
World Applied Sciences Journal 23 (5): 644-649, 2013
ISSN 1818-4952
© IDOSI Publications, 2013
DOI: 10.5829/idosi.wasj.2013.23.05.13098

Corresponding Author: Zolotarev, Southern Federal University, 105/42 Bolshaya Sadovaya Str., Rostov-on-Don, 344006, Russia
644

Abilities of Modern Graphics Adapters for Optimizing Parallel Computing

Alexander Arsenevich Zolotarev and Oleg Igorevich Agibalov
Southern Federal University, Rostov-on-Don, Russia

Submitted: May 31, 2013; Accepted: Jun 26, 2013; Published: Jun 30, 2013
Abstract: The subject of the research is the abilities for optimization with using modern graphics units. The
purpose of the paper is to test basic abilities for optimization with using modern graphics units. Different
technologies of GPU programming were discussed in the paper. The results of performing the simplest basic
and complex functional operations are presented. Advantages and disadvantages of modern GPUs are
described. The questions of optimization become the key in determining and implementing modern technical
and economical processes. Usually creating and developing new scientific technologies generates the range
of optimization tasks. And the successful solution of such tasks is able to significantly increase the
effectiveness of these technologies. All the modern optimization methods and algorithms are required to be
adapted for the specifics of implementing processes in spite of the high level of formalization and unification.
For instance, the most important task in IT (Information Technology) industry is development high-performance
technologies, based on designing parallel algorithms and creating parallel program structures. Even today the
most widely used computing device is CPU (Central Processing Unit), although the faster tools exist and they
have in many times higher performance comparatively with CPU. One of such perspective high-performance
technologies is implemented based on graphics processors GPU (Graphics Processing Unit). All the modern
graphics cards are the potent specialized devices that are contained in practically each modern PC. The leading
companies on a GPU market are NVidia and AMD (Advanced Micro Devices) Corporations with their GeForce
and Radeon lines respectively. At the last time Intel Corporation develops CPUs that contain both CPU cores
and GPU module. Today it is implemented in the architectures Sandy Bridge, Sandy Bridge-E and Ivy Bridge
[1]. The performance capabilities of GPU impress but it is necessary to be able to use them effectively. Only the
optimization way allows making a breakthrough which will make it able to bring high-performance technologies
and technologies of processing data a new level.

Key words: Parallel computing CPU GPU Optimization Numerical experiment OpenCL
 DirectCompute GPGPU Nvidia AMD Intel Thread

INTRODUCTION [3]. It is cross platform and cross device tool which

Technologies and functionality of modern graphics CUDA works only with NVidia GPUs. Thus it is possible
processors are developed constantly. Thus, recently they to use OpenCL with graphics modules of Intel and AMD
processed only the computer graphics: two-dimensional corporations too. Microsoft also developed their own
and three-dimensional. But it was changed since the framework for GPU computing which is called
leading manufacturers have been developed technologies DirectCompute [4]. Being a new module of DirectX API it
that allow total using of graphics units for general works only on Windows OS and this fact doesn’t allow it
purpose computing-GPGPU technologies (General- to compete with OpenCL and CUDA. But it is important
purpose Graphics Processing Unit). Today there are many that Microsoft designed so-called C++ AMP for Visual
such technologies. The leading one is NVidia CUDA Studio based on Direct Compute [5].
(Compute Unified Device Architecture) [2]. As for the It is interesting that all the described technologies
CUDA the most significant here is technical support not have the similar programming convey. It is caused by the
only by NVidia but also by its dozen of partner similar GPU hardware architectures from various
companies. Another interesting technology is OpenCL manufacturers. Each GPU consists of dozens of so-called

overcomes the main disadvantage of CUDA-NVidia

World Appl. Sci. J., 23 (5): 644-649, 2013

645

multiprocessors. Each multiprocessor provides a set of using OpenCL with Fortran, but they are non-official
thread groups (blocks) and any blocks consist of many which means that they are developed independently from
threads in three-dimensional space. Thus each thread can Khronos Group. Nevertheless openCL is the best choice
be characterized by 3D index in x, y and z axes. But the when you need to create a cross platform application. But
most important thing is that all the threads are in the most cases you need to use C++ with OpenCL.
independent. Each thread works separately and in parallel Also OpenCL is a part of both CUDA SDK and FireStream
with all the others. But in this case there is the problem of SDK. Generally these technologies are similar and very
using memory. How to provide the ability for threads to powerful. They allow developing programs for several
communicate between each other?. devices and provide the highest level of performance.

There are several memory types inside GPU that allow Moreover OpenCL, CUDA, DirectCompute and FireStream
solving this problem. Each type can be accessed for only are freeware, excluding specialized releases, for instance
specific modules of GPU. For example, each thread has its for CUDA Fortran. DirectCompute is the most unattractive
own local memory. No other threads are able to operate it. here. It was developed as a part of DirectX and many its
There is also the memory which is common for the whole elements are aimed to universalization. That’s why the
group of threads. And each thread from this group can data transfer speed is too small sometimes. But it is more
access it. This memory is used for communicating interested that the Microsoft developed C++ AMP based
between threads in a single block. But this block can’t on application programming interface DirectCompute.
operate with local memory from other groups. For this the C++ AMP is a heterogeneous tool of programming
common memory of multiprocessor exists. And this various systems. Its idea is in using directives. And they
memory is accessible for any thread groups of are putted in a code in the Visual Studio. These directives
multiprocessor. The flexibility of architecture and maximal tell compiler that it needs to analyze the code and
access speed are implemented due to such complex distribute its execution between CPU and GPU. The main
architecture [6]. advantage of this way is that you don’t need to be good

Applied Description of GPGPU Technologies: All the correct place. But this technology works only in Visual
GPGPU technologies may be divided into several groups Studio and requires Windows OS. And this is the main
depend on level of using and of applications. The first disadvantage of C++ AMP. The key instruction is restrict
group is represented by such developments as CUDA, (amp). It requires compiler to analyze the code and execute
OpenCL, DirectCompute, FireStream. They are the APIs it in C++ AMP accelerator [8].
that allow programming heterogeneous systems. To use The keyword restrict means the necessity to analyze
them it is necessary to include special libraries in a if the function relevant for to be executed on GPU [9].
program. Then the two types of programs may be written: The sample code is presented below.
for CPU and GPU. Such tools are very flexible and are
characterized by many different parameters that provide voidmyFunc() restrict (amp)
the ability for broad optimization. Leading technology in {//Do something}
this group is NVidia CUDA. It is the most widely spread
among all the presented technologies. It is widely Thus the C++ AMP represents the second group of
supported not only by NVidia but also by dozen of its GPGPU technologies. The third group contains such
partner companies. So we may use CUDA both with developments as OpenACC and OpenHMPP (HMPP for
professional high-level languages like C++ and with more Hybrid Multicore Parallel Programming) [10]. OpenACC
scientific languages like Fortran, for example, through PGI and OpenHMPP are the cross platform sets of directives
CUDA Fortran Compiler [7]. The use of Fortran allows that are supported by many companies. The principle is
programmer to put aside the details of low-level similar to C++ AMP. You may put directive into your code
programming. It is necessary to say that there are two and thus it is possible not just to parallelize the code but
languages that are mostly used for scientific purposes: also control the transfers between GPU memory and
Fortran and Python. As for the CUDA it has the single RAM. These tools are supported by such companies as
disadvantage – it works with only NVidia’s accelerators. PGI and CAPS. As the NVidia partners they create
Although we are able to use OpenCL with AMD devices. technologies for its accelerators. And this is the single
And it is important that OpenCL provides abilities for disadvantage of OpenACC and OpenHMPP. Due to
cross platform programming and programming for GPUs NVidia the technologies of OpenACC and OpenHMPP
from various vendors. There are also technologies of work not only with C++ but also with C and Fortran

at GPGPU. All that you should do is to put directives in a

World Appl. Sci. J., 23 (5): 644-649, 2013

646

languages. As for the OpenHMPP it is the extended It is also very interesting that MathWorks supports
version of OpenACC with additional abilities and GPUs architectures in their MatLab. The innovative
directives. The sample OpenACC code is presented below technical development by MathWorks leverages
[11]. NVIDIA’s feature-rich CUDA computing toolkit, helping

#include <openacc.h> computing to the MATLAB community. MATLAB users
#include <stdio.h> can now easily enjoy the benefits of GPU computing from
#include <stdlib.h> within MATLAB, without C/C++ or FORTRAN
void main() { programming [13]. And MathWorks is not alone. Here is
int n = 100; the Table 1 which provides information on several
float a[n][n]; program packages and companies that built in GPGPUs in
float b[n][n]; their products [14].
float c[n][n];
float elements [n]; Results of GPGPU Working: As it was pointed,
for(int i = 0; i< n; i++) optimization abilities of modern GPU should be studied to
for (int j=0; j<n; j++){ reach best results. This means testing various operations
a[i][j] = i+j; both basic and complex functional. It is also important to
b[i][j] = 100 + 2 * i; understand how GPU works with different basic types of
} variables and how the time is increased with bigger
#pragma acc kernels loop independent capacity of input arrays.
for(int i = 0; i< n; i++)
for (int j=0; j < n; j++){ GPGPUs Results in Working with Basic Operations:
for (int k=0; k<n; k++) The basic operations are mathematical operators
c[i][j]=+a[i][k]*b[k][j]; such as addition, subtraction, multiplication and
} division.
free(a); free(b); free(c); All the values were calculated both for GPU and CPU.
} // main That’s why it is possible to compare these computing

Finally there are tools for any cases. Developers are in a table below (Table 2).
free in choosing between dozens technologies with All the computations were performed for arrays with
different levels of abstraction. The leading NVidia 20 000 000 elements. The GPUs superiority is obvious.
Corporation provides anything to developers for fastest Moreover the GPU uses similar time intervals for all the
and effective developments. And due to OpenACC and operations. At the same time CPU needs more time for
OpenHMPP they even don’t need to research GPGPU division than for addition, subtraction and multiplication.
architecture. Therefore it is proved that GPU effectiveness is still

GPGPU are widely used already today. Many higher for division operation, in spite of all others
companies apply these technologies for a various operations require equal time.
computations in different fields. One of them is Murex.
For twenty five years Murex has focused exclusively on Processing Time Dependence from Data Array Capacity:
developing software platforms and technologies for the It is obvious that the time of computing depends on the
capital markets. The Murex trading platform enables capacity of data arrays. And the nature of this
trading, risk management and trade execution across dependency should be studied. Is it possible to tell about
multiple asset classes for over 36,000 users at over 200 linear dependence, or not? And the series of tests were
institutions in 65 countries. Using NVIDIA Tesla GPUs, performed for solving this task (Fig. 1).
Murex has achieved speedups of between 60 and 400 Horizontal axis, which is titled V, reflects the capacity
times using MACS in a grid environment, making it of data V*10 elements in array. Vertical axis is the time of
possible to manage books of complex exotic products in computing T in milliseconds. Thus the dependency is
near real time, instead of only computing analytics once linear. Moreover it is linear both for CPU and GPU. And
or twice a day. As a result MACS clients can enjoy more the angle between horizontal axis and the line is equal for
accurate and timely risk management [12]. both devices (Fig. 1).

to allow MathWorks to bring the benefits of GPU

units. The results for arithmetical operations are presented

+6

2(x x)
Dev

n 1

−
=

−
∑

World Appl. Sci. J., 23 (5): 644-649, 2013

647

Table 1: Companies and their products that use GPGPUs
ISV/Application Supported Features Expected Speedup* Release Status
AccelerEyes Jacket CUDA kernels with Matlab, distributing standalone apps with Matlab 20x-40x Released
MathWorks Matlab CUDA kernels with Matlab, distributing standalone apps with Matlab 3x-5x Released
Mathematica Wolfram Development environment for CUDA and OpenCL kernels 3x-5x Released

Table 2: Computing basic arithmetic operations
Operator TavCPU, ms TavGPU, ms
Addition 3332,5 57,2
Subtraction 3332,8 58,5
Multiplication 3381,6 60,1
Division 5242,1 60,4

Table 3: Dependence from type of input data
Measurement Int Float
Average for CPU, ms. 2826,7 3336,4
Average for GPU, ms. 50,3 49,9

Table 4: Characteristics of the CPU and GPU on the complex operations
Operator Average working time for CPU, ms. Average working time for GPU, ms. Deviation of CPU Deviation of GPU
Sine 49850,5 205,5 17,6 3,0
Cosine 49859,0 207,2 24,1 4,8
Tangent 64534,6 190,6 11,9 56,2
Arcsine 15867,9 210,4 24,9 2,0
Arccosine 15155,3 211,7 25,9 1,8
Arctangent 23384,8 211,5 36,3 1,34
Sqrt 8900,3 206,5 8,4 1,7
Log 26436,3 210,1 48,7 1,9
Pow(3.5) 99117,6 170,8 45,8 73,8
Exp 21884,2 207,0 106,6 3,4

Fig. 1: Dependence of time from data capacity tangent, pow, abs and others are presented below in

Results of Data Types: Another important thing in According these results the GPU speed is in 250 times
optimization process is the ability of working with higher than CPU speed. Deviation here is standard
different types of variables, for example integer and float. deviation, which can be computed with using next
It is necessary to understand how strong the type of data equation.
influence at time of operation computing. And the results
were gotten during the testing and are presented in table
below (Table 3).

And they are really interesting. For example, it
became clear that there is no difference for GPU between In this equation is a sample mean and n is the size
computing integer or float values. Although GPUs were of sample.

primary optimized for working with real types of data.
Then it could be possible to expect higher speed for float
arrays. But the real results show that the times are similar
for both types of data.

Results with Complex Operations: However the
arithmetic operations do not provide the full view on how
GPU works. In most cases they play the role of relations
between complex operations that are used in operating
canonical functional structures. The results of the
experiments with such complex operations as sine, cosine,

Table 4.

World Appl. Sci. J., 23 (5): 644-649, 2013

648

Table 5: The results of CPU and GPU on the tangent operation
Size Function i Time of GPU, Tig Time of CPU, Tic
20 000 000 for(int i=0;i<100;i++) 1 207 64549

{ 2 214 64543
out[num] = tan(in[num]); 3 209 64544
} 4 209 64524

5 208 64540
6 201 64550
7 210 64524
8 205 64523
9 31 64518
10 212 64531

Table 6: Characteristics of tangent operation
Min Time of CPU Max Time of CPU Average CPU Min Time of GPU Max Time of GPU Average GPU Dispersion CPU Dispersion GPU
1 2 3 4 5 6 7 8
64518 64550 64534,6 31 214 190,6 11,9 56,2

However there are several operations that have really that are able for solving with using GPUs. For instance,
large dispersion and should be studied better. One of the task should be prepared for computing on GPU.
such operations is tangent, whose results are presented Developer should understand that the clock rate of GPU
below in Table 5. core is lower than CPU’s clock rate. Therefore the serial

Tig here is GPUs working time, Tic is CPU working. operations require more time when working with GPUs.
All the values are presented in milliseconds. And the main advantage of GPU is in is parallelism. Thus,

Statistical characterization for tangent is presented you should be sure that your tusk may be prepared for
below in Table 6. parallel computing. And it should be packed in array with

Evidently, there is a value which is equal to 31 in the independent elements inside.
table. And it differs (in several times) from all other values. Another important problem is various secondary
And the reason of such deviation is unclear. There are operations needed by GPUs architecture. They were
many background processes in PC. Both GPUs and CPUs already described in GPUs programming conveys. All the
constantly perform dozens system operations that require data are initialized by CPU. Then they are transferred into
resources. GPU memory and are computed there. After this GPU

The similar situation is repeated for the pow transfers data back to the RAM. And the high-capacity
operation too. The degree is not integer. And this is not data arrays require really many time. But the GPUs are
accidentally. The float degree is the most general case for developed for processing huge arrays. Therefore
scientific computations. sometimes it is necessary to analyze if it is better to

It is interesting that in most cases the GPUs require use GPU or CPU? Then you first need to analyze this
the similar time for various type of operations: sine, point and based on the model of optimal scheduling of
cosine, tangent, sqrt and others. tasks.

It is clear from all the previous data tables that CPUs Moreover developer should take into account all the
need time in 100-1000 times more than GPUs. Thus the differences between CPUs and GPUs architectures. And
quotient of times for tangent operation is equal to this: this means that there will be an intermediate step in
(Aver GPU)/(Aver CPU) ~ 10 . developing and performing task, which is based on3

Advantages and Disadvantages of GPUs: The modern And the differences are multiple. For example, all the
GPUs provide in many hundred times higher performance virtual threads exist in three-dimensional space. And there
than CPU. But there are no perfect technologies and is a special function or a variable for thread identification
GPGPUs have a set of disadvantages too. in GPGPU API. So programmer first needs to determine a

The advantages are clear. They were presented thread index and then transmit it as index in a target array.
through the result, gotten in this paper. As for the If this is not done, all the computations will be performed
disadvantages, they are hidden in non-obvious contexts. by all the GPU cores in parallel. All the operations that are

First of all, graphics card is a perfectly parallel programmed for one core will be executed by any
architecture which computes data, encapsulated in arrays, processors of GPU. And the thread identification is need
independently from each other. And this limits the tasks for avoiding this problem [15].

developing new hardware and programming methods.

World Appl. Sci. J., 23 (5): 644-649, 2013

649

CONCLUSION 4. Compute Shader Overview. Date View 10.06.2013

Based on the above, it clear that GPGPU have many desktop/ff476331(v=vs.85).aspx.
advantages comparatively with CPU. They are in many 5. C++ AMP Open Specification. Date View 10.06.2013
times faster and this is the main advantage in the modern http://blogs.msdn.com/b/somasegar/archive/2012/0
informative community. However it has disadvantages 2/03/c-amp-open-specification.aspx.
too, but they do not detract its advantages. They just 6. CUDA: New architecture for GPGPU computing. Date
impose several restrictions and require programmers to be View 10.06.2013 http://www.nvidia.ru/content/
more attentive in programming process and in the process cudazone/download/ru/CUDA_for_games.pdf.
of developing task. 7. PGI CUDA Fortran Compiler. Date View 10.06.2013

And they have all the necessary to do it. Because http://www.pgroup.com/resources/cudafortran.htm.
now often you even don’s need to be good at the details 8. Restrict (C++ AMP). Date View 10.06.2013
of GPUs architecture and their basic technologies. It is http://msdn.microsoft.com/en-us/library/hh388953.
possible due to such developments as OpenACC, aspx.
OpenHMPP and C++ AMP. All the work is done by 9. C++ AMP. Date View 10.06.2013
compilers and human just should type several additional http://en.wikipedia.org/wiki/C++_AMP.
string of code. 10. Open HMPP Directives. Date View 10.06.2013

It simplifies the developing process, especially http://www.caps-entreprise.com/openhmpp-
because the range of technologies is really wide. These directives/.
technologies are designed first of all by the leading IT 11. Introduction to Open ACC. Date View 10.06.2013
corporations of the industry. They have enough http://developer.download.nvidia.com/GTC/PDF/G
resources for creating applications of any level of TC2012/PresentationPDF/S0622-GTC2012-PGI-
complexity. They usually produce GPUs and OpenACC-Compilers.pdf.
consequently know about the whole range of their 12. Murex Analytics on Tesla GPUs. Date View
features as no one else. 15.06.2013 http://www.nvidia.co.uk/object/tesla-

REFERENCES 13. MATLAB Acceleration on Tesla and Quadro GPUs.

1. Ivy Bridge architecture extends industrial software. tesla-matlab-accelerations-uk.html.
Date View 10.06. 2013 http://embedded.communities. 14. Numeral Analytics. Date View 15.06.2013
intel.com/community/en/software/blog/2012/06/28/r http://www.nvidia.co.uk/object/numerical-packages-
oving-reporter-ivy-bridge-architecture-extends- uk.html.
industrial-software. 15. Agibalov, O. and G. Muratova, 2013. Problems of

2. What is CUDA? Date View 10.06.2013 using GPGPU. In the proceeding of the 2013
http://www.nvidia.co.uk/object/cuda-parallel- scientific-practical conference Modern information
computing-uk.html. technologies: trends and perspectives of

3. Open CL The Open Standard for Heterogeneous development, pp: 25-26.
Parallel Programming. Date View 10.06.2013
http://developer.download.nvidia.com/presentation
s/2009/GDC/OpenCL_Overview_GDC_Mar09.pdf.

http://msdn.microsoft.com/en-us/library/windows/

murex-analytics-uk.html.

Date View15.06.2013 http://www.nvidia.co.uk/object/

