative Models of Software Systems

R. Khayami, A. Towhidi and K. Ziarati

Department of Computer Science and Engineering,
Shiraz University, Shiraz, Iran

Abstract: The main purpose of most software producers 1s to present a qualitative software system.
Software quality is a multi-dimensional content which is easily distinguishable and measurable. To determine

this content more exact, the qualitative models have been presented in which different aspects of this matter

are mvestigated. But the existences of different models and using different expressions have made the

comprehension of this content a little hard. This paper attempts to introduce mentioned about models and their
analytical comparison, determine software qualification and its qualitative characteristics more clearly. This

article can be used as a reference to investigate software qualification and its models. Also, it can help

stakeholders of software systems to explamn the qualitative requirements more exactly.

Key words: Software quality models -

Qualitative requirements - Software qualitative factors

INTRODUCTION

All software developers have a main purpose that 1s,
producing qualitative software. But there is no exact and
specified definition of software qualification that can be
confirmed by all specialists. Software qualification 1s not
one-dimensional content but 1s defined by a number of
characteristics. Considerable qualitative characteristics in
software system are presented in a semi-tree construction
called qualitative software model. Presented qualitative
models although have many common points, are different
and fields. This

investigating and comparing the presented models, tries

in some contents research by
to make a better comprehension of software qualification.
This analysis can make or provide an opportumty in order
to present new qualitative models especially for software
systems which have specific subjects. This paper can
provide a situation for stakeholders of software systems
to understand content qualification better and to express
their qualitative requirements more completely and more
exactly. This essay after the introduction, investigate the
content qualification in software system.

The rest of the paper i1s orgamized as follows.
Next the presented qualitative
models for Third

analyzes the mvolved elements of qualitative models.

section introduces

software systems. section
Finally, the last section compares the mentioned models

analytically.

SOFTWARE QUALIFICATION

Qualification content 1s ambiguous and all the people
express it as a purpose in producing the productions and
in giving the services. But it is difficult for all persons to
give an exact content and to determine the qualification.
The qualification is usuvally determined by expressing
the characteristics which belong to production. One
known expressed definition for software qualification
15 as "Conformance to explicitly stated functional
and performance requirements, explicitly documented
development standards and implicit characteristics that
are expected of all professionally developed software" [1].

So 1t 1s cleared that we should search for those
m producing software which have
conformity with above definition. In this way we can

characteristics

divide these system requirements in to two parts:
functional requirements and non-functional requirements.
Functional requirements are those which a system 1s
designed to do them and determine the functional and
of a

executive aims system. The non-functional

requirements are expressional called qualitative
requirements of a system. In fact in these requirements in
addition to system output, the function of a system is
considered. Matters like efficiency, extensibility and
maintainability, security and even the expense of
production can be mentioned here. So at first we should

attempt to define the qualitative characteristics and then

Corresponding Author: Mr. R. Khayam, Ph.D. Student of Computer Science and Engineering, Shiraz University, Shiraz, [ran

World Appl. Sci. J., 6 (Supplement 1): 01-06, 2009

to determine clear senses and proofs for them in order
to evaluate the degree of achieving those characteristics
by using them. Expressing these characteristics depend
on interested experiences and knowledge. If the level of
their awareness and experiences is not suitable and
sufficient, 1t 1s possible that in expressing the requirement
some qualitative characteristics which should be in
software, is going to be ignored or given with less
reason for investigating the
to determine all cualitative

umportance. Another
qualitative models is
characteristics based specialists’ view. So m qualitative
models in addition to organizing the software qualitative
characteristics, it i1s tried to determine exactly these
characteristics. In fact, qualitative characteristics are
expressed by the aim of defining"good and suitable”
software.

SOFTWARE QUALIFICATION MODELS
To explain and determine the qualitative
characteristics usually the qualitative models are used.
These models commonly have been expressedas a tree
- construction of qualitative characteristics and their

relationships. Investigating the
models, determine more better the suitable qualitative

main and known

characteristics m a software system. Interested by
studding these models can express their needs more
exacter and know that must define something n explaiming
their requirements in this field.

Mec-call Model: In this model a useful category or
classification for factors which affect the software
qualification has been expressed. This way gives and
suggests the software qualification based on three
aspects: Product Operation, Product Revision and
Product Transition. The classification of factors is as
follow [2]:

Product Operation: Correctness, reliability, efficiency,
mtegrity, usability.

Product Revision: Mamtainability, flexibility, testability.

Product
mnteroperability.

Transition: Portability, reusability,

Each factor in this model has been designed based on
a question expressed by one of the aspect (Figure 1).
The power point of this model is the relationship of
external quality factors with qualitative criteria of the

production. External quality is a quality that is measured
by active characteristics of a code which 1s under
performing and the qualification which is measured by
means of stable characteristic of code by programmer 1s
called internal quality [3].

Regarding that measurement of these factor m most
occasions and cases 18 very hard, i tlus model 1s
suggested that based on a series of metrics, they are
going to be evaluated The relationships between the
factors and the standards of this model have been
showed (Figure 2) and their relationships are in this
formula:

F=¢m +cm,+ ... +cm, (1)

In this relation F, is software quality factor, m, is nth
criteria and ¢, is regression coefficient which affect on
relative factor. Of course many of determined and defined
criteria m this model are measured only mentally and
subjectively.

The amount of any criteria of low scale to high scale

has been considered. The content given to these criteria's
depending on design consideration and production is
determined [3].
Boehm Model: With the previous model another
model was presented synchronically. Tn this model,
characteristics have been classified from the pomt of end
user, users in different view and users in different times.
This model has divided the characteristics m to three
levels that main characteristics have common pomts from
point of effective factors. This model in comparison to
previous model has designed and expressed some new
characteristics. Also it has hierarchy as well as the
previous one, but has mentioned the characteristics in
three levels. In following figure the relationship of
qualitative characteristics of this model has been showed
[4]. Despite of tlus fact that many more characteristics
have been given in this model, but there is not any way to
measure and evaluated them (Figure 3) [9].

ISO/IEC Model: This model expresses these following

characteristics as main characteristics of software
quality: functionality, reliability, usability, efficiency,
maintamability, portability.

In this model, factors are divided mto two levels:
and like the
previous models has hierarchy with this difference that

the sub-characteristics in this construction have been

characteristics and sub-characteristics;

considered in one characteristic [6]:

World Appl. 5ci. J., & (Supplement 1): 01-06, 2009

MAINTAINABILITY (CAN | FIX IT7)
FLEXIBILITY (CAM 1 CHANGE IT?)
TESTABILITY (CAN I TEST IT?)

PORTABILITY (WILL I BE ABLE TO USE IT
[]

AMOTHER MACHINE?)
(WILL 1 nt ABLE TO REUSE
SOME OF THE SOFTWARE?)
hllLI. 1 IE ABLE TO INTERFACE
ITH ANOTHER SYSTEM?)

REUSABILITY

INTEROPERABILITY

CORRECTNESS
RELIABILITY

EFFTCIENCY

INTEERITY
USABTLITY

Fig. 1: McCall's software quality factors

(DOES IT DO WHAT 1 WANT?)

(DDES IT DO IT ACCURATELY
ALL OF THE TIME?)

(WILL IT RUN ON MY HARDWARE
AS WELL AS IT CAn?)

(15 1T SECURE?)
(CAN 1 RUN IT7)

| }e
depen

ACCUTacy

Reliability

Compleienesy

As-is

usefilness Efficiency

Accountabiliy
i/

_Device eﬁ'x:wm

[P Assebiiy_]

// ‘ommunicativencss

Modifiability

Fig. 3: Boehm 's Quality Model

Fig. 2: McCall quality framework

Functionality: Suitability, accurateness, interoperability

and security.

Reliability: Maturity, fault tolerance, recoverability.

Usability: Understandability, learnability, operability.

Efficiency: Time behaviour, resource behaviour.

Maintainability: Analyzability, changeability, stability

and testability.

Portability: Adaptability, instalability,
replaceability.

conformance,

Thiz model has introduced §
characteristics as high level qualitative characteristics:
function ability, reliability, usability, efficiency and
maintain ability, portability, reusability and maturity
process. In fact it is like ISO/TEC model that reusability

and maturity process have been added to it.

Dromey Model:

FURPS Model: Suggestive model by Robert Grady and
Hewlett-Packard called "FURPS" divides the qualitative
factors in to two groups: functional requirements and
non-functional requirements.

Functional (F) Requirem ents: With software operation or
by investigating the outputs, the expectancy of inputs are
defined.

Non-functional Requirements: By means of usability (U),
reliability (R), performance (P) and supportability(S), the
software is defined [7].

World Appl. Sci. J., 6 (Supplement 1): 01-06, 2009

One wealk point of this model is the lack of attention
to software portability; this model also has not defined
any way to evaluate exactly the factors. With regard to
quality factors and defined characteristics, this model can
be a base for desigmng the qualitative standards for
different stages of software cycle. Relative characteristics
to any of these factors are as follow [5]:

Function: By means of aspects and program abilities, the
general properties and general security of system is
defined.

Usability: Regarding human factors, general beauty and
documentation 1s achieved.

Reliability: Measuring repetition speed and failure
mtensity, the accuracy of output results, average time
between two successive failures and recoverability from
failure and program predictability is evaluated.

Efficiency: Tt is expressed by means of processing speed,
reply time, amount of resource use, amount of out put and
amount of efficiency.

Supportability: adaptability and
serviceability (these 3 characteristics and usually called
maintainability) with testability, configurability, ease of
mstallation and ease of adaptation to local situation are

Extensibility,

characteristics that determine the supportability.

Kazman Model: Tt is one of the groups which have
been suggested by Kazman and his competitors, in
Software Engineering Institute. This grouping divides
the qualitative characteristics in to two observable
groups during the time performance and those which are
not defined during the performance and show during
the software existence cycle [8]. The characteristics of
these two groups are as follow:

» Efficiency, security, availability, function
* Modifiability, portability, reusability, mheritability
and testability

This group, in fact, has not presented specific
qualitative model, but had given ATAM evaluation way
to investigate the quality of software architecture.
In that way system interested should define their

qualitative model regarding their needs. Qualitative model

construction has been mode of a base called "utility” and
after that, there are 3 levels. The last level of this tree 1s
defined by a series scenario in order to test the qualitative
characteristics [9].

IEEE Model: [EEE I nstitute, in fact has given a scale
and standard to provide a qualitative model and has not
given a clear qualitative model. Tt has presented a tree
construction to show qualitative model and emphasizes
on how to design the measurement ways of qualitative
factors. This suggested construction is semi-tree and has
three levels. Last level is software metrics [10]. In this
model it is allowed to define metrics for any factors if there
1s a direct measureability after the first level. For the first
suggestion, a tree with factors and sub-factors are given
as follow:

Efficiency: Temporal economy and resource economy.
Reliability: Nondeficiency, error tolerance and availability

Function: Completeness, accuracy, security, compatibility
and interoperability.

Supportability: Testability, extensibility and correctability.

Portability: Independency from hardware, independency
from software, instalability and reusability.

Usability: Comprehensibility, ease of learming, usability,
communicativeness.

Comparing the Software Quality Models: Tn all of the
models, software quality or infect the production
profitless is described by means of some factors. Those
factors are defined by sub-factors and get more corrected
Most of the factors and

qualitative and are not directly measurable. Sub-factors in

aspects. sub-factors are
order to be meore concrete like factors, must be defined
more exactly.

This refinement 1s continued to the point which at 1t,
a series of system character 1s tics have a direct relation
with considerable factors. These characteristics are
sometimes implementation and it is hard to define a
specific size for them. Some of them are qualitative and
their size and measure depend on a person who evaluates
them. So it is tried to describe them in a way that

measuring becomes independent from the persons

Woarld Appl. Sci. J., 6 (Supplement 1): 01-06, 2007

15 refined into

is refined into

is measured b

I—‘r_; sub-characteristic] ———s —_— j{

Fig. 4: Element relations of software system quality model

Table 1: Constructional companson of quality models

Software System

Characteristic Structure McCall Bochm ISOMEC Dromey FURPS Kazman [EEE
First Level Factor H-Level Characteristic Charactenstic H-Level Attnbute Factor Cuality Attribute Factor
Second Lewvel Criteria Primitive Characteristic Sub - Characteristic Subordinate Attribute Attnbute Cuality Attobute Refinement Subfactor
Relation n:m n:m l:n l:n l1:n l:n l:n
Table 2: Comparison of main quality characten stics

Cuality Characteristic McCall Boehm [S0MEC Dromey FURFS Kazman [EEE
Testability ¥ * *

Comectness *

Efficiency / Performance X A ¥ * * A *
Understandability * *

Availahility £ Relishility * * * * * * *
Flexibility X A

Functiondity * ¥ ¥ * *
Human Engineering *

Becunty / Integnity * ¥

Interoperability *

Process Maturity *

Maintanability * * * ¥ ¥ * *
Modifiability *

Portability * * * * *
Reusshility * *

Usability % * * ® *

(Figure 4). On the other hand measurable mefrics in
producing software usually describe a qualitative
characteristic in a production. Sometimes we can give
several metrics for a characteristic that these metrics have
a relation with this characteristic. Also it is possible that
a metric emphasizes on several characteristics.

By investigating the suggested models it becomes
clear that, model producers as presenting their own model
define an observable definition of software quality.
Although their aim had been the same but in practice,
suggested models are different. So they are not exacily
the same in construction and concepts and qualitative
characteristics. Even their naming of different levels of
qualitative models (semi-tree construction) is not the same
and sometimes cause not to understanding the main
concepts for reader.

MeCall model has not considered the operation
characteristic, Boehm model has presented a model
regardless to any suggestion for measuring the
characteristics, FURPS model has ignored the portability,

ISO/ IEC model has showed the qualitative characteristic
measurement Kazman, McCall model are those which have
presented security at the first level.

Although in different models, factors and first level
qualitative characteristics are different from each other,
but it iz important to note and important to keep in mind
that, these factors are not independent from each other
semantically and sometimes they cover each other and
what has been presented in one model and at the first
level may have been given in first or second levels
factors. For example some zecond level factors (ISO/TEC)
have been presented in other models at the first level
(Table1).

For example some factors of second level of
ISO/IEC model have been given in other models at the
first level like: testability, comprehensibility, security,
interoperability, correct ability which, infect, are in factors
of the first level of this model. These matters have been
presented in Table 2 which has compared first level
factors of qualitative model s with each other.

World Appl. Sci. J., 6 (Supplement 1): 01-06, 2009

Tt is clear that some factors like efficiency, reliability
and availability, maimtamability, supportability portability,
usability and operability are in most of models. On the
other hand, based on Table 2 we could be found which
models cover less characteristics and which ones cover
more characteristics. It seems that if a new model 13 going
to be presented, can use these concepts and be
assure it covers efficiency, reliability and availability,
maintainability, supportability portability, usability and
operability factors in itself. To find a model with most
coverage level, model designers must pay attention to this
point that second level factors cover which concepts. In
fact, sub-factors of each models, show the main coverage
level. From the pomt of first level, ISO/EC, IEEE, Dromey
and McCall models cover more commeon factors, but if we
consider the second level sub-factors, [SO/IEC has more
complete level and covers more aspects of software
qualification.

CONCLUSION

Regarding the different definitions which exist
for software quality, the mamn aim of this paper 1s to
introduce and compare the given models for this
concept. In this way the ambiguity is vanished and a
suitable view of mam concept of software quality is
provided. This paper introduces not only the qualitative
factors, but also gives a framework for analytical
comparing software quality models. This comparison
consists of common points and differences of qualitative
models and despite of different expressions, makes a good
comprehension of software quality. This essay can be
considered as a reference for qualitative models of
software systems. This paper tries to help stakeholders to
have a correct comprehension about software quality.
Based on this matter, they can express their qualitative
requirements well and follow them in software production
cycle correctly.

As future works, this research can be as an
introduction to new qualitative models design, particularly
in special purpose software systems. Also, it can make a
good basis for designing the qualitative metrics of
software systems.

REFERENCES

1. Pressman, R.5., 2000. Software Engineering: A
Practitioner' approach. McGraw-hill.

2. Cavano, I.P. and . A. McCall, 1978. A Framework for
the Measurement of Software Quality. Procs. ACM
Software Quality Assurance Workshop, pp: 133-139.

3. Bevan, N, 1999. Quality in use: Meeting user needs
for quality. Journal of System and Software, Elsevier.,
49(1): 89-96.

4. Boehm, B'W., I.R. Brown, H. Lipow, G.J. Macleod
and M.J. Mermt, 1978. Characteristics of Software
Quality. Elsevier North-Holland.

5. Astudillo, H., 2005. Five Ontological Levels to
Describe and Evaluate Software Architecture. Rev.
Fac. Ing. Univ. Tarapaca, 13(1): 69-76.

6. ISO/MEC 9126, 1991. Information Technology-
software Product Evaluation: Quality Characteristics
and Guideline for Their Use.

7. Khosravi, K. and Y. Gueheneuc, 2004. A Quality
Model for Design Patterns, M. 5. Thesis, Laboratory
of Open Distributed Systems
Engineering, Dept. of Informatics and Operations
Research, Umiversity of Montreal.

8. Kazman R., L. Bass and P. Clements, 2003. Software
Architecture in Practice 2Ed. Addison Wesley.

9. Klem, M., P. Clements and R. Kazman, 2002.
Evaluating Software Architectures: Methods and
Case Studies. Addison Wesley.

10. TEEE, 1993. TEEE Standard for a Software Quality
Metrics Methodology, TEEE Std 1061-1992, TEEE
Computer Society.

and Software

