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The Solution of Weakly Nonlinear Oscillatory Problems
with No Damping Using MAPLE
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Abstract: Weakly nonlinear oscillatory problems in engineering dynamics are frequently presented by nonlinear
ordinary differential equations. Very few of such equations have exact solutions, thus the need for
approximation techniques. In this study, the classical perturbation method, namely the Lindstedt-Poincare
method (L-P method) is discussed. In most work, the L-P method is used to obtain uniformly valid approximate
solutions to second order only, as perturbation procedure usually involves cumbersome algebraic
manipulations and calculations which are time-consuming and prone to errors. Therefore, in this paper we
manage to get the solution to fifth order by using our own built in Maple package based on Maple 14 and we
include the graphical presentations of the results.

Key words: Weakly nonlinear oscillator  Nonlinear ODE  perturbation method  Lindstedt-Poincare method

INTRODUCTION In 1987, Rand and Armbruster [5] used the computer

The Lindsted-Poincare method was introduced by techniques for systems of coupled oscillators and
Swedish Mathematician and astronomer Lindstedt in 1882 bifurcation theory. In 1996, Heck [6] and in 1999 Chin and
and French Mathematician and theoretical Physicist Nayfeh [7] had implemented L-P method using Maple V
Poincare in 1886 [1-4]. It involves a single time variable or Release 4, while in 2001, Lopez [8] had implemented L-P
scale  and  manages to obtain uniformly valid approximate method using Maple 8. In all the papers mentioned using
solutions to nonlinear problems. In this paper, firstly we the method, only second order approximations were
consider a weakly nonlinear oscillator with no damping obtained at most. In the next section we will consider the
described as, Duffing equation to illustrate the L-P method.

(1) The Duffing Equation: Duffing equation is the most

where is a small positive parameter, often called a with no damping where = 1 and dy/dt = 0. [9] also have
perturbation quantity and  (we take, = 1) is an chosen the same example and solve it using homotopy0 0

2

angular frequency, which is often referred to as the perturbation method coupled with Laplace transform and
natural frequency. In this case, the system is free of Padé approximants. Let’s consider the initial value
damping whereby, there is no resisting force, such as air problem for the equation,
resistance. The periodic solution to the equation (1) is
assumed to be of the form, (3)

(2)

known as asymptotic expansion. conditions for the above problem,

algebra system MACYSMA in a number of perturbation

common example of weakly nonlinear oscillatory system
0
2

with condition, 0 < t <  and 0 <  1. The initial
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y(0) = , y (0) = 0 (4) The particular solution of (13) is;

and  is a constant. We take initial conditions (4a,b) for (14)
the reason that these initial conditions are sufficiently
general to cover all physical systems of interest [10].
Nayfeh [11] and Mickens [12] had solved the Duffing Then, the general solution of (13) is;
equation with initial conditions (4a,b) using L-P method in
second order expansion. According to the standard L-P
method, a new variable; (15)

 = t, (5)

is introduced, where  is the frequency of the system that constants A= -1/32 and B = 0. Thus the solution of (15) is,
depends on, that is  = ( ). Equation (3) then becomes

y  + y = –  y ,  > 0, (6) (16)2 3

y(0) = , y (0) = 0 (7a, b)

We seek approximate solutions for y and in the form of Note that the solution of y  contains a mixed-secular
power series in  as follows, term, which makes the expansion nonuniform. For a

y( , ) = y ( ) +  y ( ) + ... +  y  ( ) + ... (8) to appear in y , y , y , … . The secular term can be0 1 n
n

( ) = 1 +  + ... +  + ... (9)1 n
n

where has been chosen to be unity, (0) = =1.0 0

Substituting equation (8) and (9) into equation (6) and
(7a,b) and equating of like power of yields the following Thus, without the secular term, the equation (16)
system of differential equations for successive becomes,
approximations:

(10)

(10b,c) (17), we do not need to determine the particular solution

(11a) inhomogeneous terms in (13) governing y and choose the

(11b,c) Substitute y ( ) =  cos  and equation (18) into

solution of (3) is,
(12a)

(12b,c)

Equation (10a) with initial conditions (10b,c) has a where  = t and w( ) = 1 + (3 /8) + … .
periodic solution y ( ) = cos . Substituting y ( ) = cos0 0

into  equation  (11a) and  using cos  = ¼(cos3  + 3cos) Next,  we  solve  the  initial  value   problem  (12a,b,c)3

we obtain the simplified form as, to  obtain  the   solution   of   second   order  expansion.

y  + y  = 2  cos  –  cos (13) for y (t) is,1 1
3 3

Using the initial conditions (11b,c), we obtain the

1

uniform expansion, we cannot permit such secular terms
1 2 3

eliminated by choosing,

(17)

(18)

According to Nayfeh [13], to determine the condition

first as done above. Instead, we only need to inspect the
1

coefficient of cos  to be zero.
0

equation (8), we obtain the first order perturbation

(19)

2

The general solution to the resulting differential equation
2
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(20) The solution of the Duffing equation in fifth order

Therefore, to the second order expansion, the
solution to equation (3) is,

(21)

where  = t and w( ) = 1 + (3 /8) - (21 /256) + … .2 2 4

However according to Nayfeh [13], equation (21) can be
written as,

(22)

which is valid when t = O( ). This is the solution of the1

Duffing equation in second order expansion. Next, we are
going to illustrate the solution of the Duffing equation by
L-P method using Maple software up to fifth order
expansion.

The Duffing Equation with Maple: Anyone who uses
perturbation  methods  is  struck  almost   immediately  by
the amount of algebraic manipulation. As an alternative,
we can use a symbolic language like Maple. This
mathematical software has a tremendous potential for
constructing asymptotic expansions [2].

In this section, we will illustrate the initial value
problem of Duffing equation (3) with initial conditions
(4a,b) by using L-P method with Maple. All commands
that we use for solving initial value problems are under
the DEtools package in Maple based on Lopez's work [8].
In  this  work  we  manage  to  obtain all the solutions in
the fifth order expansions and good agreement with
Runge-Kutta Fifth Fourth order (rkf45) numerical solution.

expansion is obtained as follows,

(23)

We also present the numerical values of the
approximate solutions for (23) together with the graphs for
various values of  and several expansions in different
order. Table 1 and Fig. 1 show that the solutions do not
vary much for values of  which are less than 0.05.
However, for  = {-0.1, 0.1, 0.2} show bigger deviation
compared to the other values of . Note  that,   <  0  and
 > 0 represent pendulum type equations with a hard

spring and a soft spring respectively [11].
Table 2(a) and Figure 2(a) shows that at the interval

time 0  t  5 does not give any discrepancies for different
order of expansion. While Table 2(b) and Figure 2(b) show
that the higher order expansion gives remarkable
accuracy. When t = 99, the relative error of a new result is
the smallest compared to the Mickens and Lopez’s result.
From a quantitative point of view, we can conclude that
the higher order approximation is important in giving the
accurate result.

Other Examples: In this section we will consider the other
examples of weakly nonlinear oscillator with no damping.
The following equation is a pendulum type equation,
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Table 1: The approximate solutions of Duffing equation in fifth order expansion for various values of tabulated in the interval 0 b t b 11

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
t 0.005 0.01 0.025 0.05 0.1 0.2
1 1.066 1.052 1.009 0.941 0.811 0.577
2 -0.858 -0.883 -0.955 -1.068 -1.27 -1.603
3 -1.986 -1.991 -1.999 -1.994 -1.919 -1.561
4 -1.260 -1.211 -1.063 -0.809 -0.3 0.638
5 0.637 0.705 0.9 1.190 1.644 1.999
6 1.943 1.962 1.996 1.977 1.686 0.514
7 1.435 1.360 1.115 0.673 -0.228 -1.643
8 -0.408 -0.521 -0.843 -1.306 -1.896 -1.517
9 -1.873 -1.915 -1.991 -1.948 -1.328 0.7
10 -1.591 -1.495 -1.167 -0.533 0.743 1.995
11 0.172 0.333 0.786 1.414 1.998 0.452

Table 2(a): The approximate solutions of the Duffing equation at different orders of expansions tabulated in the interval 0 b t b 5
t rkf45 Lopez (2001) O( ) Mickens (1996) Error O( ) Lopez (2001) Error O( ) New results Error2 3 5

0 2 2 0.00 2 0.00 2 0.00
1 0.811 0.817 0.006 0.809 0.002 0.811 0.00
2 -1.27 -1.2663 0.004 -1.2708 0.001 -1.27 0.00
3 -1.919 -1.923 0.004 -1.918 0.001 -1.919 0.00
4 -0.301 -0.317 0.016 -0.296 0.005 -0.3 0.001
5 1.643 1.633 0.01 1.646 0.003 1.644 0.001

Table 2(b): The approximate solutions of Duffing equation at different orders of expansions tabulated in the interval 95 b t b 100
t rkf45Lopez (2001) O( ) Mickens (1996) Error O( ) Lopez (2001) Error O( ) New results Error2 3 5

95 0.361 0.723 0.362 0.271 0.09 0.354 0.007
96 -1.606 -1.345 0.261 -1.661 0.055 -1.611 0.005
97 -1.721 -1.891 0.17 -1.668 0.053 -1.716 0.005
98 0.166 0.218 0.052 0.259 0.093 0.174 0.008
99 1.873 1.692 0.181 1.906 0.033 1.876 0.003
100 1.375 1.643 0.268 1.301 0.074 1.369 0.006

Fig. 1: The approximate solutions of Duffing equation deviate as time increasing.
for various values of ,  with  initial  condition Fig. 4(a) and 4(b) show, we present result of the
y(0) = 2, y (0) = 0 at the interval 0  t  11. equation (25) and it is in agreement with the numericalŒ

(24) indicate that the higher order solution gives more accurate

Then, we consider the equation, obtained in O( ).

(25)

Both equations will be solved with initial conditions
(4a,b). In the literature, Jordan and Smith [10] had solved
the problem in the equation (24) and obtained first order
expansion using L-P method. Therefore, with the aid of
Maple we obtain fifth order expansion as illustrated in the
following Fig. 3(a) and 3(b). Here, we have shown our
present solution is in agreement with the numerical
solution by the method of Fehlberg fourth-fifth order
Runge-Kutta. Jordan and Smith’s result in the interval
time 0  t  5 in Fig. 3(a) and 95  t  100 in Fig. 3(b)

solution obtained from the maple package. Both solutions

results of the numerical solution compared to the solution
2
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Fig. 2(a): The approximate solutions of Duffing equation
at different orders of expansions, with initial Fig. 3(b): The approximate solutions of equation (24) at
conditions y(0) = 2, y (0) = 0 and  = 0.1 in the different orders of expansions, with initial
interval 0  t  5 conditions y(0) = 2, y (0) = 0 and  = 0.1 in the

Fig. 2(b): The approximate solutions of Duffing equation
at different orders of expansions, with initial
conditions y(0) = 2, y (0) = 0 and  = 0.1 at the Fig. 4(a): The approximate solutions of equation (25) at
interval, 95  t  100 different orders of expansions, with initial

Fig. 3(a): The approximate solutions of equation (24) at Fig. 4(b): The approximate solutions of equation (25) at
different orders of expansions, with initial different orders of expansions, with initial
conditions y(0) = 2, y (0) = 0 and  = 0.1 in the conditions y(0) = 2, y (0) = 0 and  = 0.1 in the
interval 0  t  5 interval 95  t  100

interval 95  t  100

conditions y(0) = 2, y (0) = 0 and  = 0.1 in the
interval  0  t  5
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In this article, we have presented the approximate NY: Springer.
solutions of weakly nonlinear oscillator with no damping 6. Heck, A., 1996. Introduction to Maple. 2  edition.
by considering different initial conditions using L-P New York: Springer-Verlag.
method. We implemented L-P method with Maple and 7. Chin, C.M. and A.H. Nayfeh, 1999. Perturbation
manage to get the periodic solutions in higher order Methods with Maple. Virginia: Dynamic Press.
expansions and well-fitted with the numerical solution by 8. Lopez, R., 2001. Advanced Engineering Mathematics.
rkf 45 method. We also have considered the different Addison Wesley Longman Inc.
values of  and found that the solutions do not vary 9. Merdan,   M.,  A.    Yildirim,    A.    Gökdogan  and
much for values of that's less than 0.025. In future work, S.T. Mohyud-din, 2012. Coupling of Homotopy
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