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Abstract: Tiny DB is a database which is exclusively used in sensor network in Tiny OS (Tiny operating
system) platform. It sends queries from a server to the network and gets back the result to the server in each
epoch.  One of the most challenging jobs in sensor networks is to reduce the traffic and to reduce the power
consumption. We have derived a technique in case of network traffic which is significantly reducing the power
consumption and network traffic cost than the current system. In our system, queries will be sent to the network
in the first epoch during each data collection period and in all the other epochs it will just return the results. The
motes will accept and store the first query that specifies the sample period and the data collection duration. It
will then use the same query for retrieving the rest of the results at the end of each sample period for the entire
data collection period. We used Tiny OS simulator (TOSSIM) which is embedded with Tiny DB and Tiny OS.
We hope that it will be a great achievement in case of sensor network and sensor network database area. 
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INTRODUCTION Fig 1 illustrates the fundamental architecture that we

TinyDB is a query processing idea to dig out a powered PC (base-station), parsed, optimized and lastly
information from a group of TinyOS sensors, making a sent into sensor network, where they are sprinkled and
network. Distinct from on hand solutions for data distributed and processed, with outcomes flowing back
processing in TinyOS [1], TinyDB does not impose you up the routing tree that was twisted and created as the
to write down embedded C code for sensors. In its place, queries were propagated [3, 4].
TinyDB provides a clear-cut, SQL-like interface to After a brief introduction to sensor networks in
recognize the statistics you desire to pull out, along with Section 1, Section 2 covers the related work and existing
additional parameters, like the rapidity at which data techniques along with some knowledge of query
should be re-energized – much as you would impersonate language, Section 3 highlights the existing problem in
queries beside a conventional database. Given a query current system developed. Section 4 highlights our
specifying your data interests, TinyDB [2] collects those proposal on query optimization issues in power sensitive
facts from motes in the atmosphere and surroundings, environments. Section 5 shows a mathematical and
filters it, aggregates it concurrently and direct it out to a statistical proof to our proposed idea. In section 6
machine.  TinyDB  does  this   through   power-efficient implementation and simulation results shows that our
in-network processing algorithms. We will talk about in proposed idea is power efficient than other systems. In
this project, about methods designed to reduce and section 7 we will talk about some future research
diminish power overheads through acquisitional directions along with concluding remarks on our idea.
techniques and methods. These techniques, taken in
cumulative, can lead to orders of magnitude improvements Related  Work  and  Existing  Techniques:  In this
in power utilization and expenditures and greater than section we discuss some existing mechanisms and
before correctness and exactness of query results. techniques.

track throughout our research – queries are submitted at
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Fig. 1: A query  and results propagating through the
network..

Fig. 2: TinyDB architecture

Tiny Database: TinyDB [5] makes available a top-level,
declarative language for specifying queries. In a
declarative language a programmer describe what he/she
wishes for, but not how to attain it. Declarative languages
are reasonably simple and easy to learn, with queries that
are clear-cut to interpret and identify. Similarly they
authorize the essential system to adjust how it runs a
query, exclusive of requiring the query itself to be
changed. This is noteworthy in sensor networks, where
the best underlying implementation may need to change
regularly and commonly.

Fig. 3: Phase of Power Consumption in TinyDB

Sensor Networks: A sensor node [6, 7] is a battery
power-driven, wireless computer. Characteristically, these
nodes are bodily tiny (a few cubic centimeters in size) and
tremendously low powered (a few tens of milliwatts
versus tens of watts for a typical laptop computer) [3].
Power is of supreme and extreme significance. If used
forthrightly, individual nodes will exhaust their energy
supplies in only a few days [4]. In distinction, if sensor
nodes are very frugal about power utilization and
expenditure, months or years of life spann are possible.
Mica motes, for example, when working at 2% duty cycle
(between lively and snoozee modes) can accomplish and
attain lifetimes in the 6 month range on a pair of AA
batteries. This duty cycle confines the active time to 1.2
seconds per minute.

Power Consumption in Sensor Networks: In “Snoozing
or sleeping” mode the node spends the majority of its
time. The CPU and radio frequency are at rest, waiting for
a timer to run out or any exterior happeningg to stir the
gadget. In “Processing or active” mode the sensor node
consumes more power than sleep mode and where query
results are produced locally. In “Processing and
Receiving” [8, 9] mode outcomes are collected and
integrated from neighbors over the RF. To finish, in
“Transmitting” mode, outcomes for the query are
distributed by the local mote.

TinyOS: TinyOS [10-12] consists of a set of components
for administration, supervision and accessing the mote
hardware and a “C-like” programming language known as
nesC. The major characteristics of TinyOS are:

A group of software intended to make
straightforward entrance to the lowest levels of
hardware in an energy-efficient (Green computing)
and conflict free way, and
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A programming replica planned to endorse
extensibility and composition of software whereas
maintaining a high level of concurrency and energy
efficiency.

Query Language: Queries in TinyDB consist of a
SELECT-FROM-WHERE clause supporting join,
selection, aggregation, projection, sampling, windowing
and sub-queries through materialization points. When a
specific query is issued in TinyDB, it is assigned a unique
identifier that is returned to the issuer. This identifier can
be used to stop a specific query, limit a query execution to
be executed for a specific time duration or include a
stopping condition as an event. Fig. 4: Current System

Event-Based Queries: Event based queries start running Proposed Solution: We intend to put forward some
when a low-level “event” occurs. There are two steps approaches to solving the problems listed above in order
concerned in authoring event-based queries: to  achieve  the  goal  of  TinyDB’s ability to acquire and

Defining the operating system event and possible and satisfying desired lifetime goals.
Registering the query with a TinyDB.

To describe  an event, you must write down a Repetition: Suppose, we want the node id and
module that registers the event and signals that it has temperature information and temperature should be above
fired up at whatever time it occurs. Registering events is the threshold. The sample period is 1 second and query
much similar to registering commands. Event based life time is 30 seconds.
queries must be input in the text panel of the TinyDB GUI
[13, 14]. SELECT nodeid, temp

Existing Problem: A close study on the current TinyDB WHERE temp > thresh
could reveal a lot of slacks in performance related features SAMPLE PERIOD 1s FOR 30s
notably energy consumption [15]. This is not because
TinyDB is not properly designed but compatibility issues We know that TinySQL runs each query repeatedly,
arising from the design of the conventional motes to the once per time-period or “epoch”. That means for each
aims of TinyDB. In the current system of TinyDB, queries sample period TinySQL runs each query repeatedly. As
that constitute repetitive sampling are much more common can be seen from Figure 4, at first time t-0, a query for the
than the other types of queries. In fact, repetitive queries first time is injected into the network. Through the mote 2,
are the major utility in TinyDB that exhibits most of the the query comes to mote 4. Then fetch the result and send
power consumption. TinyDB [16] was designed for the result back to the root through mote 2 by aggregation
conventional mote types the designers of which may not and required filtration. This process is repeated for each
have thought of TinyDB architecture. Hence there was no epoch. In the case of the previous query the query is
query storage concept yet there is a flash storage concept repeated for 30 times [20- 23].
that can allow for query results to be stored for TinyDB. From Figure 5, at time t-0, the query runs for the first
Periodic queries traverse through the network repetitively time and it is injected into the network. The query comes
consuming vital processing power and time. Exploring to mote4 through mote 2. Assuming mote4 has the query
efficient in-network storage and processing can help storage capability then the requested 30 results can be
remedy such limitations by triggering queries from within returned by the mote without receiving any further
queried motes [17-19]. requests.

deliver desired data while conserving as much power as

Reducing Power and Traffic by Discarding Query

From sensors
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Fig. 5. Proposed System

That means for the entire data collection period the
mote will receive a query only once (epoch 1) and for the
rest of the epochs results will be returned consecutively.

Advantages :

It will reduce the traffic and routing overhead.
It will also reduce power consumption for root node
and distribute power consumption.
We hope that it will give a better result for a long
tree.

Mathematical Proof: The mathematical verifications
involved here are rather trivial. We considered a simple
mote network as shown in figure 4.3. We assumed that the
current draw by various components of each mote in the
network for the same query message is the same. This is
best realized with a network with the same type of motes
deployed. To formulate an accurate mathematical
representation, the following parameters should be
assumed:

C0total power overhead on a mote for receiving a
query from its parent and transmitting the same query
to a neighbor node. This power is the total of that
consumed by the radio, leds, sensor board, cpu, adc
and the EEPROM.
C1total power overhead on a mote for receiving a
result from its child node and transmitting the same
result to a parent node. This power is the total of that
consumed by the radio, leds, sensor board, cpu, adc
and the EEPROM.

Fig. 6: Schematic of a sample query sent to mote m2

Fig. 7:

Cqthe total power overhead on a queried node when
the query is not stored.

Power consumed for fetching a result for the query.
The power consumed for receiving the query from a
parent node and sending the fetched result back to a
parent.

Cpthe total power overhead on a queried node when
the query is stored.

Power consumed by the process that triggers the
query processing when the clock for an epoch
expires.
Power consumed for sending the fetched result back
in the network.
Extended power consumption due to mote sleep time
limitations imposed by stored queries.
Mthe number of motes along the route from the
query originator to the queried node. This excludes
the queried node itself.
Nthe number of epochs specified by the query
originator.

In current systems, the power consumption for
repetitive queries can then be calculated as follows.
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For a Single Query Sent;
Power = mC0 + Cq + mC1 m(C0 + C1) +Cq

For a query of n epochs;
Power = n[ m(C0 + C1) +Cq ]

In our proposed system, the power consumption for
repetitive queries can be calculated as follows.

For a single query sent;
Power = mC0 s+ Cp + mC1m(C0 + C1) +Cp

For a query of n epochs;
Power = n[ m(C0 + C1) +Cp ] – n-1(mC0)

Power conserved

This can be further simplified as;
Power = n[ mC1 +Cp ] + mC0

The equations can be further improved to show
important achievement;

It is known that the power difference between
forwarding a query and forwarding a result is quite
negligible, since both processes take the form of
active messages. Hence C0 ˜˜ C1
The difference in value between Cp and Cq can be
negligible if the duration of query epoch is carefully
selected not to hamper the mote sleep time. Cq ˜˜ Cp

Hence equation 4.1 can be rewritten as;
 Power = n[ 2mC0 +Cq ]

Hence equation 4.3 can be rewritten as;
 Power = n[ mC0 +Cq ] + mC0

 From the above analysis, we can conclude that;

Apart from the energy consumed by a queried node,
the power consumption of our design is
approximately one half of the original system if not
for the value of mC0 which is the initial forward
traffic.
For a very large network of mote, the value of mC0
will be negligible and the power saving advantage
will be easily realized.
The Cp value is another important factor that can be
controlled to some extent. Mica motes for example
have a standard period of 4 seconds between sleep
times when there is no activity. The epoch period
must be set not expire during the period in which a
mote is asleep.

Fig. 8:

Fig. 9:

Implementation, Simulation and Results: We used the
Tossim simulator here which is a discrete event simulator
for TinyOS applications such as TinyDB. We focus on a
specific sensor type –the Mica2 sensor node- developed
by UC Berkeley. For the sake of understanding and
simplicity, we choose a simple star topology of 4 nodes
with node 0 serving as the base station [29, 30].

We then send a typical periodic query from the base
station to the other nodes using the Tossim simulator.
PowerTossim, a component of the Tossim simulator
captures all associated power events (states) and then
applies a specified power model to those events in order
to compute their individual power consumptions as well
as the sum total. The power model for a Mica2 mote can
be seen in the next section.

The Power Model and Measurement: The power model is
specifically  for  a Mica2 mote. This device consists of a
7.3 MHz ATmega128L processor, 128KB of code memory,
512KB EEPROM, 4KB of data memory and a ChipC on
CC1000 radio capable of transmitting at 38.4 Kbps with an
outdoor transmission range of approximately 300m. The
device measures 5.7cm × 3.1cm × 1.8cm and is typically
powered by 2 AA batteries.

Table 1 presents the resulting power model for the
Mica2 hardware platform.
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Table 1: Power Model for the Mica2. The Mote Was
Measured with the Micasb Sensor Board and a
3v Power Supply.

Power Monitoring of a Sample Query: In order to monitor
power for a simple tinydb query, power state transition Fig. 10: Component power consumption in current
messages must be enabled. Also the tinydb application systems for 10 epochs
must be compiled and run with power specific options. In
our experiment, we run the tinydb application for 4 mins
(240secs) and collect vital data from the debug messages
into a trace file which will later be processed for energy
consumption analysis in the next section. For the
complete procedure of what is described above, see
section 1 of the appendix [24].

Power State consists of a single interface with one
command for each possible state transition. Each function
tests if power profiling is enabled and if so, emits a log
message detailing the mote number, the specific power
state transition and the current simulation time. An
excerpt from the trace file is shown below:

0 : POWER: Mote 0 LED_STATE RED_OFF at 18677335 Fig. 11: Component power consumption in our model for
0 : POWER: Mote 0 LED_STATE YELLOW_OFF at 10 epochs

18677335
0 : POWER: Mote 0 ADC SAMPLE RSSI_PORT at From the comparison of Figure 4.7 and Figure 4.8 it is

18990479 clearly visible that total energy consumption of our model
0 : POWER: Mote 0 ADC DATA_READY at 18990679 is rather less than that of the current systems. It is clear
0 : POWER: Mote 0 RADIO_STATE TX at 18993551 that the minimum consumption for the current systems at
0 : POWER: Mote 0 RADIO_STATE RX at 19199375 any moment is not less than 12mA. In our model, the

Power Consumption Analysis (Per Mote Basis): Once the when a mote had a chance to sleep putting off the radio
power and CPU state data has been obtained by the since there is no query reception time involved.
simulation run, several tools are available to permit For queries that last for very long periods, the
analysis and visualization. In this experiment, we use the cumulative energy consumption given by our model – the
PowerTossim tool to compute the power consumption green plot – proved very impressive energy conservation
from the traces of transition messages obtained in the over the conventional systems [23, 24]. After 4 minutes
previous section. The procedure for using this feature of (240  seconds) about 2500mA was conserved for a single
powerTossim can be found in section 2 of the appendix. mote. This is a great achievement in a sensor network.

power consumed can be as low as 9.5mA. This is the time
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Fig. 12: Cumulative power consumption in the two
systems for 10 epochs within 4minutes

Fig. 13: Energy consumption per mote for both systems

Below is a figure that shows a comparative energy
consumption chart between two systems across all four
nodes that where simulated. It should be noted that mote0
is the root node sending the queries and in no means
processes its own query for a result which makes is
consume a slightly less energy. It should also be noted
that all motes simulated are of a mica2 type.

CONCLUSION

It can be seen that the approached above is a big
steps towards enhancing query performance in TinyDB.
For a considerably large sensor network, the benefits of
query storage are clearly notable. It will not only serve as
a means of saving vital power but also provides network
traffic optimization advantage. With frequent flow of
queries through a large network, congestion and slow
response times may result [25]. Real time processing is an
important phenomenon in sensor networks  which  cannot

be  realized  with large amounts of network congestion
[27, 28]. The concepts discussed here can also be very
useful in networks where queries may be carried out for
long periods of time with relatively long epoch periods for
each query. The advantages of the concept will be better
realized when mote sleep intervals are less hampered with,
in other words, when the epoch periods are not less than
this interval. Although current mote types support flash
storage, specially built types that will provide for all the
associated constraints will be far more superior. However,
this is not a constraint that overshadows the performance
advantages brought about by the concept [26]. Finally, it
is not difficult to observe that the requirements and
limitations of these findings are quite negligible when
balanced with the performance and energy saving
advantages that comes in. this is clearly demonstrated in
both the mathematical analysis and the experimental
results.
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