
World Applied Sciences Journal 3 (1): 140-153, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Dr. Pouria Amirian, Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of
Technology, Vali-e-Asr St., Mirdamad Cross, Tehran, Iran

140

A Service Oriented Framework for Disseminating Geospatial Data
to Mobile, Desktop and Web Clients

Pouria Amirian and Ali A. Alesheikh

Faculty of Geodesy and Geomatics Engineering,
K.N. Toosi University of Technology, Vali-e-Asr St., Mirdamad Cross, Tehran, Iran

Abstract: Geospatial data is vitally important to the ways thousands of government agencies, private
companies and non-profit organizations do their businesses. The widespread access and sharing of
geospatial data on the Internet yield many benefits. But, there are two important barriers in front of sharing
and accessing geospatial data; non-interoperability and insufficient message exchange patterns of
geospatial processing systems which are widely used in various organizations. Using standard geospatial
Web services together with efficient technologies provide different kinds of message exchange patterns for
various kinds of clients facilitate to share and access to geospatial data. This paper proposes a service
oriented framework for disseminating geospatial data over the Web. Based on our practical tests, the
proposed framework proved to be an efficient solution for sharing and accessing to geospatial data.

Key words: Service oriented • geospatial web service • web services • message exchange patterns

INTRODUCTION

Nowadays geospatial data have become central to
the practice of decision makers in private sectors as
well as state authorities. The ever-increasing access to
geospatial data on the Web enhanced system
performance through cost/time reduction.. Moreover,
such access helps decision-makers to manage their
assets better, enables faster responses for time-sensitive
decisions and improves the communication process
across diverse agencies. If geospatial data are accessed
and shared across diverse partners, different
organizations can save time and money by avoiding
data reproduction. also Information exchanges can
solve problems relating to inconsistencies and quality
differences in the geospatial data from various sources.
In this case there are two important barriers in front of
share and access of geospatial data; non-interoperability
of geospatial processing systems which prevents
sharing geospatial data and insufficient message
exchange patterns which restricts access to geospatial
data by subset of all potential users.

Based on OGC Reference Model [1], spatial
interoperability refers to capability to communicate,
execute programs, or transfer geospatial data among
various functional units with a little or no knowledge of
the unique characteristics of those units. Therefore,
non-interoperability of geospatial processing systems
prevents sharing of geospatial data and services among

software applications. Spatial interoperability faces two
main challenges; syntactic heterogeneity and semantic
heterogeneity [2]. Syntactic heterogeneity which is the
result of differences in storage formats and software
incompatibility is a technical issue and can be
addressed by technical means. Semantic heterogeneity
arises as a result of incompatibility in meanings of data.

Syntactic heterogeneity of geospatial information
systems can be categorized in data and access
heterogeneity. In data heterogeneity geospatial
processing systems use various internal proprietary data
formats. To share geospatial data, converters and/or
transfer formats must be developed, which is a resource
and time consuming task. In addition, there are several
standards for geospatial data that converting various
data formats. This can itself become a barrier to
interoperability.

Access heterogeneity restricts inter-process
communication among various geospatial processing
systems, since different vendors’ geospatial processing
systems use proprietary software access methods with
proprietary software interfaces. In other words,
interface definition languages, communication
protocols, communication ports and even object
transfer mechanisms, varies in each software
development platform. So the software platform which
has been used to develop the geospatial processing
system imposes the use of specific and proprietary
communication methods among various parts of such

World Appl. Sci. J., 3 (1): 140-153, 2008

141

system. For this reason, different geospatial processing
systems which have been developed by different
software development platforms, cannot communicate
and share services automatically and in an
interoperable manner.

From GIS point of view, Open Geospatial
Consortium (OGC) has introduced specific kind of
online services, to overcome spatial non-
interoperability problems. These services which are
called OGC geospatial Web services (or Geospatial
Web Services for short) have been developed with the
goal of sharing geospatial data and services among
heterogeneous geospatial processing systems. Web
Feature Service (WFS) and Web Map Service (WMS)
are the most fundamental geospatial Web services that
are introduced by OGC. At the same time, in IT
(Information Technology) world, the best solution for
providing interoperability among heterogeneous
software systems in distributed and decentralized
environments are Web services technologies [3].

Geospatial Web services and Web services differ
in a way that Web services are composed of particular
set of technologies and protocols but Geospatial Web
services are comprised of defined set of interface
implementation specifications which can be
implemented with diverse technologies [4].

Although Geospatial Web services provide
interoperability among heterogeneous geospatial
processing systems (sharing geospatial data), in most
cases they just provide geospatial data in one message
exchange pattern. More accurately, geospatial data are
to be accessed by various kinds of clients such as
desktop, Web and mobile clients. Desktop clients are
almost always access to geospatial data which are
resided in a central data server through internal
networks. They access to geospatial data in its lowest
level of details (feature level access) but in most cases
they cannot make use of other geospatial data resources
over the Web. At the other hand, Web clients in most
cases just retrieve an image of geospatial data (high
level access to geospatial data) via Web-GIS
applications. Web clients can take advantage of many
resources of geospatial data but they are always
restricted to high level access to geospatial data. Mobile
users can request geospatial data from some specific
services as long as they are connected to a wireless
network.

In order to make geospatial data accessible to
various kinds of clients, geospatial processing systems
should implement various message exchange patterns.

This paper proposes a service oriented framework
for disseminating geospatial data to desktop, Web and
mobile clients. Services in this framework provide three
different message exchange patterns for three different

kinds of clients. Two distributed object technologies are
used to implement the services in this framework.

The paper first assesses distributed applications
(particularly distributed object technologies), .NET
Remoting technology, Web services and various
message exchange patterns. Then Asynchronous
JavaScript and XML (AJAX) technology as a modern
implementation of one of the message exchange
patterns discussed briefly. Afterwards, Geospatial Web
services described and finally the proposed framework
will be dissected. In order to evaluate the proposed
framework, three different client applications were
utilized to retrieve geospatial data from the developed
geospatial Web services.

Distributed architecture and distributed component
technologies: The architecture of a software application
is the structure and configuration of its components.
One of the most important characteristics of a software
application is its ability to share data, information and
processing services. In this context distributed
architectures are often used to achieve high level
interoperability in many types of systems, including
GIS, databases and location-based services [2].
Generally, by dividing an application into multiple
layers (or tiers), it becomes possible for several
computers to contribute in the processing of a single
request, thus making application a distributed one. This
distribution of logic, typically slows down individual
client requests (because of the additional overhead
required for network communication), but it improves
the scalability for the entire system. Distributed
applications are implemented based on distributed
architecture which enables them to make use of
remote computers processing resources. More
accurately, a distributed architecture is a collection of
independent computers that appears to its users as a
single coherent system [6].

There are several technologies and concepts for
implementing distributed applications. Distributed
component technologies provide an efficient software
pattern and platform for implementing distributed
applications [7].

The main concept behind all the existing
distributed component technologies, is to ask objects
which are running on remote machines to perform
computational tasks on behalf of the objects residing in
a local machine. Objects which are resides in local and
remote machines are in different memory spaces and
communicate via messages over a network through
predefined communicational channels and protocols.

Out of the existing alternatives, Java-RMI
(Remote Method Invocation) from Sun Microsystems,
CORBA (Common Object Request Broker

World Appl. Sci. J., 3 (1): 140-153, 2008

142

Architecture) from Object Management Group, DCOM
(Distributed Component Object Model) and .NET
Remoting from Microsoft and the Web services are the
most popular distributed-component technologies
among researchers and practitioners [7].

Web services are unique distributed component
technology; since they are a defined set of open and
non-proprietary XML (eXtensible Markup Language)
vocabularies, they provide true interoperability among
heterogeneous software platforms. But the
unprecedented level of interoperability provided by
Web services comes at a price; Web services are quite
slower than the other distributed component
technologies.

Interoperability is especially important to users of
GIS, as geospatial analysis often relies on the
integration of data from multiple resources.
Considering unique characteristics of geospatial data
and geoprocessing needs, high performance and
communication speed is as important as
interoperability.

In this research Microsoft's .NET platform was
used for implementing such services. .NET Remoting is
an infrastructure which enables inter-process
communication.

 .NET remoting: .NET Remoting was introduced as
part of Microsoft's .NET platform. From the developer's
perspective, .NET platform is a huge set of types
(Classes, Structures, Namespaces, Interfaces and
Delegates), which substituted the older Windows
programming API's (such as the Windows 32-bit API
and the MFC (Microsoft Foundation Classes)), Web
APIs (like ASP (Active Server Page)). With respect to
the distributed component technologies, it replaced
DCOM. From component oriented view point, ordinary
.NET components are used instead of COM
(Component Object Model) and DCOM Components.
.NET Web Service components are intended to be

cross-platform and cross-language Web-based
components [8].

 .NET Remoting allows client applications to
instantiate components on remote computers and uses
them like local components [5]. .NET Remoting is the
ideal choice for intranet scenarios. It typically provides
the greatest performance and flexibility, especially if
remote objects have to be maintained their state or there
is a need for creating peer-to-peer applications [9].

Using .NET Remoting in an enterprise application
means hosting software components on separate
computers and making them available through .NET
Remoting infrastructure. Software components which
are hosted on remote computers are called remote
components. Remote components have to be hosted and
activated using a component host. Component host
typically is a service on Microsoft Windows which is
responsible for listening and replying to client requests.
In .NET Remoting, a remote component can be hosted
in one of several different types of applications. It can
be hosted in a typical desktop application, dedicated
Windows service or by Microsoft's main Web server
software (IIS (Internet Information Services)).

With .NET Remoting, the communication between
local and remote components is accomplished through a
proxy layer. This approach is conceptually similar to
the way other distributed object technologies
communicate. With this type of communication, local
component communicates directly to proxy layer which
mimics the remote component's interface; that is when
the local component calls a method on proxy layer, it
calls the remote component behind the scene, waits for
response and then returns the appropriate information to
local component (Fig. 1). In .NET Remoting, when
communicating with remote component, proxy layer
does not actually perform all the required tasks for
remote communication. Instead, it communicates with a
formatter object and transport channels to perform the
remote communication. The formatter object packages

Fig. 1: .NET remoting architecture

Formatter

Transport
Channel

Client Application

Proxy for
Remotable Object

Client Memory space

Remotable
Component

Server Memory space

Component Host

Communicational
 Channel

Network

Local Component

Formatter

Transport
Channel

World Appl. Sci. J., 3 (1): 140-153, 2008

143

the client request or server response in an appropriate
format then communicates with a transport channel
which transmits the packages using the appropriate
protocol. Figure 1, illustrated how a method invocation
is packaged on the client side and then unpacked
on the server side. In this case, the information flows
from the client to the server, but the return value flows
back from server to the client along the same
communicational path.

By default, .NET Remoting provides two
formatters (binary and SOAP (Simple Object Access
Protocol) formatters) and two channels (HTTP and TCP
(Transmission Control Protocol) channels). Binary
formatter packages the request and response to a
compact, proprietary .NET format. As a result, this
formatter offers the best performance but can be used
only by .NET applications. SOAP formatter serializes
the request and response to SOAP messages, which is a
cross-platform XML-based plain-text format. SOAP
format requires larger message size, therefore, it can
reduce overall performance but it provides cross-
platform communication with a remote .NET
component [10].

There are also two predefined transport channels;
TCP channel and HTTP channel. As the name implies,
TCP channel uses the TCP protocol and it is ideal for
internal networks. At the other hand, HTTP channel
uses the HTTP protocol which is ideal for scenarios in
which there is a need for communicating across Web.

 .NET Remoting is not the only way of
implementing distributed applications in .NET
platform. XML Web services (which are the concrete
implementation of Web services technologies) are
among the most widely hyped features of Microsoft
.NET platform.

Service Oriented Architecture and Web Services
Technologies

Service orientation is a trend in software
engineering that promotes the construction of
applications based on entities called services [11].

Service-Oriented Architecture (SOA), as an
architectural platform, is adopted today by many
businesses as an efficient means for integrating
enterprise applications built of Web services [12].
Services in an SOA are modules of business or
technical functionality with exposed interfaces to the
functionality [13].

Web services technologies are the implementation
of a conceptual architecture, which is called Service
Oriented Architecture [14]. SOA is frequently
characterized as a style that supports loose coupling,
business alignment and Web-based services, which
permits extensibility and interoperability independent
of the underlying technology [15]. SOA provide a set of

guidelines, principles and techniques in which
business processes, information and enterprise
assets can be effectively (re)organized and (re)
deployed to support and enable strategic plans and
productivity levels that are required by competitive
business environments [16].

In SOA, the central elements are services. In many
respects, a service is the natural evolution of the
component, just as the component was the natural
evolution of the object. Services are autonomous,
platform-independent computational elements that
can be described, published, discovered, orchestrated
and programmed using standard protocols for the
purpose of building networks of collaborating
applications distributed within and across
organizational boundaries [17].

Service-orientation is the correct way to build
maintainable, robust and secure applications [18].
As illustrated in Fig. 2, SOA consists of three primary
roles and three primary tasks. Service provider,
service requester and service broker are distributed
computational nodes in the network environment.
Service provider publishes its own service with
service broker. Service requester uses the service
broker to find desirable services and then binds to a
service provider to invoke the service (Fig. 2).

SOA architecture allows obtaining a loose
coupling between its processing components (service
requester and service provider), because, it uses simple
generic and application-independent connectors and
messages defined by an XML schema [19].

The actual implementation of SOA using open,
standard and widely used protocols and technologies is
called Web services [14]. Web Services are the basic
components of distributed service-oriented systems.
The World Wide Web Consortium (W3C) defines Web
Services as a software system designed to support
machine-to-machine interaction over the Internet [20,
21, 22].

Each Web service has an interface described in a
machine-processable format. Other systems and
services interact with the Web service in a manner
described by its description using messages. Messages
are conveyed typically using HTTP with an XML

Fig. 2: Major components of service oriented
architecture

Service
broker

Service
Provider

Service
Requester

Bind

Find Publish

World Appl. Sci. J., 3 (1): 140-153, 2008

144

Service Requester's
Core Application

Service Description

Executable AgentMapping Layer

Service Requester Service Provider

Fig. 3: Mapping between SOA and web services
technologies

serialization, in conjunction with other Web-related
standards, but any other communication protocol can be
used as well [21].

Web services are based on open standards, so they
provide interoperability in decentralized and distributed
environments like Web. These new technologies can be
developed by using any software platform, operating
system, programming language and object model.

Web services are implemented using a collection
of standards and technologies. SOAP, WSDL (Web
Service Description Language) and UDDI (Universal
Description, Discovery and integration) form the core
technologies for implementing Web services [23].

SOAP is a lightweight, XML-based protocol for
exchanging information in decentralized, distributed
environments. SOAP is used for messaging among
various SOA’s components in a Web services platform.
SOAP is platform independent and also it can be used
with virtually any Network Transport protocols such as
FTP (File Transfer Protocol), HTTP, HTTP-S (Secure
HTTP) and HTTP-R (Reliable HTTP).

WSDL is XML-based specification for describing
the capabilities of a service in a standard and
extensible manner. Technically, WSDL defines the
software interface of Web service in platform
independent approach.

UDDI is a set of specifications and APIs
(Application Programming Interfaces) for registering,
finding and discovering services.

As illustrated in Fig. 3, these layers establish an
explicit mapping between elements of SOA as a
conceptual and technology independent architecture
and Web services as specific collection of standards,
protocols and technologies.

In this case, Web service provider publishes its
own service description using WSDL, then Web service
requester take advantage of search API's of UDDI to
find appropriate Web services and finally, Web service
requester binds to the service provider using SOAP.

From a technical standpoint, each Web service has
three main parts: Service description, Executable agent
and the mapping layer between the two (Fig. 4).

The machine-readable service description (that is a
WSDL document) contains network address for the
service, the operation it supports and other necessary
information for consuming the service. The executable
agent is responsible for implementing the functionality
of the service The description is separated from the
executable agent using a mapping layer The mapping
layer is often implemented using proxies and skeleton
in service requester and service provider respectively.
This layer is responsible for accepting the message,
transforming the XML data to and from the native
format of executable agent and finally dispatching the
data to the executable agent.

On account of separation between executable
environment and description of service or separation
between semantic and functionality of services in the
Web services world, each service can be developed by
using any software development platform, operating
system, programming language and object model.

From middleware point of view, Web service
technologies are one of distributed component
technologies. But the goal of Web services goes beyond
those of classical distributed component technologies

Fig. 4: Major parts of a web service

Web Infrastructure

Service
broker

Service
Provider

Service
Requester

Bind

Find Publish

World Appl. Sci. J., 3 (1): 140-153, 2008

145

such as .NET Remoting and CORBA: Web services
aim at standardized support for higher level interactions
such as service and process flow orchestration,
enterprise application integration and provision of
middleware of middleware [24]. Instead of building
applications that result in collections of objects or
components that are firmly integrated and understood
just in development time (but fairly hard to configure in
deployment time), the service approach of Web services
platform is much more dynamic and is able to find,
retrieve and invoke a distributed service dynamically.
Another key difference is that with Web Services the
industry is solving problems using technologies and
specifications that are being developed in an open way,
via partnerships and consortia such as the W3C and the
Organization for the Advancement of Structured
Information Standards (OASIS) and using standards
and technologies that are the basis of the Internet. Next
section will briefly explain the major differences
between .NET Remoting and Web services
technologies.

Web services vs. .NET remoting: Implementing SOA
using Web services can be taught as adaptation of
distributed component technology with Web
infrastructure. Some of the important advantages of
using Web services as the technology platform for
implementing SOA are derived from the way in which
the World Wide Web achieved its tremendous success;
in particular, the fact that a simple markup language
(XML) can provide a powerful interoperability solution
and the fact that a lightweight document transfer
protocol (HTTP) can provide an effective, universal
data transfer mechanism.

The following items describe major differences
between .NET Remoting and Web services
technologies (or more accurately XML Web services in
.NET platform):

• Components published via Web services are more
restricted than components exposed over .NET
Remoting. Web services are designed around the
stateless exchange of messages. In .NET Remoting
it is possible to expose statefull components as
well.

• Since .NET Remoting Infrastructure can use
binary formatter and TCP channel, communication
with .NET Remoting is faster than Web service
communication

• Web services support open standards which target
cross-platform use. Any client that can parse XML
message and is connected over an HTTP channel
may use a Web service. Even if the client is

written in Java and hosted on Linux it can
consume a Web service which is written in C# and
hosted on Windows.

• Web services are designed for use between
organizations. They can use a discovery
mechanism or a UDDI registry that advertises
services to interested parties over the Web. With
.NET Remoting there is no clearly defined
registry service.

• Web services are firewall-friendly. This means
since most Web services communicate through
HTTP channel, there is no need for an
administrator to open additional ports on firewall.
In contrast, with .NET Remoting any port can be
utilized for inter-process communication, doing so
could leave a major hole in security.

• Unlike Web services .NET Remoting can be used
for implementing peer-to-peer applications in
which individual clients communicate back and
forth and there is no central server.

• .NET Remoting is more suitable as a high-speed
solution for binary communication between
proprietary .NET components usually over internal
networks. Although Web services cannot match
the communication speed and stateful
communication scheme of .NET Remoting, they
can be used in cross-platform scenarios.

Message exchange patterns in web services and
.NET remoting technologies: Messaging or
communication between applications is the main idea
of distributed applications. Flexibility and extensibility
of Web services protocol stack and .NET Remoting
infrastructure allows various message exchange
patterns to be implemented for various kinds of clients.
In this research three message exchange patterns are
used for mobile, Web and Desktop clients:

• Synchronous Request/Response interactions.
• Asynchronous Request/callback interactions.
• Message Queuing Interactions.

Synchronous request/ response pattern: This pattern
resembles the Remote Procedure Call communication
pattern in DCOM and Java RMI. In the
request/response pattern, the service requester sends the
request and then waits for the reply. In other words,
service requester will be blocked until the response is
made. This pattern is Synchronous because it requires
the sender and the receiver to be online simultaneously
for data to be exchanged. Also this pattern is
Request/response because it allows for data to be
exchanged in both directions.

World Appl. Sci. J., 3 (1): 140-153, 2008

146

Although WSDL and SOAP both support a
request/response interaction style, it is worth noting that
the SOAP and WSDL definitions are not executable
and that any business logic needs to be implemented by
a run-time environment such as J2EE, .NET
Framework, or CORBA [25].

Request/callback interaction paradigm: The
request/callback interaction paradigm is usually utilized
when the service requester cannot be blocked while
waiting for a synchronous response, so instead it sets up
a callback agent (or process) to handle the response.

In Request/Callback pattern, the typical sequence
of actions is:

• The service requester sends a request message to
the service provider using a one-way request
message. The request message includes a
correlation ID and a callback address. After the
service requester sends the request message, it
continues executing and does not block while
waiting for the response (for this reason the service
requester sends the one-way message).

• The service provider receives the request message,
composes a response and sends a callback message
to the callback service by sending a one-way
response message to the callback address that was
included in the service requester's original request,
including the correlation ID.

• The callback service receives the response
message and processes it as appropriate (which
may include notifying the service requester of the
response or dispatching the result of a remotely
processed task).

In Web service protocol stack, WSDL and SOAP
do not provide formal support for request/callback
interactions and it is up to the application layer to
manage the various elements of the request/callback
interaction, including defining callback addresses and
generating correlation IDs [25]. Today, this pattern is
heavily used in Web-based applications to create rich
and responsive user interfaces through AJAX
(Asynchronous Javascript and XML) technology. The
AJAX technology will be described later in this paper.

Message queuing interaction: In this interaction style,
communication between service provider (component
host) and service requester (client) is accomplished via
the use of persistent queues. This style is well suited for
the partially connected and mobile clients. In this case
the service on mobile client places a request message in
a request queue and the messaging technology reliably

delivers the message to another mobile client or the
main service provider where the receiving service
dequeues it and processes it (when the connection
is available).

One of the advantages of this message exchange
pattern is that a request queue can be persistent;
allowing the application to continue working whether
or not a connection to the remote machine is available.

AJAX technology: The Ajax technology is the explicit
access of server-side code from within the context of
client-side scripts [26]. To understand how AJAX
works in a web application it is necessary to show the
fundamental differences between it and traditional Web
application models. In traditional Web application a
web browser requests a webpage, normally indicating
that the request is being processed by animating a logo
and altering the status bar. When the user clicks on a
link, an HTTP Get request is sent to the server. The
web server deals with the request and sends the web
page to the client. If the client is to send information
back to the server, another request is made following
the same process. Under this synchronous click-and-
wait communication method, information is exchanged
by requesting and receiving whole web pages [27].
While waiting for the server, the user loses the focus
of the application and cannot interact with it. This
loss of focus has long been a source of dissatisfaction
with traditional web applications and if the wait for a
round trip from the server is sufficiently long, users
may leave the site.

In AJAX web applications a client requests a
webpage. Once this full page is loaded, communication
between the client and the server can be conducted in
an asynchronous callback manner. This minimizes the
client's waiting time, because only partial user interface
update requests are made [27]. Only aspects of the
client's user interface are updated in an AJAX scenario.
Those that are not modified by the user remain static,
reducing the communication overhead. This leaves the
focus of the application with the user, creating a feeling
of seamless interactivity.

Geospatial web services: Nowadays, geospatial Web
services have been considered as the promising
technology to overcome the non-interoperability
problem associated with current geospatial processing
systems. They are particular kind of online services
which deal with geographical information and can
provide access to geographical information stored in a
database, perform simple and complex geospatial
analysis and return messages that contain geographical
information [28].

World Appl. Sci. J., 3 (1): 140-153, 2008

147

In this context, OGC has defined a comprehensive
framework of geospatial Web services which is known
as OGC Web services framework (OWS). OWS allows
distributed spatial processing systems to interact with
the Hypertext Transfer Protocol (HTTP) technique and
provides a framework of interoperability for the many
web-based services, such as accessing spatial data
services, spatial processing services and data locating
services [29]. OWS framework consists of interface
implementation specification and encodings which are
openly available to be implemented by developers. The
interface implementation specifications are software
technology neutral details about various operations of
each geospatial Web service. The encodings provide the
standard glue among different parts of geospatial Web
services. Each service of this framework can be
implemented using various software technologies and
systems. The most fundamental services and encodings
of the OGC Web service framework are Web Map
Service (WMS), Web Feature Service (WFS) and
Geography Markup Language (GML) [30]. Next
sections briefly introduce WFS, WMS and GML.

GML: GML is an XML-based markup language that is
used to encode information about real world objects. In
GML these real world objects are called features and
they have geometry and non-geometry properties.

GML has three main roles with respect to
geospatial information. First as an encoding for the
transport of geospatial information from one system to
another; second as a modeling language for describing
geospatial information types and third as storage
format for geospatial information [31].

Typically in any management related tasks (like
environmental management, natural resource and so on)
one needs to examine and explore data from several
sources, use simulation models, develop scenarios,
assess impacts and provide support for decision makers
[32]. In this case, use of XML-based languages for data
exchange is an improvement on non XML data formats
because the XML format is partially self-documenting
and provides common methods for parsing files,
obtaining their structure and transforming them to
alternative formats [33]. GML (as an XML-based
language) is well suited for encoding the geospatial
information sent to and from geospatial Web services.
GML is used in both the request and response messages
of the WFS, which is a standard service for accessing
geospatial feature data.

As a modeling language, GML provides a rich
variety of objects for describing geospatial information,
including geospatial features, coordinate reference
systems, topology, time, units of measure and
generalized values [34]. In addition, using GML spatial
and non-spatial relationships among real world objects
can be modeled efficiently.

As storage format GML is a plain textual file
format which can be managed using any database
management system.

Figure 5, illustrates a simple GML document
fragment which consist of two features. City feature has
three properties; Name, Position and IsCapitalOf. Name
of the city is declared using Name element and Position
of the city is expressed using gml:Point element which
is defined in GML standard. The gml:Point has a
srsName attribute for denoting Spatial Reference

Fig. 5: A simple GML document fragment which describes some properties of Tehran as City feature and Iran as
Country feature. Position of City is indicated using gml:Point element which is defined in GML standard.
Association between Tehran and Iran is expressed using xlink:href attribute

<City gml:id="C30">
<Name>Tehran</Name>
<gml:position>

<gml:Point srsName="WGS84">
<gml:coordinates>3950000,530000</gml:coordinates>

</gml:Point>
</gml:position>
<IsCapitalOf xlink:href="#T1" />

</City>
<Country gml:id="T1">

<Name>IRAN</Name>
<Continent>Asia</Continent>
<Region>Southern Asia</Region>
<Capital xlink:href="#C30"/>

</Country>

World Appl. Sci. J., 3 (1): 140-153, 2008

148

System (SRS) in which the coordinates are represented.
As the name implies IsCapitalOf property states
relationship between city and country features. In this
case Tehran is the capital of country feature which has
"T1" as its gml:id attribute. At the other hand, country
feature has four non-geometry properties which state its
name, continent, region and its capital city. The Capital
property of country feature is used to indicate its capital
city. In both features Xlink:href attribute is used to
express association between country and city features.
Xlink:href is defined in XLink standard. XLink is a
W3C standard that specifies the syntax and behavior for
hyperlink traversal in a set of XML documents [35].
These links are used in GML to express associations
between geospatial features.

Web Feature Service (WFS): Web Feature Service is
the main geospatial Web service for publishing and
requesting vector geospatial data in GML format. When
a client sends a request to an OGC WFS, the service
sends a response message that provides geographical
feature data in GML. Three classes of Web Feature
Services are defined in the WFS implementation
specification: Basic WFS, XLink WFS and Transaction
WFS [36].

A Basic WFS service implements three operations:
GetCapabilities, DescribeFeatureType and GetFeature.

A client can request an XML-encoded capabilities
document (containing the names of feature types that
can be accessed via WFS service, the spatial reference
system(s), the spatial extent of the data and information
about the operations that are supported) by sending the
GetCapabilities request to the WFS service.

The purpose of the DescribeFeatureType operation
is to retrieve an XML Schema document with a
description of the data structure (or schema) of the
feature types served by that WFS service.

The GetFeature operation allows for the retrieval
of feature instances (with all or part of their attributes)
as GML.

An XLink WFS supports all the operations of a
basic web feature service and in addition it would
implement the GetGmlObject operation for local and/or
remote XLinks.

A Transaction WFS supports all the operations of
a basic web feature service and in addition it
implements the transaction operation. A transaction
request is composed of operations that modify features;
that is create, update and delete operations on
geographic features.

WMS: Based on WMS implementation specification
[37], The Web Map Service enables maps in graphical
form to be delivered in response to queries from HTTP

clients (any desktop or Web application which is
connected to World Wide Web). In the context of WMS
a map is a raster graphic picture of the data rather than
the actual data itself.

Clients request maps from a WMS instance in
terms of named layers and provide parameters such as
the size of the returned image as well as the spatial
reference system to be used in drawing the map. In this
way, a client application can make requests to different
WMS instances and the results can be overlaid to form
a rich layering of map information based on the
transparency capability of WMS instances.

The WMS specification standardizes two
mandatory operations by which maps are requested by
clients: GetCapabilities and GetMap.

The purpose of the GetCapabilities operation is
to obtain service metadata, which is a machine
readable (and also human-readable) description of the
server's information content and acceptable request
parameter values.

The GetMap operation returns a map whose
geographical and dimensional parameters are well
defined in the GetMap request. The GetMap request
allows the WMS client to specify distinct layers, the
spatial reference system, the geographic area and other
parameters describing the returned map format.

Message exchange patterns in geospatial web
services: In geospatial Web services each message
exchange pattern can be used in different scenarios and
for various kinds of clients.

The synchronous Request/response pattern can
be used in situations in which a specific analysis or
low volume geospatial data is needed in order to
perform another (local) process. In this case, the
execution of the local process is blocked until the
required action takes place. This pattern is the
foundation of next generation of distributed desktop
GIS applications in which functionality provided
remotely and through the use of the registered
(and also trusted) service providers over the
decentralized environment (such as WWW). As
mentioned before, in the context of geospatial Web
service, WMS is intended for publishing geospatial
data as image files (which is called maps in WMS
specification). Since image files are considered as
low volume data, requesting and waiting for
response is negligible for desktop users. In addition,
multi-threading capability of desktop application,
make them responsive while response is being
returned to the application. Since responsiveness is
implemented in user interface layer, there is no need
for desktop applications to make asynchronous calls.
As a result Request/response pattern is the natural

World Appl. Sci. J., 3 (1): 140-153, 2008

149

Fig. 6: Architecture of service oriented framework

choice for consuming geospatial Web services by
desktop applications.

The asynchronous Request/Callback pattern can be
employed when there is a need to perform some (more
than one) tasks in sequential order. An example of this
situation is the chain of geoprocessing analysis in which
the output of the first task will be the input of the

second one. Since that is a time consuming task, the
requester should be unblocked to be able to perform
other tasks. In addition to chain of services, when high
volume geospatial data is needed to be downloaded
from remote resource, this pattern provides an
alternative solution over the use of queuing systems.
With respect to the above description, web applications

 .NET Remoting
Infrastructure

Data Access Component

Transaction Web Feature Service (WFS)

MQ

Component

GetFeature
Message Queuing

Data Source
Layer

Spatial Database
(PostGIS)

Geospatial
Web services
Layer

Relational To GML Component

Web Map Service (WMS)

Web Service Interface

Any Desktop
Application

Web-GIS
Application or

Any Other
Web

Application

Disconnected
or Partially
Connected

Mobile
Applications

 .NET Remoting Interface

Drawing Component

Clients
Layer

Microsoft .NET 2.0

GetMap
Request/Response

GetMap
Request/CallBack

World Appl. Sci. J., 3 (1): 140-153, 2008

150

should be implemented using Request/callback
interaction pattern. In most cases Web GIS applications
should be implemented using this pattern. More
accurately, Web GIS applications which consume
geospatial data (in the form of image or features) from
geospatial Web services should request geospatial data
in asynchronous manner to provide rich user
experience.

Message Queuing Pattern is the main candidate for
the partially connected or mobile GIS applications. The
partially connected clients are not always connected to
networks and, therefore, they cannot always interact
with server side code in synchronous or asynchronous
manner. Particularly, updating and gathering geospatial
data can be done by field workers using this pattern (in
the case of Transaction WFS). In this case geospatial
data modification (Insert, Update and Delete geospatial
data) requests are placed in a request queue and the
messaging technology reliably delivers the message to
main service provider (WFS server) which is in charge
of committing changes to the spatial database.
Subsequently, main service provider dequeues
incoming messages and processes them sequentially. In
addition to gathering or updating geospatial data when
mobile applications need geospatial data, this pattern
can be used to request geospatial data. In this case
request is placed in persistent request queue and sent to
geospatial Web service when a network connection
became available to the mobile device.

Service oriented framework for disseminating
geospatial data: Figure 6, shows the architectural view
of service oriented framework for disseminating
geospatial data. This framework has three layers: client
layer, geospatial Web services layer and data source
layer.

The data source layer consists of geospatial data
which are stored in a spatial database. In this research
PostGIS is used to store and manage geospatial data.
The PostGIS is a spatial extension of open source
PostgreSQL relational database. The PostGIS spatially
enables the PostgreSQL allowing it to be used as a
backend spatial data base for geospatial data.

The geospatial Web services layer include a WMS
and a Transaction WFS. Implementing transaction WFS
enables users to update data source layer. In addition,
WMS retrieves geospatial data from WFS. In other
words, access to geospatial data which are resided in
spatial database is only permitted to WFS. Designing
WFS as a gateway to spatial database provides the
flexibility to change data sources or data access
technologies without affecting the WMS. This is
important because there may be a need to switch from
one database vendor to another at some point.

The WFS has three main components (Fig. 6). The
data access component interacts with the data source
layer to retrieve and update geospatial data. The data
access component doesn't actually manage or store the
data; it merely provides an interface between the WFS
and the spatial database. The Relational-to-GML
component turns geospatial data (which are stored as
relational tables in PostgreSQL) to GML 3.1. The MQ
component is used to deliver geospatial data to partially
disconnected clients using message queuing pattern.

The WMS retrieves geospatial data from WFS and
converts it to image formats using drawing component.
All components of WFS and WMS was developed
using Microsoft .NET Framework 2.0.

Since WMS and WFS are in the same layer (and
also same machine) interaction between them should be
performed in fastest possible way. So interaction
between WMS and WFS is performed using .NET
Remoting infrastructure. To make geospatial data
available to any type of client on any type of software
platform, a Web services interface is implemented for
WMS.

Clients in this architecture interact with geospatial
Web services in three different ways. Any desktop
application which is able to connect to Web can request
geospatial data from WMS (request/response message
exchange pattern). Figure 7, illustrates a ESRI's ArcGIS
desktop application which is connected to the
implemented WMS.

Using AJAX technology, a basic Web GIS
application was developed to provide a basic Web-
based user interface for WMS using ASP .NET
(Technically ASP .NET is set of Class hierarchies for
developing Web-based applications, both Web sites and
Web services) platform (Fig. 8). Web GIS application
provides basic tools such as: Zoom in, Zoom out, Full
Extent and Identify. Functionality of these tools
developed using JavaScript language. Map image of
Web GIS application created using WMS service
(Request/Callback message exchange pattern). In fact,
Web GIS application just provides a user friendly
gateway to WMS service. Each tool of Web GIS, just
send an asynchronous GetMap request to WMS service
to request appropriate map image.

In addition to desktop and Web GIS application
any mobile client can take advantage of developed
services and retrieve geospatial data in its preferred
format. For practical test of message queuing exchange
pattern, a simple mobile application was developed
using .NET Compact Framework 2.0. This mobile
application uses Microsoft MSMQ2.0 component to
provide message queuing exchange pattern. In this
application, user provides information (such as location
in the form of latitude and longitude, name, time and
other information) about a point object to be inserted

World Appl. Sci. J., 3 (1): 140-153, 2008

151

Fig. 7: ESRI ArcGIS desktop Application which is connected to WMS and retrieve geospatial data from that service

Fig. 8: AJAX Web GIS Application as a gateway to WMS

World Appl. Sci. J., 3 (1): 140-153, 2008

152

Fig. 9: Mobile Application to insert new geospatial
objects into spatial database through WFS

into spatial database. In this case, information about
point object is persisted in a queue and posted to WFS
when a network connection became available to mobile
device (Fig. 9).

CONCLUSION

In this paper the design and implementation of a
service oriented framework for disseminating
geospatial data were demonstarted. The proposed
framework provides geospatial data through geospatial
Web services using various kinds of message exchange
patterns for different kinds of clients.
Two distributed object technologies are utilized to
implement the mentioned framework: .NET Remoting
and Web services. .NET Remoting is an efficient and
high-speed solution for binary communication between
proprietary .NET components over internal networks.
By considering high volume of geospatial data and
faster communication speed provided by .NET
Remoting, modifying geospatial data through the use of
transaction WFS can be efficiently performed if
.NET Remoting is used rather than HTTP-based
solutions. Although Web services cannot match the
communication speed and statefull communication
scheme of .NET Remoting, they can be used in cross-
platform scenarios. So the functionality of the
implemented geospatial Web services can be simply
added to any geospatial or non-geospatial software
systems which are running on heterogeneous platforms.

REFERENCES

1. OGC, 2003. The OpenGIS Reference Model,
http://portal.opengeospatial.org/files, visited on
October 2007.

2. Worboys, M. and M. Duckham, 2004. GIS a
Computing Perspective, Florida, USA, CRC Press.

3. Volter, M., M. Kricher and U. Zdun, 2005.
Remoting Patterns: Fundamental of Enterprise,
Internet and Real-time Distributed Object
Middleware, New Jersey, USA, John Wiley and
Sons, Inc.

4. Amirian, P., 2006. Design and Development of a
Distributed Geospatial Web services using XML
and .NET technologies. Msc thesis, K.N. Toosi
University of Technology, Tehran, Iran.

5. Selly, D., A. Troelsen and T. Barnaby, 2006.
Expert ASP .NET 2.0 Advanced Application
Design. California, USA, Apress Publishing.

6. Tanenbaum, A. and M. Van Steen, 2005.
Distributed Systems: Principles and Paradigms,
New Jersey, USA, Prentice Hall, Inc.

7. Hariri, S. and M. Parashar, 2004. Tools and
Environments for Parallel and Distributed
Computing, New Jersey, USA, John Wiley and
Sons, Inc.

8. Wang, A.. and K. Qian, 2005. Component
Oriented Programming, New Jersey, USA, John
Wiley and Sons, Inc.

9. MacDonald, M., 2003. Peer To Peer with VB
.NET . California, USA, Apress Publishing.

10. Rammer, I., 2005. Advanced .NET Remoting, 2nd

Edn. California, USA, Apress Publishing.
11. Stojanovic, Z. and A. Dahanayake, 2005. Service

Oriented Software system engineering: Challenges
and practices, Idea Group Publishing.

12. Vasiliev, Y., 2007. SOA and WS-BPEL. Packt
Publishing.

13. Lawler, J. and H. Hawel Barber, 2008. Service
Oriented Architecture: SOA strategy.
Methodology and Technology, Taylor and Francis
Group.

14. Marks, E. and M. Werrell, 2003. Executive's
Guide to Web Services, New Jersey, USA, John
Wiley and Sons, Inc.

15. Murakami, E., A.M. Saraiva, L.J. Ribeiro, C.E.
Cugnasca, A.R. Hirakawa and P.L. Correa, 2007.
An infrastructure for the development of
distributed service-oriented information systems
for precision agriculture. Journal of
Computers and Electronics in Agriculture,
May 2007, 58: 37-48.

World Appl. Sci. J., 3 (1): 140-153, 2008

153

16. Papazoglou, M.P. and W.J. van den Heuvel, 2006.
Service-oriented design and development
methodology. International Journal of Web
Engineering and Technology (IJWET 2006),
pp: 412–442.

17. Papazoglou, M.P. and W.J. van den Heuvel, 2005.
Web Services Management: A Survey. IEEE
Journal of Internet Computing, November/
December 2005, 9 (6): 58-64.

18. Lowy, J., 2005: Programming WFC Services,
California, USA, O'Reilly Media, Inc., Orielly.

19. Fallside, D.C. and P. Walmsley, 2004. XML
Schema Part 0: Primer Second Edition. W3C
Recommendation. Available from http://www.w3.
org/TR/xmlschema-0 (accessed 05-05-2007).

20. Stal, M., 2002. Web Services: Beyond Component
-based Computing. Journal of Communications of
the ACM, 45 (10): 71–76.

21. Booth, D., H. Haas, F. McCabe, E. Newcomer, M.
Champion, C. Ferris and D. Orchard, 2004. Web
Services Architecture. W3C Working Group.
Available from http://www.w3.org/TR/ws-arch
(accessed 19-05-2007).

22. W3C, 2006. The World Wide Web Consortium.
Web Services Activity Statement. Available from
http://www.w3.org/2002/ws/Activity (accessed 05-
05-2007).

23. Gailey, J.H., 2004. Understanding Web Services
Specifications and the WSE. Washington, USA,
Microsoft Press.

24. Vinoski, S., 2003. Integration With Web Services
IEEE Journal of Internet Computing. November-
December 2003.

25. Newcomer, E. and G. Lomow, 2005.
Understanding SOA with Web Services,
Maryland, USA, Addison Wesley, Inc.

26. Woolston, D., 2006. Pro Ajax and the .NET 2.0
Platform, California, USA, Apress Publishing.

27. Ritchie, P., 2007. The security risks of AJAX and
web 2.0 applications. Network Security Volume
2007, Issue 3, March 2007, pp: 4-8.

28. Lake, R., D. Burggraf, M. Trinic and L. Rae, 2004.
Geography Markup Language, Chichester,
England, John Wiley and Sons.

29. Zhang, J., J. Gong, H. Lin, G. Wang, J. Huang, J.
Zhu, B. Xu and J. Teng, 2007. Design and
development of Distributed Virtual Geographic
Environment system based on web services.
Information Sciences, 1 October 2007, 177 (19):
3968-3980.

30. Amirian, P. and A. Alesheikh, 2008. Publishing
Geospatial Data through Geospatial Web Service
and XML Database System. American Journal of
Applied Sciences, 5 (10): 1358-1368.

31. Lake, R., 2005. The application of Geography
Markup Language (GML) to the geological
sciences. Computers&Geosciences, November
2005, 31 (9) 1081-1094.

32. Kokkonen, T., A. Jolma and H. Koivusalo, 2003.
Interfacing environmental simulation models and
databases using XML. Environmental Modelling
& Software, 18 (5): 463-471.

33. Sen, M. and T. Duffy, 2005. GeoSciML:
Development of a generic GeoScience Markup
Language. Computers and Geosciences,
31 (9): 1095-1103.

34. Nativi, S., J. Caron, E. Davis and B. Domenico,
2005. Design and implementation of netCDF
markup language (NcML) and its GML-based
extension (NcML-GML) Computers and
Geosciences, 31 (9): 1104-1118.

35. Open GIS Consortium, 2005. Geography Markup
Language Specification 3.1. available at:
http://portal.opengeospatial.org/files/?artifact_id=4
700 (accessed 19-05-2007).

36. Opern GIS Consortium, 2005. Open GIS Web
Feature Service implementation specification 2.1.
available at: https://portal.opengeospatial.org/files/
(accessed 05-05-2007).

37. OGC, 2004, Open GIS Web Map Service
implementation specification. Available at: http://
portal.opengeospatial.org/files/?artifact_id=5316.

