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Abstract:  Urbanization,  industrialization,  rapid  traffic growth and increasing levels of anthropogenic
emissions have resulted in a substantial deterioration of air quality over the globe. Global climate change due
to Greenhouse gas (GHGs) emissions is an issue of  international  concern that primarily attributed to fossil
fuels. In this study, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Ant Colony Optimization
(ACO) techniques are applied for analyzing NO  emission in Iran based on the values of oil, natural gas, coalx

andprimary energy consumptions, as the energy indicators. Linear and non-linear forms of equations are
developed to forecast NO emission using GA, PSO and ACO. The related data between 1981 and 2009 werex

used, partly  for  installing  the  models  (finding  candidates  of  the best weighting factors for each model
(1981-2002)) and partly for testing the models (2003-2009). Eventually, NO  emission in Iran is estimated up tox

year 2025.
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INTRODUCTION Many studies are presented to propose some models

No   indirectly  influences the radiation  budget of GHGs emission [5-16]. x

the atmosphere through O , which  possibly  represents This study employs GA, ACO and PSO techniques to3

10-15% of the total anthropogenic greenhouse radiative forecast NO  emission due to energy consumption in Iran.
forcing in the atmosphere [1].

No also influences the oxidation capacity of the Genetic Algorithm (GA): GAs encode candidatex

atmosphere through OH and nitrate. O  production in the solutions as binary strings. Each string (chromosome) is3

troposphere is mainly due to the oxidation  of CH4, CO built by chaining a number of sub-strings, each sub-string
and hydrocarbons in the presence of NOx [2]. The 1997 representing one of the candidate solution’s features.
Kyoto protocol had the objective of reducing greenhouse Biological genes are in this case equivalent to the
gases (GHGs) which cause climate change. It demanded substrings encoding the parameters, while each binary
the reduction of GHG emissions to 5.2% lower than the digit can be related to the nucleotides composing the
1990  level  during  the period  between  2008  and  2012. DNA. In most of the cases, one individual is fully
It came into force in 2005. Many countries have started to described by a single bit-string, thus leading to the
develop climate  policies  but  scenario studies indicate identification of the genotype with one single
that greenhouse gas emissions  are  likely to increase in chromosome. Several other encoding procedures have
the future in most world regions [3]. Global energy been explored leading to a debate on the most appropriate
consumption  and  GHGs  emission  have  increased choice. Holland [17] showed that binary coding allows the
rapidly in the past few years. In 2009, the primary energy maximum number of schemata to be processed per
consumption in Iran reached 2467 million barrels oil individual. On the other hand, the mapping to binary
equivalent (boe), with the total No  emissions reaching coding introduces Hamming cliffs onto the search surface.x

1,836 thousand tons [4]. Moreover,  non-binary  representations  may   be  more 

to forecast future  scenarios  for  energy demand and

x



World Appl. Sci. J., 28 (12): 1996-2002, 2013

1997

natural for some problem domains and may reduce the A survey of adaptation in GAs is given in [26] proposed
computational burden of the search. The canonical an off-line tuning approach giving an optimal mutation
binary-coded GA as described here is now rarely used for rate  schedule.   Problem-specific   operators  are
continuous function optimization as it has been shown sometimes employed in addition to the canonical ones.
that solutions are too easily disrupted (the Hamming cliff The introduction of such operators results an increase in
issue). Therefore researchers tend to use less disruptive the search power of the algorithm but a loss of general
coding such as Gray coding [18]. applicability. This issue is analyzed in [27].

Similarly to the other Evolutionary Algorithms (EAs),
canonical GAs use generational replacement. Popular Ant Colony Optimization (ACO): In the early 1990s, Ant
alternatives are elitism and steady-state replacement [19]. Colony Optimization (ACO) was introduced by Dorigo et
In the first case, the best solution (s) are directly copied al. as a novel nature-inspired metaheuristic for the
into the new population while in the second case only a solution  of  combinatorial  optimization problems [28].
fraction of the population is replaced at each generation. The inspiring source of ACO is the foraging behavior of
Both variants aim to improve the preservation of good real ants. When searching for food, ants initially explore
genetic material at the expense of a reduced search space the area surrounding their nest  in  a random manner.
exploration. A comparison between the behavior of When an ant finds a food source, it carries some of it back
generational and steady-state replacement is given in [20]. to the nest. During the return trip, the ant deposits a

Individuals are selected for reproduction with a chemical pheromone trail on the ground. The quantity of
probability depending on their fitness. Canonical GAs pheromone deposited guides other ants to the food
allocate the mating probability of each individual source [29]. As shown by [30], indirect communication
proportionally to its fitness (proportional selection) and between the ants via pheromone trails enables them to
draw the parents set (mating pool) through the roulette find the shortest paths between their nest and food
wheel selection procedure [21]. Other popular selection sources. The indirect communication mechanism where
schemes are fitness ranking [22] and tournament selection ants  modify  their  environment  to  influence  the
[23]. For a comparison of selection procedure, the reader behavior of  other  ants  is  referred   to   as  stigmergy.
is referred to Goldberg and Deb [23]. This characteristic of real ant colonies is exploited in

Crossover is the main search operator in GAs, artificial ant colonies in order to solve combinatorial and
creating offsprings by randomly mixing sections of the continuous optimization problems. Although an ant
parental genome. The number of sections exchanged colony exhibits complex adaptive behavior, a single ant
varies widely with the GA implementation. The most exhibits a very simple behavior. An ant can be seen as a
common crossover procedures are one-point crossover, stimulus-response agent [29, 30], the ant observes
two-point   crossover    and     uniform crossover   [19]. pheromone  concentrations and  produces  an action
In  canonical  Gas,  a  crossover  probability  is  set for based on the pheromone-stimulus. An ant can therefore
each couple. Couples not selected for recombination will abstractly be considered  as  a simple computational
generate two offsprings identical to the parents. agent. An artificial ant algorithmically models the simple

A small fraction of the offsprings are randomly behavior of real ants.
selected to undergo genetic mutation. The mutation The simple ACO can  be  formulated  as follows [29].
operator randomly picks a location from a bit-string and If we define a combinatorial optimization problem that
flips its contents.  The  importance  of  this operator in entails the minimization of a given error function, a
GAs is however secondary andto the main aim of candidate solution is defined as a sequence of parameters
mutation is the  preservation  of the genetic diversity of andcan be visualized as a path through several nodes,
the population. each node corresponding to one of the solution’s

Gas require the tuning of some parameters such as parameters.
the mutation rate, crossover rate and replacement rate in For more details about intelligent optimization
the case of steady-state replacement. This task is often techniques the readers are referred to [28- 30].
not trivial as the chosen values may strongly influence
the search process [24, 25]. Moreover, the optimal value Particle Swarm Optimization (PSO): The Particle Swarm
for the GA parameters may vary according to the
evolution of the search process. For all these reasons,
several   adaptive    schemes   have   been  investigated.

Optimization algorithm  was  first proposed by Eberhart
and Kennedy [31], inspired by the natural flocking and
swarming  behavior of birds and insects. The concept of
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PSO gained in popularity due to its simplicity. Like other velocity of the particle. A large inertia weight biases the
swarm-based techniques, PSO consists of a number of search towards global exploration, while a smaller inertia
individuals refining their knowledge of the given search weight directs toward fine-tuning the current solutions
space. The individuals in a PSO have a position and a (exploitation). Suitable selection of the inertia weight and
velocity and are denoted as particles. The PSO algorithm acceleration coefficients can provide a balance between
works by attracting the particles to search space positions the global and the local search [32]. The PSO algorithm is
of high fitness. Each particle has a memory function composed of 5 main steps:
andadjusts its trajectory according to two pieces of
information, the best position that it has so far visited Initialize the position vector x and associated velocity
andthe global best position attained by the whole swarm. v of all particles in the population randomly. Then set
If the whole swarm is considered as a society, the first a maximum velocity and a maximum particle
piece of information can be seen as resulting from the movement amplitude in order to decrease the cost of
particle’s memory of its past states andthe second piece evaluation and to get a good convergence rate.
of information can be seen as resulting from the collective Evaluate the fitness of each particle via the fitness
experience of all members of the society. Like other function. There are many options when choosing a
optimization methods, PSO has a fitness evaluation fitness function and trial and error is often required to
function that  takes  each  particle’s position and assigns find a good one.
it  a fitness  value.  The  position  of  highest fitness Compare the particle’s fitness evaluation with the
value visited by the  swarm  is  called  the global best. particle’s best solution. If the current value is better
Each particle remembers the global best andthe position than previous best solution, replace it and set the
of highest  fitness value that has personally visited, current solution as the local best. Compare the
which is called the local best. individual particle’s fitness with the population’s

Many attempts were made to improve the global best. If the fitness of the current solution is
performance of the original PSO algorithm and several better than the global best’s fitness, set the current
new parameters were introduced such as the inertia solution as the new global best. 
weight [32]. The canonical PSO with inertia weight, which Change  velocities  and  positions  by using Eqs.1
is used in this study, has become very popular and widely and 2.
used   in   many science   and   engineering  applications. Repeat step 2 to step 4 until a predefined number of
In the canonical PSO, each particle i has position x  and iterations is completed. i

velocity v  (the velocity of a particle represents thei

distance traveled from the current position) that is Problem Definition: In this study, NO  emission in Iran
updated at each iteration according to Eq.1 was forecasted based on the oil, natural gas, coal and

(1) For this purpose, following forms of equations (Linear and

Where  is the inertia weight,   is the best position
found so far by particle   and  is the global best so
far found by the swarm.  and  weights that are
randomly generated at each step for each particle
component. c  and c  are positive constant parameters1 2

called acceleration coefficients (which control the
maximum step size the particle can achieve). The position
of each particle is updated at each  iteration  by  adding
the velocity vector to the position vector.

(2)

The inertia weight w (which is a user-defined
parameter), together with c  and c , controls the1 2

contribution of past velocity values to the current

x

primary energy consumption using GA, ACO and PSO.

exponential) are developed:

(3)

(4)

Where OIL, NG, COAL, PE are the oil, natural gas, coal
and primary energy consumptions in Iran and w  are thei

corresponding weighting factors.

The fitness function, F(x), takes the following form:

Min  (5)
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Table 1: The values of oil, natural gas, coal andprimary energy consumption and related NO  emission [4].x

Year NO  emission (Tt) Oil consumption (Mboe) NG consumption (Mboe) Coal consumption (Mboe) PE consumption (Mboe)x
a

1981 306.75 175.46 15.87 3.40 582.45
1982 359.40 191.79 21.95 4.30 1033.34
1983 400.68 232.72 25.16 6.00 1046.06
1984 434.23 246.37 31.15 5.70 935.31
1985 463.07 269.54 30.28 4.90 979.59
1986 489.04 245.19 28.70 5.20 868.27
1987 515.33 256.74 32.90 5.10 977.65
1988 541.70 254.73 33.91 5.40 1024.97
1989 569.39 276.02 45.03 6.00 1188.45
1990 598.79 280.68 55.98 6.50 1340.55
1991 629.90 300.45 73.84 7.40 1423.92
1992 662.72 325.73 89.74 7.40 1535.96
1993 696.80 355.32 99.30 8.10 1636.08
1994 731.82 363.31 118.71 8.10 1691.83
1995 767.41 350.13 140.87 7.70 1741.02
1996 814.70 372.01 162.84 7.90 1753.02
1997 842.18 384.88 175.94 8.30 1767.64
1998 858.25 404.13 172.05 8.60 1790.63
1999 892.05 381.80 203.54 8.30 1785.11
2000 956.18 405.07 216.82 8.60 1858.32
2001 994.42 396.78 224.60 7.80 1808.83
2002 1056.75 405.68 253.45 7.90 1853.39
2003 1111.25 415.74 277.55 8.30 2057.16
2004 1168.39 431.02 320.25 8.40 2146.47
2005 1256.22 462.64 344.05 8.60 2233.33
2006 1346.57 495.86 399.09 8.79 2311.70
2007 1378.96 516.37 470.97 8.70 2426.32
2008 1808.55 533.47 475.24 8.90 2428.42
2009 1836.27 538.52 519.69 9.00 2467.17
(Tt): Thousand tonea

(Mboe): Million barrels oil equivalentb

Where   and  are the actual and The proposed algorithms were applied in order to
predicted values of NO  emission respectively andm is thex

number of observations.
The related data from 1981 to 2009 were used, partly

for installing the models (finding candidates of best
weighting factors for each model (1981-2002)) and partly
for testing the models (2003-2009). These values are
obtained from [4] and shown in Table 1.

RESULTS AND DISCUSSION

Estimating Weighting Factors Values by PSO: In this
section for each algorithm (i.e. GA, ACO and PSO) a code
was developed in MATLAB 2010 (Math Works, Natick,
MA) and applied for finding optimal values of weighting
factors regarding actual data (1981-2009). For this
purpose, following stages were done: 

All input and output variables in Eqs.3 and 4 were
normalized in the (0, 1) range.

determine corresponding weighting factors (w ) fori

each model. The related data from 1981 to 2002 were
used in this stage.
The best results (optimal values of weighting
parameters) for each model were chosen according to
[b] and less average relative errors in testing period.
The related data from 2003 to 2009 were used in this
stage.
Forecasting models were proposed using the optimal
values of weighting parameters. The best obtained
weighting factors for GA, ACO and PSO models (for
the general forms of Eqs. (3) and (4)) are shown in
Table 2.

Table 3 shows the comparison between the Actual
and estimated values of NO  emission on testing period.x

As it can be seen in this table, the estimation models are
in good agreement with the actual data but 
outperformed the other presented models.
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Table 2: The best obtained weighting factors by GA, ACO, PSO for the general forms of Eqs. (3) and (4).

Model w w w w w w w w w1 2 3 4 5 6 7 8 9

GA-No 0.1801 0.7716 0.0314 -0.0092 0.0921 - - - -x linear

GA-No 0.1701 0.2922 0.8273 1.001 0.4995 0.9887 -0.5466 0.5272 0.1388x exponential

ACO-No 0.0399 0.9946 0.1056 -0.3671 0.2282 - - - -x linear

ACO-No 0.9081 0.2118 0.7089 1.0624 0.2565 0.1437 -1.3138 0.128 0.4503x exponential

PSO-No 0.7685 1.0095 0.5929 -1.5834 0.3838 - - - -x linear

PSO-No -0.1657 0.924 0.659 1.2807 -0.0244 0.6809 0.3828 0.2135 0.0999x exponential

Table 3: Comparison between the actual and estimated values of NO  emission on testing period (2003-2009).x

Years 2003 2004 2005 2006 2007 2008 2009 Average

Actual Data  (Tt) 1111.2 1168.4 1256.2 1346.6 1379 1808.6 1836.3 _a

GA 1133.4 1240.5 1308.4 1458.6 1626.2 1653.4 1771.9 _exponential

Relative error (%) 1.99 6.18 4.15 8.32 17.93 -8.58 -3.51 7.24
GA 1168.4 1281.3 1358.3 1512.3 1698.4 1719.7 1831.2 _linear

Relative error (%) 5.14 9.67 8.13 12.31 23.16 -4.91 -0.28 9.08
ACO 1107.3 1212 1281.1 1426.9 1604.7 1623.9 1734.3 _exponential

Relative error (%) -0.35 3.73 1.98 5.97 16.37 -10.21 -5.56 6.31
ACO 1085.9 1204.1 1267.2 1430.2 1632.4 1650.6 1784 _linear

Relative error (%) -2.28 3.06 0.87 6.21 18.38 -8.73 -2.85 6.06
PSO 1090.5 1205.9 1262.1 1412.6 1631.6 1636.6 1779.7 _exponential

Relative error (%) -1.87 3.21 0.46 4.9 18.32 -9.51 -3.08 5.91
PSO 1071.1 1170.6 1261.5 1463.1 1628.8 1700.3 1826.9 _linear

Relative error (%) -3.61 0.19 0.42 8.65 18.11 -5.99 -0.51 5.35

 (Energy balance, 2010)a

Table 4: Predicted values of oil, natural gas, coal andprimary energy consumptions between 2010 and 2035 based on Scenario I designed by [5].

Year Oil consumption (Mboe) NG consumption (Mboe) Coal consumption (Mboe) PE consumption (Mboe)

2010 571.97 566.79 9.18 2558.30
2011 593.78 604.89 9.31 2628.98
2012 615.59 642.98 9.43 2699.67
2013 637.40 681.07 9.56 2770.35
2014 659.21 719.17 9.68 2841.03
2015 681.03 757.26 9.81 2911.72
2016 702.84 795.36 9.93 2982.40
2017 724.65 833.45 10.06 3053.08
2018 746.46 871.54 10.18 3123.77
2019 768.28 909.64 10.31 3194.45
2020 790.09 947.73 10.43 3265.13
2021 811.90 985.83 10.56 3335.82
2022 833.71 1023.92 10.68 3406.50
2023 855.52 1062.01 10.81 3477.18
2024 877.34 1100.11 10.93 3547.87
2025 899.15 1138.20 11.06 3618.55

Future Projection: In order to use obtained models for developed by [5]. Tables 4 and 5 show the values of oil,
future projections, each input variable (i.e. oil natural gas, coal andprimary energy consumptions
consumption- natural gas consumption-coal between 2010 and 2035 based on the designed scenarios
consumption- primary energy consumption) should be by [5].
forecasted in future time domain (2010-2025). To achieve Figure 1 and 2 shows the comparison between
this, the designed scenarios for future projection of each different projection models for NO  emission based on
input variable remained the same scenarios which were scenarios I and II.

x
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Table 5: Predicted values of oil, natural gas, coal andprimary energy consumptions between 2010 and 2035 based on Scenario II designed by [5].
Year Oil consumption (Mboe) NG consumption (Mboe) Coal consumption (Mboe) PE consumption (Mboe)
2010 550.79 561.29 9.46 2504.54
2011 565.47 605.03 9.63 2560.63
2012 584.78 649.35 9.72 2615.49
2013 598.49 697.45 9.90 2671.84
2014 612.21 747.85 10.08 2728.19
2015 625.92 800.72 10.27 2784.53
2016 639.63 856.27 10.45 2840.88
2017 653.35 914.70 10.64 2897.23
2018 667.06 976.22 10.82 2953.58
2019 680.78 1041.06 11.00 3009.92
2020 694.49 1109.44 11.19 3066.27
2021 708.21 1181.63 11.37 3122.62
2022 721.92 1257.87 11.56 3178.96
2023 735.64 1338.42 11.74 3235.31
2024 749.35 1423.57 11.93 3291.66
2025 763.06 1513.59 12.11 3348.01

Fig. 1: Comparison between different projections for NOx compared with the presented techniques in this study. 
emission based on Scenario I. Acknowledgments

Fig. 2: Comparison between different projections for NOx photochemical theory of tropospheric ozone. J.
emission based on Scenario II. Geophys. Res. 78: 8751- 8760.

CONCLUSION potential for greenhouse gases mitigation in

This paper investigates the causal relationships reform/efficiency improvement and scenario for 2000-
among No  emission and energy consumption, using GA, 2010. Energy Policy, 34: 40-49.x

ACO and PSO techniques. 30 years data (1981-2009) were 4. Energy Balance. 2010. Tehran: Ministry of Energy.
used for developing linear and exponential forms of 5. Behrang,  M.A.,   E.   Assareh,   M.R.   Assari     and
estimation models. Validations of models show that the A. Ghanbarzadeh, 2013. Using ITOs and ANNs to
estimation models are in good agreement with the Forecast Iran's GHGs Emission. Energy. submitted.

observed data but PSO- NO  outperformed otherx linear

developed models in this study. The results presented
here provide helpful insight into energy system and NOx

emission control modeling. They are also instrumental to
scholars and policy makers as a potential tool for
developing energy plans.

Future work is focused on comparing the methods
presented here with other available tools. Forecasting of
NO  emission can also be investigated with Artificial Beex

Colony, Bees Algorithm, or other metaheuristic
algorithms. The results of the different methods can be

The author is grateful for the support provided for the
present work by Dezful Branch, Islamic Azad University,
Dezful, Iran.
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