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Abstract: Fault Detection and Diagnosis (FDD) using Linear Kalman Filter (LKF) is not sufficient for effective
monitoring of nonlinear processes. Most of the chemical processes are nonlinear in nature while operating the
process in wide range of process variables. In this paper we present an approach for designing of Multi Model
Adaptive Linear Kalman Filter (MMALKF) for Fault Detection and Isolation (FDI) of a nonlinear system. The
MMALKF uses a bank of Adaptive Linear Kalman Filters (ALKFs), with each ALKF based on different fault
hypothesis. The effectiveness of the MMALKF has been demonstrated on Continuously Stirred Tank Reactor
(CSTR) system. The proposed method is detecting and diagnosing the sensor and actuator soft faults which
may occur either sequentially or simultaneously.

Key words: Multi Model Adaptive Linear Kalman Filter  Fault Detection and Isolation  Continuously
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INTRODUCTION called residuals, which are used to detect and diagnose

Sensors and actuators are playing major role in the time of occurrence of faults. 
generating controller output and implementing the control This paper uses Linear Kalman Filter to estimate
action. Malfunction may occur either in plant, sensors or nonlinear system states. Most of the chemical processes
in the actuators. The controllers are developed by are highly nonlinear in nature while operating the process
assuming sensors give exact view of the process and the in wide range of process variables. Accurate estimation of
actuators are implementing the controller output exactly. states is important for fault detection and control
If bias is present either in the actuator or in the sensor purposes. The widely used estimation technique for
even though control algorithm is advanced one this may nonlinear system is Extended Kalman Filter (EKF). EKF
lead to improper control of the process loops. It will affect linearizes all nonlinear transformations and substitutes
the product quality,economy, safety of the  plant  and Jacobian matrices in the KF equations. Linearization is
also affects the atmosphere. So, detecting and diagnosing reliable only if the error propagation is well approximated
the soft failure is essential. The Fault Detection and by linear transformation and for some nonlinear systems
Diagnosis (FDD) algorithm consists of making binary Jacobian matrix may not exists. Nonlinear estimation
decision whether a fault has occurred or not, if fault has methods are computationally complex and most of the
occurred isolating the faulty component and estimating existing fault detection algorithms are designed for
the magnitude and time of occurance of fault. sequential faults not for simultaneous faults. 

Most of the FDD approaches use analytical The aim of the present work is to develop a
redundancy. Faults are detected and diagnosed by MMALKF, which uses multiple ALKFs each with
comparing the noisy sensor output and expected output different hypothesis [1]. First the nonlinear model is
based on plant model [2-4]. The system considered here linearized around different operating points, then the
is a stochastic time invarient process and the expected LKFs (state estimators) are designed for each local linear
output is generated by statistical filter. The difference model and the LKFs are fused using gain scheduling
between the process and the estimator output is error and technique to get the Adaptive Linear Kalman Filter[8-10].

different kinds of faults. This residual is also used to find
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The ALKFs has multiple models because each of which is (7)
designed for detecting specific sensor or actuator faults.
The proposed technique will detect the faults which may
occur sequentially as well as simultaneously and the time
of occurrence of fault. The paper is organized in seven
sections. The following sections deal with the design of
fused linear model and ALKF respectively. Design of
MMALKF is presented in Section 4. The process used for
simulation is presented in section 5. The simulation
results are discussed in section 6. The conclusions
reached from the results are given in section 7.

Fused Linear Model: Let us consider a nonlinear
stochastic system represented by the following state and
output equations:

(1)

(2)

The nonlinear system is linearized around different
operating points using Taylor series expansion. The linear
system around operating points   s given as follows,

(3)

(4)

Where represents state variables,  represents
inputs,   represents measured output and

 represents state and measurement noise
respectively. w(k)and u(k) are assumed to be Gaussian
noises with covariance matrices Q and R
respectively. are known time

invariant matrices of appropriate size. The nonlinear
system is represented by a fused linear model using gain
scheduling technique at a given operating point. For a
given input vector , u(k) the state and output of fused
linear model is represented as follows:

(5)

(6)

To cover the entire operating horizon, five operating
points has been selected (i=1 to 5). Let , y  is the actualm

value of the measured process variable at current
sampling instant and gi is the weighting factor [8-10].

(8)

(9)

(10)

(11)

(12)

The weighting factors are in the range of [0 1].

Adaptive Linear Kalman Filter: For the nonlinear model
a ALKF can be designed to estimate the system states.
This approach consists of family of local linear estimators
and a scheduler. At each sampling instant the scheduler
will assign weights (gain scheduling) for each linear local
estimator and the weighted sum of the outputs will be the
estimate of the current state. The scheduler assigns
weight based on scheduling variable. The scheduling
variable may be input variable or state variable or some
auxiliary variable, the scheduling variable considered here
is coolant flow rate of the process. 

The LKF is designed for each local linear model using
kalman filter theory as follows:

(13)

(14)

(15)

Where k (k) represents Kalman gain matrix,i

represents predicted state estimates and

 represents corrected state estimates. The Kalman

gain matrix can be calculated from the following
equations.
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(16)

(17)

(18)

(19)

Where  and  are the covariance

matrices of errors in predicted and corrected state
estimates of ith local estimator, respectively.

The ALKF (global estimator) dynamics will be
weighted sum of individual LKF and it is given below,

(20)

Multi Model Adaptive Linear Kalman Filter: This
approach uses multiple ALKF. Each ALKF is designed
based on specific hypothesis to detect a specific fault.
The  fault  considered  here  is  soft  fault of fixed bias.
The same approach can be  used  to  detect  dritf  like
(time varying) faults. This approach is capable of
detecting multiple sequential as well as multiple
simultaneous faults which occur either in sensors or in
actuators.

If a bias of magnitude B  occurs at time t in the js,j
th

sensor, then the measurement equation is given by,

(21)

Where F  is a sensor fault vector with j  element equal toy,j
th

unity and other elements equal to zero.

(22)

If a bias of magnitude B  occurs in the j  actuator ata,j
th

time t then the state equation is given by,

(23)

Where F  is an actuator fault vactor with jth elementu,j

equal to one and other elements equal to zero [5-7].
All the ALKF except the one using correct

hypothesis will produce large estimation error. By
monitoring the residuals of each ALKF, the faulty
element(sensor   or   actuator)   can    be    detected   and
isolated. Similarly we can model faults due to unmeasured

Fig. 1: Structure of the proposed MMALKF

Fig. 2: (Schematic of CSTR)

disturbances and parameter changes. We can model these
because the process dynamics are derived using first
principles.

The proposed MMALKF scheme is given in Fig. 1.
Each ALKF consists of five LKFs developed at 5 different
operating points. The weights are calculated by using
coolant flow rate of the process as scheduling variable.
The LKF outputs are weighted and added to get the
global output estimate . The process output is

compared with the ALKF output to generate residuals.
Under fault free condition the magnitude of the residuals
are maximum. If fault occurs in any of the sensor or
actuator, all the estimators except the one using the
correct hypothesis will produce large estimation error. 

If the ALKF is designed for 1% error and the error
occurred is less than or above 1%, then the residual
generated will be different from the one during the normal
operating condition. By closely observing the
innovations, the faults which occurs either sequentially or
simultaneously can be isolated and the time of occurance
can also be detected. 
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Table 1: Nominal operating condition for CSTR Table 2: Damping factor and Natural frequency at different operating points
Process variable Normal Value
Tank volume (V) 100 L -------------------------------------------------- Damping Frequency
Feed flow rate (q) 100.0 L/ min
Feed concentration (C ) 1 mol/ LAf

Feed temperature (T ) 350.0 Kf

Coolant flow rate (q ) 103 L/ minc

Inlet coolant temperature (T ) 350.0 Kcf

Liquid density ( , c) 1 * 10  g/L3

Specific heats(Cp, C ) 1 cal/(g k)pc

Reaction rate constant (k ) 7.2 * 10  min0
10 1

Activation energy term (E/R) 1 * 104 K
Heat of reaction (- H ) -2 * 10  cal/ mol5

Heat transfer term (hA) 7 * 10  cal/ (min k)5

product concentration (C ) 0.0989 mol/ LA

Reactor temperature (T) 438.7763 K

Continuously Stirred Tank Reactor: Simulated CSTR
process was considered to test the efficacy of the
proposed method. The schematic of the system is shown
in Fig 2. An irreversible exothermic reaction A  B occurs
in a constant-volume reactor that is cooled by a single
coolant stream. The two state variables of the process are
concentration and temperature. The first principle model
of the system is given by the following equations.

(24)

(25)

The steady state operating point data used in the
simulation studies is given in Table 1 [12].

The continuous linear state space model is obtained
by linearizing the differential equations (24) and (25)
around nominal operating point and. The state vector is
and the input vector is.

RESULTS

The CSTR process is simulated using first principles
model as given in (24) and (25) and the true state variables
are computed by solving the nonlinear differential
equations using Matlab 7.1. The dynamic behavior of the
CSTR process is not same at different operating points
and the process is nonlinear. This can be verified from
damping factor and natural frequency obtained at
different operating points given in Table  2. 

Operating Points Natural

q  (l/min)  (mol/l)  (K) Factor (rad/sec)c

97 0.0795 443.4566 0.661 3.93
100 0.0885 441.1475 0.540 3.64
103 0.0989 438.7763 0.416 3.34
106 0.1110 436.3091 0.285 3.03
109 0.1254 433.6921 0.141 2.71

Table 3: Estimation Error

State Variable RMSE

CA 2.0920*10 5

T 0.0419

Fused Linear Model: To validate the performance of
ALKF the process states are estimated and compared with
the rigorous non-linear model. The process and
measurement noise covariance are assumed to be 0.25%
of coolant flow rate and 0.5% of state variables
respectively. Fig.3 shows the variation in coolant flow rate
introduced. Fig.4 and Fig. 5 shows the estimation of
system states when the noises are uncorrelated It has
been observed that the ALKF exactly estimates the
system states without dynamic and steady state error.
Fig.6 and Fig.7 shows the estimation error. Table. 3 shows
the estimated RMSE of product concentration and reactor
temperature.

Sensor and Actuator Bias Detection: Two estimators
were designed to  detect  the  biases  in  the  CA  sensor,
T sensor and an actuator which controls . To detect
sequential or simultaneous sensor and actuator faults
using multi model approach, the first estimator is designed
for sensor faults detection with -5% hypothesis and the
second estimator is designed for actuator fault detection
with 0% hypothesis. The magnitude of fault occurred is
estimated from the magnitude of residual generated and
the time of occurance of fault is the time at which the
residual changes its trend and the fault is confirmed by
comparing the mean of the residual over a period of time
with the threshold value. 

Table 4 shows the residual generated for different %
of biases either in the sensors/actuator or in both the
sensors and actuator at the same time. The bias was
introduced at 50  sampling instant. Fig. 8 & Fig.9 showsth

the residuals generated by estimator1 and Fig. 10
temperature residuals generated by estimator2 when both
sensor and actuator faults are introduced simultaneously.
To estimate actuator fault either the temperature or the
concentration  residual  generated  by estimator 2 can be
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Fig. 3: Coolant flow rate ( l/min)

Fig. 4: Estimation of product concentration (mol/l)

Fig. 5: Estimation of reactor temperature (K)

Fig 6: Product concentration error

Fig. 7: Reactor temperature error

used.  Here, temperature residual is considered for
actuator  fault  diagnosis.  Fig.11 shows the plot of
Kalman gains, from this we can conclude it converges
quickly.

Fig.12, Fig.13, Fig.14 shows the residual generated by Fig. 13: Residual generated in temperature by Estimator1
estimator 1 and estimator 2 after introducing 2% bias in When both sensor and actuator biases are
both sensor and actuator. present

Fig. 8: Residual generated in concentration by Estimator1
when no bias is present

Fig. 9: Residual generated in temperature by   Estimator1
when no bias is present

Fig. 11: Kalman Gains

Fig. 12: Residual generated in concentration by
Estimator1 When both sensor and actuator
biases are present
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Table 4: Sequential and simultaneous bias detection using MMALKF
Mean value of the residual generated
----------------------------------------------------------------------------------------------------
Estimator 1 for Estimator 2 for
sensor bias detection actuator bias detection

% of bias introduced (hypothesized with -5% bias) (hypothesized with 0% bias)
------------------------------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------
Sensor 1 (C  in mol/l) Sensor 2 (T in K) Actuator (q  in l/min) State 1 - CA State 2 - T State 2 - T A c

0% 0% 0% 0.0045 22.1668 0.1094
1% 1% 0% 0.0031 17.8064 -4.2509
2% 2% 0% 0.0022 13.4075 -8.6498
3% 3% 0% 0.0013 8.9836 -13.0737
0% 0% 1% 0.0015 22.9369 0.8795
0% 0% 2% 0.0011 23.6430 1.5857
1% 1% 1% 2.7356*10 18.5214 -3.53604

2% 2% 2% -0.0032 14.7917 -7.2657

Fig. 14: Residual  generated  in  temperature by
Estimator 2 

While testing the efficacy of the MMALKF the
coolant flow rate is fixed at 100 L/min and corresponding
steady state variables are [0.0885; 441.1475]. Estimator 1 is
hypothesized with -5% sensor bias and estimator 2 is
hypothesized with 0% actuator bias. Since, in the absence
of bias, residual generated by estimator 1 is 5% of [0.0885;
441.1475] = [0.0044; 22.057].

When both sensor and actuator biases are present
and estimator 2 is [0; 0]. From the Table 4 it is clear that,
when only sensor bias is present the change in residual
generated by estimator1 exactly shows the time of
occurance and its magnitude. And the residual generated
by estimator 2 is negative, this means that the Kalman
filter relies less on measurement and more on system
model. In the presence of actuator bias only the estimator
2 residuals exactly shows the magnitude and its time.
When sensor and actuator bias are present the residuals
generated by the estimator 1 and estimator 2 are indicative
of its magnitude and time. 

CONCLUSION

In this paper we have proposed MMALKF approach
that includes adaptive gain scheduling algorithm along
with the multiple linear kalman filters to detect and  isolate

multiple sensor and actuator faults which occurs
sequentially and simultaneously. The efficiency of the
proposed approach was tested through extensive
simulation on CSTR process. The MMALKF can be used
to develop a nonlinear model based FDI scheme for faults
which occurs sequentially and simultaneously and fault
tolerant control schemes. The proposed MMALKF
performs better even in the presence of considerable
amount of plant-model mismatch. 
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