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Abstract: An analytical approach to the assessment of risk for the system elements at implementation of attacks
is proposed. The risk analysis is carried out in terms of: an analytical assessment of damage based on the utility
function integration; the search of expression in terms of finding its extremum and ranges of the random variable
for a given level of risk. The corresponding analytical expressions obtained in the work are the methodological
basis for risk analysis of the systems with different profiles in terms of their possible death. Specifically in this
paper, we obtain the following analytical expressions: for the integrated assessment of damage on a given utility
function, simplified expressions of risk of system death in a given time period, as well as the coordinates of its
peak. To solve the resulting equations the researchers used the chord method and Taylor series and applied
assessment of the accuracy of the proposed models. The proposed methodology of risk analysis is invariant
to the type of the considered systems and therefore can be widely applied to assess the utility and survivability
of information and other systems, including distributed systems and networks.
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INTRODUCTION Key Part:  The  function  of  damage  can  be obtained

Assessment of systems viability is not only of time),  which  is  presented   by   the   following
theoretical but also of real practical interest [1-2]. expression:
Obviously, this study should be based on the
methodology of risk analysis [1], as only assessing
probable (possible) damage [3] it is possible to find the
true risk of the system "death". An adequate description
of the characteristics of the studied threats and their use
in the future risk analysis require obtaining the
mathematical models of the rise of the distribution of
damages [4] from these threats.

Therefore, when analyzing the viability it is the
damage that should be considered as a random value. In
this case, it is conventional to make a description [1-5]
using  different  distribution  laws,  among  which    the
log-logistic distribution is the most popular for the
analysis of systems viability [6]. We use the most
common approach to measure risks through the
assessment on two factors: the probability of occurrence
and the severity of possible consequences.

from  the  normalized  utility  function (utility per unit of

(1)

where a >1 and  > 1 are coefficients of nonlinearityB

determining steepness of utility function cuts and T -av

average up (life) time.
The graph of the function of utility is presented in

Fig 1.
Area of the figure S  represents a loss of profit, which2

the  system could have got if in the moment of time t  it0

did  not  lose its  efficiency  forever.  In  the  case of a
fatal  failure the utility function is integrated from the
point of failure, namely, to the average lifetime of the
system.
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Fig. 1: Graph of utility function

Fig. 2: Simplification of utility curve

(2)

where t  is the moment of failure of the analyzed system.0

Equation (2) should be apparently normalized on T ,av

beyond which the consideration does not make sense,
that is,

(3)

Considering that  is quite a rare occasion the

utility curve can be modified to a first approximation,
discarding the first factor  that is unimportant

in this case, which leads to Figure 2a, where  = .
Obviously, at  the utility function will degenerate

into an angle of the unit square and the function of the
normalized loss - in its diagonal (Fig 2b). Taking into
account (2) and (3) the equation of damage will take the
following form

(4)

The estimating calculations show that 90% of life
goes in normal mode. At  = 9 the last term of equation (4)
brings in the error less than 5% even for . Thus for

practical use the equation of damage is allowable

,

that should be taken into account in the subsequent
mathematical calculations.

The analytical expression for the risk function with
preset function of damage is presented as follows

(5)

where  is normalized damage from the

death of DS component at the moment of time ,

 > 1 - Nonlinearity coefficient,
 - normalized time of component failure,

 > 0,  > 1 - parameters of distribution of probability
density of damage occurrence,

- the probability density of the time of

system death [6], - the sampling interval.
Find the extremum of risk taking the derivative of the

probability density and equating it to zero:
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The probability density function assumes a maximum For simplification introduce the following designations.
value at the point .

Substitute  to the probability density function. As

a result obtain the extremum:

Hence obtain

(6)

To investigate the risk in relation to the problems of
viability it is necessary to evaluate the risk that an entity
fails fatally in the vicinity of  of the moment of system
death . The resulting risk function will be a function of
a continuous random value of risk.

To solve the problems of viability in general it is
necessary to determine the parameters of risk. Calculate
the risk parameters for the obtained expression of damage
and the log-logistic distribution law [6].

In this context, we define the mode and the peak of
risk, which can be found by examining the risk function at
extremes. In this regard find its derivative.

 (7)

Equate the resulting expression (7) to null:

1

Critical points of function  in the studied

range [0,1] are as follows.

K = - ,

Then the equation takes the following form.

This equation is impossible to solve by radicals.
Therefore it is expedient to apply the numerical method of
approximate determination of roots. Using the chord
method obtain

To find an approximate value  with a predetermined

accuracy 0 it is necessary to use the obtained iterative
formula until . The initial approximation is 0.5.
The value obtained as a result of  calculation is the
desired critical point.

To calculate the risk mode consider that the point 
is not the sought maximum. The point  while in the

interval [0,1] divides it into two sections: , where the

function values increase and , where the function

decreases. Consequently, the point  is the desired

maximum point of risk function 

Then, the mode is approximately equal to:

(8)

Hence the risk peak takes the following form:

(9)
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To find the values of damage at the preset risk value To find the roots of this equation expand the natural
it is necessary to solve the following equation:

,

where  is a peak value of  risk,  k  -  coefficient
(k (0,1)) setting the level of reading from .

Considering the abovementioned, obtain:

or

To find the solution to the latter equation find its
logarithm:

And introducing the designation

,

obtain the following equation:

or

or

logarithms ,  and  into

Taylor series in the vicinity of the point . For the
expansion limit to five first members of the series, then the
error will be negligible. The result is an equation of the
fourth degree, which is solvable by radicals.

CONCLUSION

The obtained analytical expressions (1)-( 9) will allow
assessing the risks of system "death" and determining
their viability in the range of normalized damages. This
gives an opportunity of adequate assessment of security,
which will allow determining the damage from efficiency
loss in advance and taking effective managerial decisions
to optimize the risk at various attacks [7].

Findings. The proposed mathematical apparatus in
contrast to its analogues [7-11] takes into account not
only the probability of death, but also the value of
damage arising in this case, which in different periods of
the system life will be obviously different. Such an
approach should be considered more appropriate and can
be recommended for practical use in solving problems of
evaluating the usefulness and survivability of systems at
dos- attacks [9], the attack by forging cached DNS
records [10] and attacks using the TCP-de-
synchronization method [11].

ACKNOWLEDGMENTS

The article was performed as part of the main
research project of the Voronezh State Technical
University "Information Risk Management and Security
of Information and Communication Systems". The authors
express their gratefulness to the Department of
information security systems of the University for their
assistance in the preparation of this publication.

REFERENCES

1. Ostapenko,  G.A.,  D.O.  Karpeev, D.G. Plotnikov,
R.V. Batishchev, I.V. Goncharov, P.A. Maslikhov,
E.A. Meshkova, N.M. Morozova, S.V.  Ryazanov,
E.V. Subbotina and V.A. Tranin, 2010. Risks of
Distributed Systems: Techniques and Algorithms,
Evaluation and Management. Information and
Security, 13(4): 485-531, Voronezh.

2. Ostapenko, A.G., D.G. Plotnikov and A. Yu.
Duplischeva, 2010. On the Issue of Risk Management
of Distributed Information Systems. Information and
Security, 13(2): 259-260, Voronezh.



World Appl. Sci. J., 25 (4): 675-679, 2013

679

3. Ostapenko,  O.A.,  D.O.  Karpeev, et al., 2007. Risks 7. Bailey, Bob, June, 2000. Improving User Performance.
of Systems: Evaluation and Management. Voronezh: UI Design Update Newsletter. (www. humanfactors.
International  Institute  of  Computer  Technology, com/downloads/june00.asp).
pp: 261. 8. The dig Manual Page. (www. stopspam. org/ usenet/

4. Ostapenko, A.G., 2010. Function of Capabilities in mmf/man/dig.html).
Assessment of Risk, Chances and Efficiency of 9. Gummadi, Krishna P. Stefan Saroiu and Steven D.
Systems. Information and Security, 13(1): 17-20, Gribble, November 6-8, 2002. King: Estimating
Voronezh. Latency between Arbitrary Internet End Hosts. IMW

5. Ostapenko, A.G., D.G. Plotnikov, O.A. Ostapenko 2002. (www.icir.org/vern/imw-2002/imw2002-
and P.A. Maslikhov, 2012. On the Assessment of papers/198.pdf).
Damage in the Analysis of Risks of Death of 10. Somegawa, Ryuji, Kenjiro Cho, Yuji Sekiya and
Innovative  Projects.  Information  and   Security, Suguru Yamaguchi, February 2003. The Effects of
15(3): 425-428, Voronezh. Server Placement and Server Selection for Internet

6. Mockapetris, P., 1987. Domain Names - Concepts and Services. IEICE Trans. Commun. Vol. E86-B,  2. 
Facilities. RFC-1034, (www.ietf.org/ rfc/rfc 1034. 11. Bailey, Bob, April, 2001. Acceptable Computer
txt?number=1034). Response Times. UI Design Update Newsletter.

(www.humanfactors.com/downloads/apr012.htm).


