World Applied Sciences Journal 34 (7): 865-870, 2016

ISSN 1818-4952

© IDOSI Publications, 2016

DOI: 10.5829/idosi.wasj.2016.34.7.143

A Transnormal Partial Tube Around A Non-Transnormal Manifold

¹Ali A. Al-Saraireh and ²Kamal A. Al-Banawi

¹Mutah, Al-Karak, Jordan

²Department of Mathematics, Faculty of Science, Mutah University, P.O. Box: 7, Al-Karak, Jordan

Abstract: In this paper we study transnormal partial tubes. The main aim is to introduce an example of a transnormal partial tube whose base is not transnormal. Our example will be of a special type of embeddings in \mathbb{R}^6 .

Key words: Transnormal manifold • Partial tube • Generating frame

INTRODUCTION

The idea of transnormality is a generalization of the concept of an m-hypersurface of constant width in \mathbb{R}^{m+1} it is due to S. Robertson [1, 2, 3] and contributions have been made by B.Wegner [4-7], S.Carter and K. Al-Banawi [8-12]. The notion of constant width can be formulated as follows. Let M be a smooth compact connected m-manifold without boundary that is smoothly embedded in \mathbb{R}^{m+1} . A chord of M is normal if it is normal to M at one of its endpoints and binormal if it is normal to M at both end points. The manifold M is of constant width if and only if every normal chord of M is binormal to M. Each point of the endpoints is called the opposite of the other.

Let M be a smooth connected m-manifold without boundary and let $f: M \to \mathbb{R}^n$ be a smooth embedding of M into \mathbb{R}^n . Let V=f(M). For each point $p \in V$ there exists a unique tangent plane T_pV tangent to V at p with dimension m and a unique normal plane N_pV normal to V at p with dimension n-m. Thus, there are maps T and N with $T(p) = T_pV$ and $N(p) = N_pV$.

Definition 1: [3] The *m*-manifold *V* is *transnormal* in \mathbb{R}^n iff

 $\forall p, q \in V \text{ if } q \in N(p) \text{ then } N(q) = N(p).$

Let W be the space of normal planes of V, say W = N(V). S. Robertson showed that for any transnormal embedding V in \mathbb{R}^n the order of N as a covering map is always finite [1]. If V is transnormal in \mathbb{R}^n and the order of N is r, then V is called an r-transnormal manifold.

Definition 2: [3] Let V be a transnormal manifold in \mathbb{R}^n . Then the *generating frame* of V at p is;

$$\phi(p) = V \cap N(p)$$

If *V* is *r*-transnormal, then $|\phi(p)| = r$ where $|\dots|$ is the cardinality.

It is true that any two generating frames are isometric. That is, if $\phi(p_1)$ and $\phi(p_2)$ are generating frames, then there exists a map F: $\phi(p_1) \rightarrow \phi(p_2)$ which preserves distance. Also if V is a compact r-transnormal manifold, then r is even [2].

Transnormal Spherical Partial Tubes: The general definition of a *partial tube* was introduced in [13] as follows. Let M be a smooth connected m-manifold without boundary. Let $f: M \to \mathbb{R}^n$ be a smooth embedding of M into the Euclidean space \mathbb{R}^n , n = m + k. For $p \in M$, let T_pM be the tangent plane of M at p. Consider the normal bundle of M $\aleph = \{(p,v): p \in M, v \perp T_pM\}$ and the smooth endpoint map $\eta: \aleph \to \square^n$ defined by $\eta(p,v) = p + v$.

Let Σ be the set of singular points of η . Let $P \subset \aleph$ be a smooth subbundle with type fibre S such that S is a smooth submanifold of \mathbb{R}^k . If $P \cap \Sigma$ is empty, then P is a smooth manifold and η/P is a smooth embedding called a partial tube around f. The manifold V=f(M) is usually called the base of the partial tube h. A partial tube is spherical if S is a sphere. The word partial is used if S is embedded in a proper subplane of the normal plane at P. Otherwise; the spherical tube is called a full tube. Embeddings similar to P0 with P1 being an image of an embedding were studied in [13].

Assume that $f: M \to \mathbb{R}^n$ is a smooth r-transnormal embedding of the compact connected m-manifold M without boundary in the Euclidean space \mathbb{R}^n . Then the next theorem ensures the existence of $\xi > 0$ such that the above full tube is the image of an embedding. Also if $p \in V = f(M)$, then the normal plane of V at p, N(p), intersects the full tube at points based at the points of the generating frame $\phi(p)$. By a similar argument this result holds if the normal bundle is replaced by a subbundle P of \Re .

Theorem 1: [11] Let $f: M \to \mathbb{R}^n$ be a smooth r-transnormal embedding of the compact connected m-manifold M without boundary into the Euclidean space \mathbb{R}^n . Then for some $\xi > 0$ sufficiently small.

- The map $\eta \mid \Re^{\xi} V$ is an embedding and
- For all $p \in V$, for all $(q, v) \in \eta | \Re^{\xi} V$,

$$\eta(q, v) \in N(p)$$
 iff $q \in N(p) \cap V$.

In the next theorem the dimension of the normal plane is the sum of the dimension of the parallel normal plane (d) and the dimension of its compliment (k).

Theorem 2: [9] Let $f: M \to \mathbb{R}^{m+d+k}$ be a smooth r-transnormal embedding of the compact connected m-manifold M without boundary into the Euclidean space \mathbb{R}^{m+d+k} . Then there exists a 2r-transnormal embedding of a (k-1) -sphere bundle over V=f(M) in \mathbb{R}^{m+d+k} with image a partial tube and V as its base.

$A Transnormal \ Partial \ Tube \ around \ a \ Non-Transnormal$

Manifold: This section is an example of a transnormal partial tube with a base that is not transnormal.

Let M be the set of 3×3 real symmetric matrices. For $A, B \in M$, define the metric,

So if
$$A = \begin{pmatrix} a_1 & a_4 & a_5 \\ a_4 & a_2 & a_6 \\ a_5 & a_6 & a_3 \end{pmatrix}$$
, $B = \begin{pmatrix} b_1 & b_4 & b_5 \\ b_4 & b_2 & b_6 \\ b_5 & b_6 & b_3 \end{pmatrix}$

then $\langle A, B \rangle = a_1b_1 + a_2b_2 + a_3b_3 + 2(a_4b_4 + a_5b_5 + a_6b_6)$.

Now assume that \mathbb{R}^6 is identified with M such that $x = \{x_1, \dots, x_6\} \in \mathbb{R}^6$ is represented in M by the matrix.

$$\begin{pmatrix} x_1 & \frac{1}{\sqrt{2}}x_4 & \frac{1}{\sqrt{2}}x_5 \\ \frac{1}{\sqrt{2}}x_4 & x_2 & \frac{1}{\sqrt{2}}x_6 \\ \frac{1}{\sqrt{2}}x_5 & \frac{1}{\sqrt{2}}x_6 & x_3 \end{pmatrix}$$

Consider the set

$$S = \{A \in M: traceA = 0, traceA^2 = 1\}$$

= $\{x \in \mathbb{R}^6: x_1 + x_2 + x_3 = 0, ||x|| = 1\}...$

The set S is the unit 4- sphere in the 5- plane $\{x \in \mathbb{R}^6 : x_1 + x_2 + x_3 = 0.$

Consider the embedding f of the projective plane P^2 in \mathbb{R}^6 given by;

$$f(x,y,z) = \left(\sqrt{\frac{3}{2}}(x^2 - \frac{1}{3}), \sqrt{\frac{3}{2}}(y^2 - \frac{1}{3}), \sqrt{\frac{3}{2}}(z^2 - \frac{1}{3}), \sqrt{3}xy, \sqrt{3}xz, \sqrt{3}yz\right)$$

where $x^2 + y^2 + z^2 = 1$. A point on $f(P^3)$ is represented by $A_{(x,y,z)}$ where

$$A_{(x,y,z)} = \sqrt{\frac{3}{2}} \begin{pmatrix} x^2 - \frac{1}{3} & xy & xz \\ xy & y^2 - \frac{1}{3} & yz \\ xz & yz & z^2 - \frac{1}{3} \end{pmatrix}.$$

The point A(x, y, z) lies on S since,

$$traceA_{(x,y,z)} = \sqrt{\frac{3}{2}}(x^2 + y^2 + z^2 - 1) = 0$$

and
$$trace A^{2}_{(x,y,z)} = ||f(x,y,z)||^{2}$$

$$= \frac{3}{2} \left(x^4 + y^4 + z^4 - \frac{2}{3} (x^2 + y^2 + z^2) + \frac{1}{3} \right) + 3(x^2 y^2 + x^2 z^2 + y^2 z^2)$$

$$= \frac{3}{2} (x^2 + y^2 + z^2)^2 - (x^2 + y^2 + z^2) + \frac{1}{2}$$

$$= \frac{3}{2} - 1 + \frac{1}{2} = 1.$$

The eigenvalues of A(x, y, z) are the solutions of the system.

$$traceA_{(x,y,z)} = 0, traceA_{(x,y,z)}^2 = 1, traceA_{(x,y,z)}^3 = \frac{1}{\sqrt{6}}$$

That is, if the eigenvalues of A(x, y, z) are $\lambda_1 \lambda_2, \lambda_3$, then

$$\begin{aligned} &\lambda_{1} + \lambda_{2} + \lambda_{3} = 0 \\ &\lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2} = 1 \\ &\lambda_{1}^{3} + \lambda_{2}^{3} + \lambda_{3}^{3} = \frac{1}{\sqrt{6}} \end{aligned}$$

Since the embedding f is 2- dimensional, the matrix A(x, y, z) only has two distinct eigenvalues, say $\lambda_2 = \lambda_3$. Using such a fact simplifies the problem of finding the eigenvalues which are $\lambda_1 = \frac{2}{\sqrt{6}}, \lambda_2 = -\frac{1}{\sqrt{6}}, \lambda_3 = -\frac{1}{\sqrt{6}}$.

Conversely, let,

$$D = \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & 0\\ 0 & -\frac{1}{\sqrt{6}} & 0\\ 0 & 0 & -\frac{1}{\sqrt{6}} \end{pmatrix} = A_{(1,0,0)}$$

Also let,

$$P = \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} \in O(3).$$

So *P* is orthogonal, i.e. $PP^T = I_3$. Then

$$PDP^{T} = \sqrt{\frac{3}{2}} \begin{pmatrix} u_{1}^{2} - \frac{1}{3} & u_{1}v_{1} & u_{1}w_{1} \\ u_{1}v_{1} & v_{1}^{2} - \frac{1}{3} & v_{1}w_{1} \\ u_{1}w_{1} & v_{1}w_{1} & w_{1}^{2} - \frac{1}{3} \end{pmatrix} = A_{(u_{1}, v_{1}, w_{1})}$$

So $f(P^2)$ can be identified by the set

$$\ell = \{PDP^T : P \in O(3)\}.$$

Also if $R \in O(3)$ such that $RDR^T = D$ then

$$R = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & v_2 & v_3 \\ 0 & w_2 & w_3 \end{pmatrix}, where \begin{pmatrix} v_2 & v_3 \\ w_2 & w_3 \end{pmatrix} \in O(2)$$

That is, P^2 is identified with $O(3)/O(2) \times O(1)$

Claim 1: The matrix $QR\Delta R^TQ^T$ is normal to ℓ at QDQ^T where Δ is diagonal and $RDR^T = D$ For, let $s \mapsto P(s) DP^T$ (s) be a path in ℓ through D such that P(0) = Q.

A tangent to ℓ at QDQ^T is

$$(\dot{P}DP^T + PD\dot{P}^T)|_{s=0} = \dot{P}DQ^T + QD\dot{P}^T$$

Now $PP^T = I_3$ and so

$$\dot{P}P^T + P\dot{P}^T = 0$$

Hence at $s = 0, \dot{P}^T = -Q^T \dot{P} Q^T$. Thus, a tangent to ℓ at QDQ^T is

$$\dot{P}DQ^T - QDQ^T\dot{P}Q^T$$

Now

$$<\dot{P}DQ^{T}-QDQ^{T}\dot{P}Q^{T},QR\Delta R^{T}Q^{T}>$$

$$= trace \dot{P}DQ^T QR\Delta R^T Q^T - trace QDQ^T \dot{P}Q^T QR\Delta R^T Q^T$$

$$= trace \dot{P}DR\Delta R^TQ^T - traceQDQ^T\dot{P}R\Delta R^TQ^T$$

$$= trace \dot{P}DR\Delta R^T Q^T - trace \dot{P}R\Delta R^T Q^T QDQ^T$$

$$= trace \dot{P}DR\Delta R^TQ^T - trace \dot{P}R\Delta DR^TQ^T$$

$$= trace \dot{P}DR\Delta R^TQ^T - trace \dot{P}RD\Delta R^TQ^T$$

$$= trace \dot{P}DR\Delta R^T Q^T - trace \dot{P}DR\Delta R^T Q^T = 0$$

In particular, $R\Delta R^T$ is normal to ℓ at D. Thus, the equation $R\Delta R^T = PDP^T$ has a solution corresponding to $\Delta = D$ and P = R where R as above. There are infinite choices of R, which implies that the intersection between $f(P^2)$ and the affine normal plane of $f(P^2)$ at f(1,0,0) is infinite. Since f is an embedding, f is not transnormal (a fact which is already known since $\chi(P^2) = 1$).

The aim now is to find four orthonormal vectors normal to f at f(x, y, z). Starting at the point f(1, 0, 0), one unit normal corresponds to $RDR^T = D$ itself, which is $v_1(1,0,0) = f(1,0,0)$.

To find the other three in the orthonormal set, assume that Δ_1 is diagonal and $R\Delta_1R^T \perp D$. Then $trace\Delta_1D$ = $trace\Delta_1R^TDR = traceR\Delta_1R^TD = 0$.

Thus, if $\Delta_1 = diagonal(a, b, c)$ then 2a - b - c = 0.

Let

$$R = \begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix}.$$

Then

$$R\Delta_1 R^T = \begin{pmatrix} a & 0 & 0 \\ 0 & b\cos^2\theta + c\sin^2\theta & (c-b)\sin\theta\cos\theta \\ 0 & (c-b)\sin\theta\cos\theta & b\sin^2\theta + c\cos^2\theta \end{pmatrix}$$

Let b = 2s, c = 2t then a = s +

Thus,

$$R\Delta_1 R^T = (s+t) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (t-s) \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2\cos 2\theta & \sin 2\theta \\ 0 & \sin 2\theta & \cos 2\theta \end{pmatrix},$$

or

$$R\Delta_1 R^T = (s+t)I_3 + (t-s)A\cos 2\theta + (t-s)B\sin 2\theta.$$

where,

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Thus, the normal plane of f at f(1, 0, 0) is spanned by the normals corresponding to the matrices D, I_3 , A, B. To generalize the situation at any point on f, assume that

$$Q = \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} \in O(3).$$

Then the corresponding matrices for the required normals are ODQ^T , I_3 , OAQ^T , OBQ^T

The first matrix QDQ^T - is the point itself and so the first unit normal is $v_1 = f$

The second unit normal corresponds to I_3 and so,

$$v_2 = \frac{1}{\sqrt{3}}(1,1,1,0,0,0)$$

The third and fourth normals correspond to the

$$QAQ^{T} = \begin{pmatrix} u_{3}^{2} - u_{2}^{2} & u_{3}v_{3} - u_{2}v_{2} & u_{3}w_{3} - u_{2}w_{2} \\ u_{3}v_{3} - u_{2}v_{2} & v_{3}^{2} - v_{2}^{2} & v_{3}w_{3} - v_{2}w_{2} \\ u_{3}w_{3} - u_{2}w_{2} & v_{3}w_{3} - v_{2}w_{2} & w_{3}^{2} - w_{2}^{2} \end{pmatrix}$$

$$QBQ^{T} = \begin{pmatrix} 2u_{2}u_{3} & u_{2}v_{3} + u_{3}v_{2} & u_{2}w_{3} + u_{3}w_{2} \\ u_{2}v_{3} + u_{3}v_{2} & 2v_{2}v_{3} & v_{2}w_{3} + v_{3}w_{2} \\ u_{2}w_{3} + u_{3}w_{2} & v_{2}w_{3} + v_{3}w_{2} & 2w_{2}w_{3} \end{pmatrix}.$$

One well known orthogonal 3×3 matrix is;

$$\begin{pmatrix}
\cos\theta & 0 & -\sin\theta \\
\sin\theta\cos\psi & -\sin\psi & \cos\theta\cos\psi \\
\sin\theta\sin\psi & \cos\psi & \cos\theta\sin\psi
\end{pmatrix}$$

In terms of x, y, z the above orthogonal matrix can be rewritten as;

$$\begin{pmatrix} x & 0 & -\sqrt{y^2 + z^2} \\ y & -\frac{z}{\sqrt{y^2 + z^2}} & \frac{xy}{\sqrt{y^2 + z^2}} \\ z & \frac{y}{\sqrt{y^2 + z^2}} & \frac{xz}{\sqrt{y^2 + z^2}} \end{pmatrix}$$

Thus.

$$QAQ^{T} = \begin{pmatrix} y^{2} + z^{2} & -xy & -xz \\ -xy & \frac{x^{2}y^{2} - z^{2}}{y^{2} + z^{2}} & \frac{x^{2}yz + yz}{y^{2} + z^{2}} \\ -xz & \frac{x^{2}yz + yz}{y^{2} + z^{2}} & \frac{x^{2}z^{2} - y^{2}}{y^{2} + z^{2}} \end{pmatrix}$$

$$QBQ^{T} = \begin{pmatrix} 0 & z & -y \\ z & \frac{-2xyz}{y^{2} + z^{2}} & \frac{xy^{2} - xz^{2}}{y^{2} + z^{2}} \\ -y & \frac{xy^{2} - xz^{2}}{y^{2} + z^{2}} & \frac{2xyz}{y^{2} + z^{2}} \end{pmatrix}.$$

Hence the other two unit normals are;

$$QAQ^{T} = \begin{pmatrix} u_{3}^{2} - u_{2}^{2} & u_{3}v_{3} - u_{2}v_{2} & u_{3}w_{3} - u_{2}v_{2} \\ u_{3}v_{3} - u_{2}v_{2} & v_{3}^{2} - v_{2}^{2} & v_{3}w_{3} - v_{2}w_{2} \\ u_{3}w_{3} - u_{2}w_{2} & v_{3}w_{3} - v_{2}w_{2} & w_{3}^{2} - w_{2}^{2} \end{pmatrix}$$

$$v_{3} = \frac{1}{\sqrt{2}} \left(y^{2} + z^{2}, \frac{x^{2}y^{2} - z^{2}}{y^{2} + z^{2}}, \frac{x^{2}z^{2} - y^{2}}{y^{2} + z^{2}}, -\sqrt{2}xy, -\sqrt{2}xz, \frac{\sqrt{2}(x^{2}yz + yz)}{y^{2} + z^{2}} \right)$$
and
$$v_{4} = \frac{1}{\sqrt{2}} \left(0, \frac{-2xyz}{y^{2} + z^{2}}, \frac{2xyz}{y^{2} + z^{2}}, -\sqrt{2}y, \frac{\sqrt{2}(xy^{2} - xz^{2})}{y^{2} + z^{2}} \right)$$

Now consider the partial tube in \mathbb{R}^6 identified by;

$$\rho = \{PDP^T + \xi \cos \psi PAP^T + \xi \sin \psi PBP^T : P \in O(3)\},\$$

where $\xi > 0$ and $\psi \in [0,2\pi]$. Thus, the partial tube is based at f and is built by circles of radii ξ in the normal plane spanned by v_3 and v_4 at every point on f.

Now let,

$$\overline{D} = D + \xi \cos \psi A + \xi \sin \psi B.$$

Then,

$$\overline{D} = \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & 0\\ 0 & -\frac{1}{\sqrt{6}} - \xi \cos\psi & \xi \sin\psi \\ 0 & \xi \sin\psi & -\frac{1}{\sqrt{6}} + \xi \cos\psi \end{pmatrix}$$

The eigenvalues of \bar{D} are,

$$\frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}} - \xi, \frac{-1}{\sqrt{6}} + \xi.$$

Since the partial tube is a 3-dimensional manifold, the eigenvalues should be distinct, hence $\xi \neq \frac{3}{\sqrt{L}}$. Such a

condition can be easily satisfied since ξ needs to be small to ensure that the partial tube is embedded. Also $\overline{D} = EJE^T$

where

$$J = \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & 0 \\ 0 & \frac{-1}{\sqrt{6}} - \xi & 0 \\ 0 & 0 & \frac{-1}{\sqrt{6}} + \xi \end{pmatrix} \text{ and } E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\frac{\psi}{2} & \sin\frac{\psi}{2} \\ 0 & -\sin\frac{\psi}{2} & \cos\frac{\psi}{2} \end{pmatrix} = \frac{\operatorname{trace}\dot{H}JQ^TQ\Delta Q^T - \operatorname{trace}QJQ^T\dot{H}Q^T}{\operatorname{trace}\dot{H}\Delta Q^TQJQ^T} \\ = \operatorname{trace}\dot{H}J\Delta Q^T - \operatorname{trace}\dot{H}\Delta Q^TQJQ^T \\ = \operatorname{trace}\dot{H}J\Delta Q^T - \operatorname{trace}\dot{H}\Delta Q^T - \operatorname{trace}\dot{H}\Delta Q^T \\ = \operatorname{trace}\dot{H}J\Delta Q^T - \operatorname{trace}\dot{H}\Delta Q^T - \operatorname{trace}\dot{H}\Delta$$

Let H=PE, so H is orthogonal. Then the partial tube is identified with,

$$P\overline{D}P^T = PEJE^TP^T = HJH^T$$

Also if $R \in O(3)$ such that $RDR^T = D$ and $RJR^T = J$, then

$$R(D + \xi A)R^T = D + \xi A$$

$$RDR^{T} + \xi RAR^{T} = D + \xi A.$$

Thus, $RAR^T = A$ and so

$$R = \begin{pmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}$$

That is, the domain of ρ is identified with $O(3)/O(1) \times O(1)$ \times O(1).

Claim 2: The matrix $Q\Delta Q^T$ is normal to ρ at QJQ^T where Δ

For, let $s \mapsto H(s) \ J \ H^T(s)$ be a path in ρ through J such

A tangent to ρ at OJO^T is,

$$(\dot{H}JH^T + HJ\dot{H}^T)|_{s=0} = \dot{H}JQ^T + QJ\dot{H}^T$$

Now $HH^T = I_3$ and so $\dot{H}H^T + H\dot{H}^T = 0$

Hence at s = 0, $\dot{H}^T = -O^T \dot{H}O^T$ Thus, a tangent to ℓ at

$$\dot{H}JQ^T - QJQ^T\dot{H}Q^T$$
.

Now.

$$<\dot{H}JO^{T}-OJO^{T}\dot{H}O^{T}.O\Delta O^{T}>$$

$$= trace \dot{H} J Q^T Q \Delta Q^T - trace Q J Q^T \dot{H} Q^T Q \Delta Q^T$$

=
$$trace\dot{H}.I\Lambda O^{T}$$
 – $traceO.IO^{T}\dot{H}\Lambda O^{T}$

=
$$trace\dot{H}J\Delta O^{T} - trace\dot{H}\Delta O^{T}OJO^{T}$$

=
$$trace\dot{H}J\Lambda O^{T} - trace\dot{H}\Lambda JO^{T}$$

$$= trace\dot{H}J\Delta Q^T - trace\dot{H}J\Delta Q^T = 0$$

Assume that Δ_1 is diagonal such that $\Delta_1 \perp D$ and $\Delta_1 \perp J$

$$trace\Delta_1 J = \frac{2a-b-c}{\sqrt{6}} + (c-b)\xi = 0$$

But
$$2a - b - c = 0$$
. Hence $b = \text{ and so } \Delta_1 - bI_3$.

Consider the equation

$$HJH^T = Q\Delta Q^T$$

If $\Delta = \Delta_1$, then

$$HJH^{T} = Q\Delta_{1}Q^{T} = bI_{3}$$

and so $J = bI_3$, which is false. Now consider the six matrices obtained from J by the different permutations of the eigenvalues of J, say $J_1,...,J_6$. Let R_i by the matrix obtained by changing the rows of R such that $R_iJR_i^T$, i=1,, 6.

Now $\Delta = J_i$, $i=1, \ldots, 6$. Thus,

$$HJH^T = Q J_i Q^T$$

or

$$Q^T H J (Q^T H)^T = J_i.$$

Hence

$$H = QR_i$$

Thus, we have six solutions, say H_k , $k = 1, \dots, 6$ with the same normal plane at each, namely QJQ^T . Thus, the above partial tube in \mathbb{R}^6 is a 6-transnormal embedding. Also the points in the generating frame lie on a circle.

Upon the process of generalization of this example, \mathbb{R}^6 can be replaced by \mathbb{R}^m where,

$$m = \frac{n(n+1)}{2}$$
, $n \ge 4$. The next suggested example will be

the embedding of P^2 in \mathbb{R}^{10} . There the treasure will be about: a tale of 8 normals.

REFERENCES

- 1. Robertson, A., 1984. Smooth Curves of Constant Width and Transnormality, Bull. London Math. Soc., 16: 264-274.
- 2. Robertson, A., 1967. On Transnormal Manifolds. Topology, 6: 117-123.
- Robertson, A., 1964. Generalized Constant width for Manifolds. Michigan Math. J., 11: 97-105.
- 4. Wegner, B., 1970. Krummungseigenschaften Transnormaler Mannigfaltigk-eiten. Manuscripta Math, 3: 375-390.
- Wenger, B., 1971. Decktransformationen Transnormaler Mannigfaltigk-eiten. Manuscripta Math, 4: 179-199.
- 6. Wegner, B., 1971. Transnormale Isotopien and Transnormal Kurven. Manuscripta Math, 4: 361-372.
- Wegner, B., 1981. Einige Bemerkungen Zur Geometrie Transnormaler Mannigfaltigk-eiten. J. Differential Geom, 16: 93-100.
- 8. Al-Banawi, K., 2009. Focal Point of 4- Transnormal Tori in R⁴. Georgian Mathematical Journal, 16(2): 211-218.
- 9. Al-Banawi, K. and S. Carter, 2005. Transnormal Partial Tubes. Contributions to Algebra and Geometry, 46(2): 575-580.
- 10. Al-Banawi, K. and S. Carter, 2004. Generating Frames of Transnormal Curves. Soochow Journal of Mathematics, 30(3): 261-268.
- Al-Banawi, K., 2004. Generating Frames and Normal Holonomy of Transnormal Submanifolds in Euclidean Spaces. PhD Thesis, University of Leeds, UK.
- 12. Carter, S., 1969. A Class of Compressible Embeddings. Proc. Camb. Phil.Soc., 65: 23-26.
- 13. Carter, S. and A. West, 1995. Partial Tubes about Immersed Manifolds. Geometriae Dedicata, 54: 145-169.