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Abstract: Hydromaganetic flow of micropolar fluid between two horizontal parallel plates, the lower is a 
stretching sheet and the upper one is a porous stretching sheet. The flow is in the presence of a transverse 
magnetic field is studied numerically. The effects of transverse magnetic field parameter M, Reynolds 
number R and suction parameter λ on the velocity and microrotation fields have been observed. The 
governing partial differential equations of motion are transformed to ordinary differential form by using 
appropriate similarity transformations. The resulting equations of motion are solved numerically using SOR 
method and Simpson’s (1/3) Rule. The numerical results have been improved by using Richardson 
extrapolation to the limit. 
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INTRODUCTION

The theory of micropolar fluids first proposed by 
Eringen [1, 2] includes the effects of local rotary inertia 
and couple stresses. These fluids consist of dumb -bell
or short rigid cylindrical elements. The presence of
smoke or dust particularly in a gas may also be modeled 
using micropolar fluid dynamics. Several researchers 
are engaged in studying various phenomena of
micropolar fluid flow. In extrusion processes, the fluid 
flow due to a stretching surface has its own importance. 
Kamal and Sifat [3] studied 3-dimensional micropolar 
fluid motion caused by the stretching surface. Shafique 
and Rashid [4] obtained numerical solution of three 
dimensional micropolar fluid flows due to a stretching 
flat surface. Magnetic effect in fluid dynamics is
considered important because of its role in many
industrial applications. Flow of an electrically
conducting non- Newtonian fluid past a stretching 
surface was studied by Able et al. [5] when a uniform 
magnetic field acts transverse to the surface. MHD flow 
due to non coaxial rotations of an accelerated disk and a 
fluid at infinity was analyzed by Asghar et al. [6]. 
MHD flow of micropolar fluid past a stretching sheet 
with heat transfer and with suction/blowing through a 
porous medium has been studied by Eldabe et al. [7]. 
Ishak et al. [8] investigated magnetohderodynamic flow 
of micropolar fluid towards a stagnation point on a 

vertical surface. MHD flow of micropolar fluid near a 
stagnation point towards a non linear stretching surface 
has been examined by Hayat et al. [9]. The fluid flows 
over a permeable surface have numerous applications, 
for example for control of boundary layer separation 
with suction or injection. Sastry and Rao [10] studied 
the effects of suction parameter on laminar micropolar 
fluid in a porous channel. Ashraf et al. [11] obtained 
numerical simulation for two dimensional flow of a
micropolar fluid between an impermeable and a
permeable disk. Guram and Anwar [12] considered the 
steady, laminar and incompressible flow of a
micropolar fluid due to a rotating disk with suction and 
injection. Ashraf et  al.  [13]  presented  numerical 
study for the steady, two-dimensional, laminar and 
incompressible flow of a micropolar fluid in a porous 
channel.

In the present study, numerical results have been
obtained for hydromagnetic flow of micropolar fluid 
between two horizontal parallel plates when the lower 
one is a stretching sheet and the upper one is a porous 
stretching sheet. The flow is in the presence of a
transverse magnetic field. The effects of transverse 
magnetic field parameter M and suction parameter λ
and Reynolds number R are studied on the velocity 
field and microrotation under two situations namely 
either both the plates are being stretching sheets or only 
the  lower  plate  is stretching. The results are computed
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Geometry of the problem

for different values of the parameters in the range
1≤M≤4, 0.05≤R≤0.8 and 1≤λ≤3. Dash and Tripathy
[14] studied this problem for Newtonian fluids for
ranges of flow parameters M =1.0, 3.0, λ = 1.0, 3.0 and 
R=0.05, 0.20. The present results for micropolar fluid 
have been compared with the previous results. The 
results are in good agreement. The section 2 presents 
mathematical analysis. The finite difference equations 
are given in section 3. The details of computational 
procedure are provided in section 4. The results of the 
present study are discussed in tabular as well as
graphical form in section 5. Tables and graphs are
presented in section 6.

MATHEMATICAL ANALYSIS

In order to formulate the problem, it is assumed 
that the fluid is viscous and electrically conducting. The 
fluid flow is steady, incompressible and between two 
horizontal, parallel, non conducting plates. The lower 
plate is a stretching sheet and the upper one is a porous 
stretching sheet. Cartesian coordinate system is used 
where the y-axis is perpendicular to the plates located at 
y = h, y = -h. Two equal and opposite forces are 
introduced to stretch the lower and the upper plates in a 
way that the position of the points (0, h), (0, -h) remains 
unchanged. The fluid with constant velocity V0 is 
injected through the upper porous plate. This flow is 
considered in the presence of a transverse magnetic 
field. The body couple is absent.

Under the above assumptions the basic equations 
of  motion  for  micropolar  fluids, formulated by 
Eringen [2] become:

.V 0∇ = (1)

( )
( ) ( ) ( )

 p J B  .  V
− µ + κ ∇ × ∇ × + κ ∇ × υ
−∇ + × = ρ ∇

V
V

(2)

( ) (  ) ( ) 2  j  .−γ ∇×∇×υ + κ ∇ × − κυ = ρ ∇ υV V (3)

where V is velocity and υ is microrotation vector, p is 
pressure, ρ is density and J×B is the electromagnetic 
body force with J the current density. B is the total 
magnetic field strength. The induced magnetic field is 
neglected because the magnetic Reynolds number is 
small. It is considered that the external electric field is 
zero and the electric field due to polarization of charges 
is negligible which implies that E = 0. Under this 
consideration the electromagnetic body force takes the 
form [15] as:

2J B (V B) B B V× = σ × × =−σ (4)

The associated boundary conditions are:

u cx,v 0, 0= = υ =

at y = -h, c>0 

u= cx

u= cx

x

y= +h

y= -h

y BoBo

(0, 0)
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0u cx,v V , 0= = υ =

at
                                    y = h, c>0 (5)

Now, using similarity transformations:

( )cx
u cxf ( ),v chf( ), L3 h

′= η = − η υ = − η (6)

where η = y/h is dimensionless variable.
The continuity equation (1) is identically satisfied 

and the equation (2) leads to:

21 M(2ff f f ff f f ) L 0
2R R ch

κ′ ′′ ′ ′′ ′′′ ′′′′ ′′ ′′− − − + + =
ρ

(7)

where primes denote differentiation with respect to η
Integrating equation (7) with respect to η

( )1
2 2f R f ff C L M f′′′ ′ ′′ ′ ′− − + − = β (8)

The equation (3) yields:

L C ff 2C L C (fL fL)2 2 3
′′ ′′ ′ ′+ − = − (9)

where β is constant of integration and C1, C2, C3 are 
non dimensional constants:

The corresponding boundary conditions (4)
become:

f ( 1) 0,f ( 1) 1,L( 1) 0,f(1) ,f (1) 1,L(1) 0′ ′− = − = − = = λ = = (10)

where
2ch

R , M B h0
σ= = ρνν

and λ = V0/ch is suction parameter.

FINITE-DIFFERENCE EQUATIONS:

Let
f q′ = (11)

Then equations (8) and (9) become

2 2q R(q fq c L ) M q1′′ ′ ′− − + − = β (12)

L c q 2c L c (fL fL)2 2 3
′′ ′ ′ ′+ − = − (13)

By using central difference approximations at a
typical point η = ηn of the interval [0,∞) equation (12) 
and (13) by and obtain

( )
2 2 2(2 hRq )q (4 2h M 2h Rq )qn n 1 n n

2(2 hRq )q c hR L L 2h 0n n 1 1 n 1 n 1

+ − + + ++

− − − − β =− + −

(14)

2 2(2 c hf )L (4 2c h 2c h q )L3 n n 1 2 3 n n
(2 c hf )L c h(q q ) 03 n n 1 2 n 1 n 1

− − + −+
+ + + − =− + −

(15)

where h denotes grid size. The equation (11) is
integrated numerically. Also the symbols used denote 
qn = q(ηn) and Ln = L(ηn). The interval [0,∞) is replaced
by [0, b] for computational purposes, where b is a
sufficiently large.

COMPUTATIONAL PROCEDURE

The finite difference equations (14) and (15) and 
the first order ordinary differential equation (11) are 
solved simultaneously by using SOR method Smith
[16] and Simpson's (1/3) rule Gerald [17] with the
formula given in Milne [18] respectively subject to the 
appropriate boundary conditions.

The order of the sequence of iterations is as
follows:

1. The equations (14) and (15) for the solution of q 
and L are solved subject to the following boundary 
conditions:

ƒ = 0, q = 1, L = 0 When η = -1

ƒ = λ, q = 1, L = 0 When η = 1

2. For the solution of ƒ we use the computed values 
of q from above step in to equations (11) and 
integrate by Simpson's (1/3) rule.

3. The optimum value of the relaxation parameter ωopt
is estimated to accelerate the convergence of the 
SOR method.

4. The SOR procedure is terminated when the
following criterion is satisfied for q and L:

n n 1 n 6max U U 10i ii 1
+ −− <

=

where n denotes  the number of iterations and U stands 
for each of q and L. 

The  above  steps  1  to  4 are repeated for higher 
grid  levels h/2  and h/4. The SOR procedure gives the
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solution of q and L of order of accuracy O(h2) due to 
second order finite differences approximations used for 
derivatives. While the Simpson’s (1/3) rule gives the 
order of accuracy O(h5) in the solution of f. The higher 
order accuracy O(h6) in the solution of ƒ′ on the basis of 
above solutions is achieved by using Richardson's 
Extrapolation Method Burden [19]. 

NUMERICAL RESULTS AND DISCUSSION

The numerical results have been computed for
several values of flow parameters namely λ, R and M in 
the ranges mentioned above. The effect of these
parameters have been studied on the ƒ′, f and L for the 
cases given in following table.

Cases C1 C2 C3

I 1.0 2.0 3.0
II 1.5 2.5 3.5
III 0.1 0.2 0.3
IV 5.0 4.0 3.0

In order to check the accuracy of the numerical 
results, they have been computed and compared using 
three different grid sizes namely h=0.2, 0.1 and 0.05. 
The Table 4 contains the results of ƒ′,ƒ and L for some 
values of the parameters λ, R and M in the case-II when 
both the plates are being stretching sheet. Table 5 gives 
the results of ƒ′,ƒ and L for some values of the
parameters λ, R and M in the case-II when the lower 
plate is a stretching sheet. The results for velocity 
component ƒ′ are given in higher order accuracy O(h6)
in the Table 1-3 for Case-III of non-dimensional
material constants. The comparison between results of 
micropolar fluid and Newtonian fluid for some values 
of flow parameters λ,R and M is given in the Table 6. 
The  values  for  micropolar fluid  and Newtonian  fluid

placed in this table are those which are calculated on 
the finer grid size.

The graphical pattern of the results shows that the 
velocity field is almost symmetric about the centre of 
the channel η = 0 when both the plates are being 
stretched  at  the  same  rate but it is not the case with 
the  stretching  of  the lower plate only as depicted in 
Fig. 1-3. It has been noted that ƒ′ increases in the lower 
half of the channel for increasing R and decreases in the 
upper half of the channel. This effect can be observed 
in Fig. 2. It can be observed that an increase in the 
value of R increases f at all points, this component of 
velocity increases with increase of η when M is
constant as depicted in Fig. 4 and 5. 

The effect of λ is maximum on the primary flow ƒ′
at the center of the channel for fixed values of M. Also 
this effect is same, either both the sheets being stretched 
or the single sheet being stretched. Detailed
comparison, both tabular and graphical for λ = 1and λ = 
3 shows that the suction parameter radically changes 
the primary flow velocity ƒ′ but the value of f increases 
with the increase of λ when M is constant. This can be 
observed in tables and figures particularly in Fig. 4 and 
5. The Fig. 3 and 2 show that when λ = 1, the Lorentz 
force decreases ƒ′ near the lower plate and increases it 
near the upper plate. Figure 4 and 5 show that when λ is 
constant, the Lorentz force decreases f with the increase 
in the magnetic field strength. 

Figure 6 and 7 show the comparison of micropolar 
and Newtonian fluids. Figure 8 and 9 depict
microrotation field when both the plates are being
stretching sheets. Figure 10 demonstrates the
microrotation field when the lower plate is being
stretching sheet. The results for these graphs have been 
calculated in case- IV of the non dimensional material 
constants.

Table 1: M = 1.0, λ = 1.0, R = 0.05 M = 4.0, λ = 1.0, R = 0.05
Numerical results using richardson extrapolation method
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
h = 0.2 h = 0.1 h = 0.05 extrapolated h = 0.2 h = 0.1 h = 0.05 extrapolated
--------------------------------------------------------------------------------- ------------------------------------------------------------------------------------
η ƒ′ ƒ′ ƒ′ ƒ′ η ƒ′ ƒ′ ƒ′ ƒ′
0.0 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000
0.2 0.719477 0.718947 0.718813 0.718768 0.2 0.638627 0.634118 0.632929 0.632528
0.4 0.512920 0.512029 0.511804 0.511728 0.4 0.473828 0.469649 0.468560 0.468193
0.6 0.371658 0.370536 0.370251 0.370156 0.6 0.399673 0.396646 0.395866 0.395603
0.8 0.289713 0.288461 0.288143 0.288037 0.8 0.368442 0.366252 0.365693 0.365506
1.0 0.263517 0.262223 0.261895 0.261785 1.0 0.360001 0.358092 0.357606 0.357444
1.2 0.291750 0.290497 0.290180 0.290074 1.2 0.368848 0.366637 0.366072 0.365883
1.4 0.375266 0.374142 0.373859 0.373764 1.4 0.400543 0.397478 0.396687 0.396420
1.6 0.517127 0.516235 0.516010 0.515935 1.6 0.475188 0.470965 0.469862 0.469490
1.8 0.722722 0.722191 0.722058 0.722013 1.8 0.640144 0.635604 0.634406 0.634002
2.0 1.000000 1.000000 1.000000 1.000000 2.0 1.000000 1.000000 1.000000 1.000000



World Appl. Sci. J., 28 (12): 1888-1895, 2013

1892

Table 2: M = 3.0, λ = 3.0, R = 0.05 M = 3.0, λ = 3.0, R = 0.2
Numerical results using richardson extrapolation method
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
h = 0.2 h = 0.1 h = 0.05 extrapolated h = 0.2 h = 0.1 h = 0.05 extrapolated
--------------------------------------------------------------------------------- ------------------------------------------------------------------------------------

η ƒ′ ƒ′ ƒ′ ƒ′ η ƒ′ ƒ′ ƒ′ ƒ′
0.0 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000
0.2 1.334079 1.336860 1.337577 1.337818 0.2 1.341432 1.344195 1.344924 1.345170
0.4 1.516061 1.519254 1.520073 1.520347 0.4 1.524668 1.527782 1.528606 1.528884
0.6 1.612371 1.615253 1.615994 1.616242 0.6 1.619411 1.622183 1.622914 1.623161
0.8 1.658410 1.660955 1.661601 1.661818 0.8 1.662730 1.665166 1.665803 1.666017
1.0 1.671304 1.673725 1.674338 1.674543 1.0 1.672433 1.674779 1.675383 1.675586
1.2 1.656138 1.658710 1.659363 1.659582 1.2 1.653774 1.656319 1.656963 1.657179
1.4 1.607915 1.610843 1.611590 1.611841 1.4 1.601860 1.604798 1.605537 1.605784
1.6 1.509957 1.513184 1.514010 1.514287 1.6 1.500687 1.503922 1.504736 1.505008
1.8 1.328271 1.331056 1.331773 1.332013 1.8 1.318723 1.321478 1.322175 1.322408
2.0 1.000000 1.000000 1.000000 1.000000 2.0 1.000000 1.000000 1.000000 1.000000

Table 3: M=4.0, λ = 3.0, R=0.1 M=4.0, λ=3.0, R=0.8
Numerical results using richardson extrapolation method
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
h = 0.2 h = 0.1 h = 0.05 extrapolated h = 0.2 h = 0.1 h = 0.05 extrapolated
--------------------------------------------------------------------------------- ------------------------------------------------------------------------------------
η ƒ′ ƒ′ ƒ′ ƒ′ η ƒ′ ƒ′ ƒ′ ƒ′
0.0 1.000000 1.000000 1.000000 1.000000 0.0 1.000000 1.000000 1.000000 1.000000
0.2 1.364167 1.368668 1.369858 1.370261 0.2 1.387914 1.392277 1.393441 1.393835
0.4 1.529252 1.533385 1.534471 1.534837 0.4 1.554395 1.558082 1.559060 1.559391
0.6 1.602806 1.605777 1.606548 1.606808 0.6 1.622208 1.624676 1.625325 1.625544
0.8 1.633209 1.635357 1.635909 1.636095 0.8 1.645459 1.647276 1.647749 1.647908
1.0 1.640743 1.642645 1.643131 1.643294 1.0 1.645476 1.647329 1.647807 1.647968
1.2 1.630806 1.633053 1.633629 1.633822 1.2 1.626734 1.629212 1.629850 1.630065
1.4 1.597658 1.600799 1.601609 1.601882 1.4 1.582316 1.585830 1.586740 1.587047
1.6 1.521224 1.525534 1.526657 1.527036 1.6 1.493075 1.497601 1.498782 1.499181
1.8 1.355253 1.359829 1.361034 1.361441 1.8 1.321609 1.325925 1.327061 1.327445
2.0 1.000000 1.000000 1.000000 1.000000 2.0 1.000000 1.000000 1.000000 1.000000

Table 4: M = 3.0, λ = 1.0, R = 0.05 M = 4.0, λ = 1.0, R = 0.05

Numerical results using SOR method and Simpson’s rule on finer grid size
-------------------------------------------------------------------------------- ---------------------------------------------------------------------------------
η ƒ ƒ′ L η ƒ ƒ′ L
0.0 0.000000 1.000000 0.000000 0.0 0.000000 1.000000 0.000000
0.2 0.163137 0.664774 -0.169069 0.2 0.158706 0.634736 -0.158091
0.4 0.275961 0.482078 -0.223569 0.4 0.266999 0.469858 -0.199134
0.6 0.361615 0.385075 -0.220719 0.6 0.352625 0.396365 -0.191577
0.8 0.433293 0.338203 -0.187580 0.8 0.428338 0.365591 -0.162368
1.0 0.499066 0.324273 -0.136180 1.0 0.500323 0.357162 -0.120787
1.2 0.564839 0.338216 -0.071623 1.2 0.572302 0.365545 -0.068709
1.4 0.636530 0.385213 0.001982 1.4 0.648009 0.396383 -0.006374
1.6 0.722240 0.482517 0.073501 1.6 0.733663 0.470149 0.060086
1.8 0.835186 0.665516 0.107499 1.8 0.842053 0.635401 0.099633
2.0 0.998433 1.000000 0.000000 2.0 1.000866 1.000000 0.000000
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Table 5: M=1.0, λ=1.0, R=0.30 M=3.0, λ=1.0, R=0.30
Numerical results using SOR method and Simpson’s rule on finer grid size
-------------------------------------------------------------------------------- ---------------------------------------------------------------------------------
η ƒ ƒ′ L η ƒ ƒ′ L
0.0 0.000000 1.000000 0.000000 0.0 0.000000 1.000000 0.000000
0.2 0.189034 0.891769 -0.147745 0.2 0.175726 0.778394 -0.144944
0.4 0.357222 0.791232 -0.255925 0.4 0.317739 0.653523 -0.215735
0.6 0.505900 0.696270 -0.335481 0.6 0.440643 0.581849 -0.251253
0.8 0.635935 0.604369 -0.393150 0.8 0.552291 0.537655 -0.271172
1.0 0.747673 0.512862 -0.432411 1.0 0.656442 0.504649 -0.285297
1.2 0.840931 0.419135 -0.453270 1.2 0.754078 0.470552 -0.297442
1.4 0.915026 0.320921 -0.450410 1.4 0.843780 0.423088 -0.305426
1.6 0.968905 0.216870 -0.408109 1.6 0.921377 0.346347 -0.296043
1.8 1.001433 0.107855 -0.287917 1.8 0.978833 0.216924 -0.229666
2.0 1.012100 0.000000 0.000000 2.0 1.002345 0.000000 0.000000

Table 6: Comparison table for micropolar and Newtonian fluids (case-III)
η R M λ β Micropolar ƒ′ Newtonian ƒ′
1.0 0.05 1.0 1.0 1.093626 0.261895 0.261939
1.0 0.05 3.0 1.0 -2.267975 0.325996 0.326008
1.0 0.20 3.0 3.0 -16.326400 1.675383 1.675328
1.0 0.40 2.0 1.0 -0.168730 0.291246 0.291429
1.0 0.40 4.0 1.0 -5.365580 0.357007 0.357061
1.0 0.40 2.0 3.0 -9.081195 1.699496 1.709340
1.0 0.80 2.0 3.0 -10.332480 1.707297 1.707032
1.0 0.80 4.0 3.0 -29.016950 1.647807 1.647703

Fig. 1: Graph of ƒ′ when both the plates are stretching 
sheets

Fig. 2: Graph of ƒ′ when both the plates are stretching 
sheets

Fig. 3: Graph of ƒ′ when the lower plate is a stretching 
sheet

Fig. 4: Graph of transverse velocity f
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Fig. 5: Graph of transverse velocity f

Fig. 6: Graph of ƒ′for the comparison of Newtonian 
and micropolar fluid flow when both the plates 
are stretching sheets

Fig. 7: Graph of ƒ′ for the comparison of Newtonian 
and micropolar fluid flow when both the plates 
are stretching sheets

Fig. 8: Graph of microrotation L when both the plates 
are stretching sheets

Fig. 9: Graph of microrotation L when both the plates 
are stretching sheets

Fig. 10: Graph of microrotation L when the lower plate 
is a stretching sheet
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