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A Transnormal Partial Tube Around A Non-Transnormal Manifold
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Abstract: In this paper we study transnormal partial tubes. The main aim is to introduce an example of a
transnormal partial tube whose base is not transnormal. Our example will be of a special type of embeddings
in .6

Key words: Transnormal manifold  Partial tube  Generating frame

INTRODUCTION Definition 2: [3] Let V be a transnormal manifold in .

The idea of transnormality is a generalization of the
concept of an m-hypersurface of constant width in  it (p) = V N (p)m+1

is due to S. Robertson [1, 2, 3] and contributions have
been made by B.Wegner [4-7], S.Carter and K. Al- If V is r-transnormal, then | (p)| = r  where | … | is the
Banawi [8-12]. The notion of constant width can be cardinality.
formulated as follows. Let M be a smooth compact It is true that any two generating frames are isometric.
connected m-manifold without boundary that is smoothly That is, if (p ) and (p ) are generating frames, then
embedded in . A chord of M is normal if it is normal to there exists a map F: (p ) (p ) which preservesm+1

M  at  one  of its endpoints and binormal if it is normal to distance. Also if V is a compact r-transnormal manifold,
M  at  both end points.The manifold M is of constant then r is even [2].
width if and only if every normal chord of M is binormal to
M. Each point of the endpoints is called the opposite of Transnormal Spherical Partial Tubes: The general
the other. definition of a partial tube was introduced in [13] as

Let M be a smooth connected m-manifold without follows. Let M be a smooth connected m-manifold without
boundary and let f: M  be a smooth embedding of M boundary. Let f : M  be a smooth embedding of M inton

into . Let V=f(M). For each point p V there exists a the Euclidean space , n = m+ k . For p M, let T M ben

unique tangent plane T V tangent to V at p with the tangent plane of M at p. Consider the normal bundlep

dimension m and a unique normal plane N V normal to V of M  and the smoothp

at p with dimension n-m. Thus, there are maps T and N endpoint map  defined by (p, v) = p + v.
with T(p) = T V and N(p) = N V .p p

Definition 1: [3] The m-manifold V is transnormal in  iff a smooth subbundle with type fibre S such that S is an

p, q V if q N (p) then N(q) = N(p). smooth manifold and /P is a smooth embedding called a

Let  W  be  the  space  of  normal  planes   of   V,  say called the base of the partial tube h. A partial tube is
W = N(V).  S.  Robertson  showed  that for any spherical if S is a sphere. The word partial is used if S is
transnormal embedding V in  the order of N as a embedded in a proper subplane of the normal plane at p.n

covering map is always finite [1]. If V is transnormal in Otherwise; the spherical tube is called a full tube.n

and the order of N is r, then V is called an r-transnormal Embeddings similar to h with S being an image of an
manifold. embedding were studied in [13].

n

Then the generating frame of V at p is;

1 2

1 2

n

n
p

Let  be the set of singular points of . Let P  be

smooth submanifold of . If P  is empty, then P is ak

partial tube around f. The manifold V=f(M) is usually
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Assume that f : M  is a smooth r-transnormaln

embedding of the compact connected m-manifold M
without boundary in the Euclidean space . Then then

next theorem ensures the existence of  0 such that the
above full tube is the image of an embedding. Also if p V
= f(M), then the normal plane of V at p, N(p), intersects
the full tube at points based at the points of the
generating frame (p). By a similar argument this result Consider the set
holds if the normal bundle is replaced by a subbundle P
of . S = {A M: traceA = 0, traceA  = 1}

Theorem 1: [11] Let f : M  be a smooth r-transnormaln

embedding of the compact connected m-manifold M The set S is the unit 4- sphere in the 5- plane {x  : x
without boundary into the Euclidean space . Then for + x  + x  = 0.n

some  0 sufficiently small.

The map | V is an embedding and in  given by;
For all p V, for all (q, v) | V,

(q, v) N(p) iff q N (p) V.

In the next theorem the dimension of the normal plane where x  + y  + z  = 1. A point on f(P ) is represented by
is the sum of the dimension of the parallel normal plane (d) A  where
and the dimension of its compliment (k).

Theorem    2:    [9]    Let   f:   M    be   a  smoothm+d+k

r-transnormal  embedding  of   the   compact  connected
m-manifold M without boundary into the Euclidean space

. Then there exists a 2r-transnormal embedding of am+d+k

(k-1) -sphere bundle over V=f(M) in  with image am+d+k

partial tube and V as its base. The point A(x, y, z) lies on S since,

ATransnormal PartialTube around a Non-Transnormal
Manifold: This section is an example of a transnormal
partial tube with a base that is not transnormal.

Let M be the set of 3 × 3 real symmetric matrices. For and
A, B M, define the metric,

<A,B> = trace A B

So if 

then < A, B> = a b  + a b  + a b  + 2(a b  + a b  + a b ).1 1 2 2 3 3 4 4 5 5 6 6

Now  assume  that   is  identified  with  M  such system.6

that  x = {x ,......,x }   is represented in M by the1 6
6

matrix.

2

= {x : x  + x  + x  = 0, ||x|| = 1)..6
1 2 3

6
1

2 3

Consider the embedding f of the projective plane P2

6

2 2 2 2

(x, y, z)

The eigenvalues of A(x, y, z) are the solutions of the
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That is, if the eigenvalues of A(x, y, z) are , , then Claim 1: The matrix QR R Q  is normal to  at QDQ1 2 3

(s) be a path in  through D such that P(0) = Q.

Since the embedding f is 2- dimensional, the matrix
A(x, y, z) only has two distinct eigenvalues, say  = . Now PP  = I  and so2 3

Using such a fact simplifies the problem of finding the
eigenvalues which are .

Conversely, let, Hence at . Thus, a tangent to  at

Also let,

So P is orthogonal, i.e. PP  = I . ThenT
3

In particular, R R  is normal to  at D. Thus, the

f is an embedding, f is not transnormal (a fact which is

So f(P ) can be identified by the set The aim now is to find four orthonormal vectors2

unit normal corresponds to RDR  = D itself, which is

Also if R O (3) such that RDR  = D then To find the other three in the orthonormal set,T

= trace R DR = traceR R D = 0.

That is, P  is identified with O(3)/O(2) × O(1) Let2

T T T

where  is diagonal and RDR  = D For, let s P(s) DPT T

A tangent to  at QDQ  isT

T
3

QDQ  isT

Now

T

equation R R  = PDP  has a solution corresponding to T T

= D and P = R where R as above.There are infinite choices
of R, which implies that the intersection between f(P ) and2

the affine normal plane of f(P ) at f(1,0,0) is infinite. Since2

already known since (P ) = 1).2

normal to f at f(x, y, z). Starting at the point f(1, 0, 0), one
T

v (1,0,0) = f(1,0,0).1

assume that  is diagonal and R R D. Then trace D1 1 1
T

1 1
T T

Thus, if  = diagonal (a, b, c) then 2a – b – c = 0.1
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and

Then

Let b = 2s, c = 2t then a = s + t.

Thus, In terms of x , y , z the above orthogonal matrix can be

or

where,

Thus,

Thus, the normal plane of f at f (1, 0, 0) is spanned by
the normals corresponding to the matrices D, I , A, B. To3

generalize the situation at any point on f , assume that

Then the corresponding matrices for the required
normals are QDQ , I , QAQ , QBQT T T

3

The first matrix QDQ - is the point itself and so theT

first unit normal is v  = f1

The second unit normal corresponds to I  and so,3

The third and fourth normals correspond to the
matrices.

One well known orthogonal 3 × 3 matrix is;

rewritten as;

and

Hence the other two unit normals are;

and
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Now consider the partial tube in  identified by; R(D + A)R  = D + A6

or

where > 0 and  [0,2 ]. Thus, the partial tube is based RDR  + RAR  = D + A.
at f and is built by circles of radii  in the normal plane
spanned by v  and v  at every point on f . Thus, RAR  = A and so3 4

Now let,

Then, That is, the domain of  is identified with O(3)/O(1) × O(1)

The eigenvalues of  are, A tangent to  at QJQ  is,

Since the partial tube is a 3-dimensional manifold, the
eigenvalues should be distinct, hence . Such a Hence at s = 0,  Thus, a tangent to  at

condition can be easily satisfied since needs to be small
to ensure that the partial tube is embedded. Also

where

Let H=PE , so H is orthogonal. Then the partial tube
is identified with,

Also if R O (3) such that RDR  = D and RJ R  = J, thenT T

T

T T

T

× O(1).

Claim 2: The matrix Q Q  is normal to  at QJQ  where T T

is diagonal.

For, let  be a path in  through J such
that H(0)=Q.

T

Now HH  = I  and so .T
3

QJQ  is,T

Now,

Assume that  is diagonal such that D and J1 1 1

Thus,

But 2a – b – c = 0. Hence b =  and so  - bI .1 3
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