
World Applied Sciences Journal 22 (10): 1431-1439, 2013
ISSN 1818-4952
© IDOSI Publications, 2013
DOI: 10.5829/idosi.wasj.2013.22.10.602

Corresponding Author: Muhammad Zakarya, Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan.

1431

Energy Efficient Workload Balancing Algorithm for Real-Time Tasks over Multi-Core

Muhammad Zakarya, Nadia Dilawar, Muazzam Ali Khattak and Maqssod Hayat

Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan

Abstract: A real-time system must respond fast enough that it can serve the task in a particular time interval.
The key constraints in real-time systems are to meet timing bounds and for these systems it is necessary to
complete all of their tasks in time. Due to increasing complexity of real-time applications, powerful processors
are needed to accommodate computational starving applications. Multi-core processor is a solution to such
applications. However, multi-core processor is still in its immaturity stage and there is need to address the
multi-core partitioning issues with perspective that all cores are equally utilized. More powerful processors are
required to execute such applications. Single core processor are not enough capable to meet the increasing
complexity of real-time applications. Multiple single core processors in any system require more power
consumption which is not tolerable. Multi-core processor provides the solution to complex and computational
starving real-time applications. Multi-core processors can provide higher computational power at lower power
consumption. Distribution of tasks deals with partitioning the given workload on all processing cores in such
a way that all tasks must meet their deadlines. Advantage of multi-core processors can only be fully realized
if all cores have equal workload. No workload partitioning technique has been proposed so far that ensures the
distribution of workload on all cores equally. Recently, multi-core systems have presented a research challenge
to real-time system designers form scheduling perspectives and a lot of attention is being devoted to this
research area, however, to the best of our knowledge, no solution addresses real-time systems issues
associated with scheduling. The aim of this research is to answer the scheduling problem for multi-core
processors and an efficient workload partitioning technique that can fully utilize all the processing cores in
multi-core system.

Key words: Multi-core Real-time Systems RM DM DVFS Scheduler

INTRODUCTION systems can be divided in to two categories, hard

A real-time system can be defined as a system that real-time systems the deadline must be assured, for
must perform the specific task within given or specific example a rocket fuel injection procedure must be
time. Real-time systems have their applications in completed in time. Soft real-time system provides priority
computing, communication and information systems, such to real-time tasks over the other tasks. In the case of real
as air-bag in car, the bag inflates neither too soon nor too time system's failure results are devastating. Multi-core
late in order to be aid and not to be potentially harmful. processor is a processor with two or more than two
In real time systems processes are referred to as tasks and independent processing cores or units, sharing main
these have certain temporal qualities and restrictions [1]. memory. Multi-core processors supply high performance
All tasks will have a deadline, an execution time and a at low power consumption than the single core processor.
release time. In addition there are other temporal attributes Higher throughput is achieved by increasing the clock
that may be assigned to a task. The three mentioned are speed and adding the additional cores on the same chip.
the basic one. The release time, or ready time is when the A single core processor can read and execute a single
task is made ready for execution. The deadline is when a instruction at a time but multi-core processor can read and
given task must be done executing and the execution time execute more than one instruction at the same time. These
is how long time it takes to run a given task [2]. Real-time multiple cores in a single processor can be homogeneous

real-time systems and soft real-time systems. In hard

World Appl. Sci. J., 22 (10): 1431-1439, 2013

1432

or heterogeneous. Homogeneous multi-core systems we cannot guarantee the WCET of additional incoming
consist of the same cores but heterogeneous multi-core tasks we increase the frequency up to the maximum one.
systems don't have the same cores. Applications that As tasks finalize this process is reversed, reducing the
require more computational power are now focused on the frequency and shutting down the cores on an individual
multi-core architecture because it increases the basis. The planned algorithm increases and decreases the
throughput without increasing the operating frequency voltage and frequency of both processors at the same
[2]. In multi-core systems, workload is distributed among time. While it is possible to use different voltages and
all available processing cores but it is still a challenging frequencies in each processor (i.e. per-core DVS), this
task that how to spread the workload uniformly among all option is more complex and expensive, since it requires
processing cores. Dividing the workload into subsets in more voltage regulators and complicates the power
a way that all these subsets are schedulable on each core delivery network.
is recognized as the partitioning problem.

Demand for more power and energy have increased Workload Balancing on Multi-Core: Load balancing is
the energy cost and the energy requirements as well. computer networking methodology to distribute work load
The production of energy is not sufficient for the usage across multiple computers or cores network links, central
as there is a big difference between both ratios. processing units, disk drive and other devices to achieve
Alternatively energy distribution centers solve this crisis the optimal resource utilization, maximize throughput,
problem using load shading mechanism that have an minimize response time and avoid over load. In simple
impact on industry and economy. This is not only our terms, load balancing is a method to spread tasks out over
daily life electronic equipment’s that we use for our multiple resources. By processing tasks and guiding
protection against the warm season, but there are other sessions on different servers, load balancing helps a
fields that have forced the industry, academia and network avoid annoying downtime and delivers optimal
researchers to think for solutions to current energy crisis. performance to users. There are virtual load balancing
Our IT industry is one of the huge consumers. solutions that work in a manner similar to virtual
Information and Communication Technology industry is applications or server environments. There are also
well thought-out to be a chief consumer of energy and in physical load balancing hardware solutions that can be
turn energetic contributor to the Green House Gas (GHG) integrated with a network. The method used depends
emissions. Different aspects of IT industry are subject to entirely upon the team implementing the solution and their
the huge power usage. Computer Networks, Huge particular needs. Load balancing is a computer networking
processing power & requirements, control of heat methodology to distribute workload across multiple
generated by processing speed and other major issues computers or a computer cluster, network links, central
that are specific to IT industry are playing a major role in processing units, disk drives, or other resources, to
power consumption. achieve optimal resource utilization, maximize throughput,

Literature Review: In [10] an algorithm is proposed in multiple components with load balancing, instead of a
order to decrease the power consumption while single component, may increase reliability through
maintaining the constraint of real time system and using redundancy. The load balancing service is usually
technique of dynamic voltage scaling (DVS). Experimental provided by dedicated software or hardware, such as a
results show that using a fair scheduling policy, the multilayer switch or a domain name server.
proposed algorithm provides, on average, energy savings
ranging from 34% to 74%. Task Splitting: Task splitting is a process of dividing a

In the initial state, both cores are switched off, so task into two or more subtasks. We can perform task
consuming no power. When a task is ready to run, one splitting when task do not fit on a processor or whenever
core is switched on and starts working at its minimum we needed. In the task splitting process subtasks of any
speed. Then, if another task is ready, the scheduler task cannot be executed in parallel on different cores or
estimates if that core satisfies the WCET of both of the processors. Suppose we want to split a task into two
tasks,(i.e., the running one and the incoming one), at the subtasks ' and ". First portion of is ' and " is the
current speed. If this is not possible, the second core is second portion of . The subtasks ' and " will be assign
also switched with the minimum speed. From this point, if to different cores or different processors and they cannot

minimize response time and avoid overload. Using

1

n
U

i
m
=∑

World Appl. Sci. J., 22 (10): 1431-1439, 2013

1433

be executed in parallel. Furthermore, both ' and " must Do
complete their execution within task's relative deadline Exit
[28]. In general when we split any task, we assume that End if
after splitting a task the total size of the task or object will If (UC i > U avg)
not change from the original size of the un-spilt task [28]. Do
Whenever real-time tasks are considered for splitting, the Diff UC i – U avg
penalty of splitting a task is not zero [31, 28]. C split S× P j

Cycle-Conserving: Cycle-conserving algorithm utilizes Q task[j] (C j – C split, p j)
the difference between actual execution time of a task and Q task [j+1] (C split, p j)
the worst case execution time (WCET) of a task. Generally End if
actual execution time of a task is different from the worst End for
case execution time [9]. Utilization of a task is updated in Core i < Beg to j
cycle-conserving algorithm as the actual execution time of Beg j + 1
a task divided by its period. Utilization of a task is n n + 1
updated at every release of a task and on completion of a End for
task. Utilization of a task should be restored to its original Core m < Beg to n
value when the task starts its execution, to complete the End
execution within deadline. This algorithm is helpful to
increase the energy efficiency when the actual execution
times have difference from the WCETs [9].

EE Algorithm: Workload balancing algorithm is used for
energy efficiency in multi core systems. When all tasks
are completed their execution before than the particular
deadline, there is a Chance for extra strike that raises the
power savings. The system quickness for processing
requests can be adjusted on run-time to decrease the
cores. This run-time power scaling is called Dynamic
Voltage Scaling (DVS). In multi core system DVS is
responsible for power supply to each core which is an
efficient technique for decreasing cores power
consumption. This algorithm is divided into two parts first
it will calculate the worst case execution time and then the
second part is calculate the actual time.

Start task assignment algorithm:
Beg 1
Q task = tasks in ascending order of periods

U avg =

For I 1 to m – 1
Do
UC I 0
For j Beg to n
Do
UC i UC i + U j
If (UC i = = U avg)

V2 {(C split, P j), (C j – C split, p j)}

Fig. WCET & CCi

Upon task-completion (Qi)
Qi cci/pi
Task assignment (Qi)
When task-release (Qi)
Qi w i/pi
Task assignment (Qi)

Fig. Task Splitting Algorithm

Fig. EE Algorithm Flow Chart

World Appl. Sci. J., 22 (10): 1431-1439, 2013

1434

A lot of work on energy efficiency is related to the = 0.883333
tasks scheduling algorithms. The concept behind the Uavg = (0.200000 + 0.266666 + 0.666666 + 0.150000 +
scheduling mechanism is to assign tasks and processes 0.250000) / 3
to processors based on their execution speed and other Uavg = 0.294444
properties. There are two types of scheduling techniques. Ui = 0.100000, 0.200000, 0.666666, 0.100000, 0.160000
In partitioned scheduling, each task is assigned to a U = 0.100000 + 0.200000 + 0.666666 + 0.100000 + 0.160000
specific processor and then it is executed on that = 0.626667
processor without migration. These processors are then Uavg = (0.100000 + 0.200000 + 0.666666 + 0.100000 +
scheduled independently and separately. The alternative 0.160000) / 3
is the global scheduling, in which all the tasks are stored Uavg = 0.208889
in a single priority queue. The scheduler selects the task Initially i = 1, J=1 and utilization of core UC1 = 0
having the high priority for execution. J = 1

In [10] the authors proposed DVS. They claim that for UC1 = 0 + U1
energy reduction we can use the DVS in latest processors. = 0 + 0.200000 = 0.200000 suppose task 1 is completed in
It means that power is a linear function of frequency i.e. f 1 clock cycle instead of 2 clock cycle so the new task 1 is
and a quadratic function of the voltage i.e. V given by (1,10) so

p fV = 0 + 0.100000 = 0.1000002

The voltage adjustment at an instant of time is called UC1 = 0.100000 + U2
DVS, which is an effective way for power saving in = 0.100000 + 0.266666 = 0.366666 suppose task 2 is
current HPC systems. In recent processors the completed in 3 clock cycle instead of 4 clock cycle so new
relationship between frequency f and power p gives task 2 is (3,15) so
foundation to Dynamic Voltage Scaling explained in Uc1 = 0.100000 + 0.200000 = 0.300000
equation. So UC1 > U avg

E = Pt Csplit = 0.091111 × 15 = 1.366667

where E is energy consumed, t is time taken and P is Qtask [2] = (1.366667, 15)
power consumed. We can achieve the low performance by Qtask [2 + 1] = (1.633333, 15)
simply reducing the operating frequency of the processor Qtask = { (1,10) (1.366667,15) (1.633333,15) (1,15)(3,20)
when the peak speed is not required. As a result DVS (5,25) } after splitting 2 new values pushed into the array
scales the operating voltage of the processor along with Q task.
the frequency. DVS is a standard for managing the power Core1 = 1 to 2
consumption of a system. 1 and 2 is allocated to core 1.

Example 1: Increase 1 in the cost of i and now i=2, J=3 and utilization

Task Set T = { (2, 10) (1, 15) (4, 15) (5, 25) (3, 20) } Primarily zero (UC2 = 0).
The given 5 are distributed among 3 cores. So J = 3
The cost of n = 5 and m = 3. 'Beg' is an integer variable UC2 = 0 + U3
with initial value 1. = 0 + 0.091111 = 0.091111
Q task = { (2, 10) (4,15) (1,15) (3,20) (5,25) } tasks are J = 4
pressed into array in ascending order according to the UC2 = 0.091111 + U4
period of tasks. So we will calculate the sum of each core = 0.091111 + 0.066666 = 0.157777 task 4 remain the same so
utilization and also calculate average utilization and then task 4 is (1,15)
divide the tasks with number of cores. J = 5
Ui = 0.200000, 0.266666, 0.666666, 0.150000, 0.250000 UC2 = 0.157777 + U5
U = 0.200000 + 0.266666 + 0.666666 + 0.150000 + 0.250000 = 0.157777 + 0.150000 = 0.307777 suppose task 5 is

Uc1 = 0 + U1

J = 2

Diff = 0.300000 – 0.208889 = 0.091111

V2 = { (1.366667, 15) (3 – 0.366667, 15) }

Now Beg = 3, n = 6

of core 2 is

World Appl. Sci. J., 22 (10): 1431-1439, 2013

1435

completed in 2 clock cycles instead of 3 clock cycles so
the new task 5 is (2,20)
UC2 = 0.157777 + 0.100000 = 0.257777
As UC2 > U avg
Diff = 0.257777 – 0.208889 = 0.048889
Csplit = 0.0488889 × 20 = 0.977776
V2 = { (0.97776, 20) (2 – 0.977776, 20) }
Qtask [5] = (0.977776, 20)
Qtask [5 + 1] = (1.022222, 20)
Q task = { (1,10) (1.366667,15) (1.633333,15 (1,15)
(0.977776,20) (1.022222,20) (5,25) } after
Splitting 5 new values are pushed into the array Q task.
Core2 = 3, 4, 5
3, 4 and 5 are allocated to core 2.

Suppose task 7 completed in 3 clock cycle instead of 4
clock cycle so the task 7 is (4,25)
Q task = { (1,10) (1.366667,15) (1.633333,15 (1,15)
(0.977776,20) (1.022222,20) (4,25) }
Now Beg = 6, n = 7
Exterior for loop has been route m-1 times as shown in
algorithm 1. It will be finished and all other tasks are
assigned to the last processing core.

Core = 6 and 7

Final Results: At the end all tasks are allocated to each
processing core equally according to the Uavg.
Core1 = { (2, 8) (1.366667, 15) } UC1 = 0.208889
Core2 = { (1.633333, 15) (1, 15) (0.977776, 20) } UC 2 =
0.208889 Core3 = { (1.022222, 20) (4, 25) } UC 3 = 0.208889.
Core 1 has 2 tasks, core 2 has 3 tasks and core 3 has 2
tasks but all cores are equal utilized

Example 1 is also verified through figure 4-1.

Fig. Giant chart

Example 2:

T = {(1,4)(3,10) (2,8)(1,4) (3,20)}
Q = {(1,4)(0.6,4) (0.4,4)(2,8)(0.5,10) task

 (2.5,10)(3,20)}
Core {(1,4)(0.6,4)} 1

UC = 0.401

Core {(0.4, 4) (2, 8) (0.5, 10)} 2

i i

i i
n

i icompleted incompleted

cc WL
P P∀ ∀

= +∑ ∑

World Appl. Sci. J., 22 (10): 1431-1439, 2013

1436

UC = 0.40 Basic idea of dynamic repartitioning of real-time2

Core {(2.5, 10) (3, 20)} 3

UC = 0.403

Fig. load on each core

Comparative Study: Seo et al. [9] presented a
repartitioning algorithm with the aim to maintain L of all
processing cores to have similar value every time by
dynamically migrating tasks between cores. This can be
done because the execution time of each task is less than
the deadline. Dynamic utilization L can be defined asn

shown in following equation [9].

Cores are denoted with n and cc is the last executioni

time of at that time. W is the worst case execution timei i

of a task [9].i

scheduling algorithm is migrating tasks from one core to
other core which have the low L. Cores are grouped into
two groups: (i) donator and (ii) grantee group. Any one
core cannot be from both groups. A core can only belong
to one group. Initially partitioned tasks are assigned to
donator group but then these tasks can be move able to
grantee group. Grantee group have to execute those tasks
which are shifted from the donator group and these tasks
are not partitioned to grantee group.

By making two groups, tasks cannot be moved from
any core to other core. Donator group can only move its
tasks to the other core which belongs to grantee group.
Donator group core can shift the task which has the
lowest utilization in this group to the grantee group core
with minimum utilization among that group. This process
will be repeated until L of the destination exceeds L of the
source. Whenever task is shifted from one core to other
core, algorithm checks that L of the core does not exceed
from 1. If it increases algorithm will restore the task to its
source core where it initially partitioned.

In our proposed technique no group is made of cores
or neither of tasks. Tasks are assigned to all processing
core one by one. Core are considered similar and portion
of splitted task is moved to the next core. In our proposed
technique no core will offload its task completely and still
it will maintain the core utilization equal to the average
utilization.

Kato and Yamasaki presented a portioned scheduling
scheme for the multiprocessors. This technique assigns
the tasks to specific processor. A task can be split in two
subtask and these two portioned are assign to different
processor if any processor don’t have the sufficient
capacity. To achieve higher schedulability less pre-
emption are required in this scheme [31].

This algorithm can successfully schedule a task set
with system utilization much higher than 50 percent
though the least upper bound is 50 percent.

In real time-time scheduling with task splitting on
Mp, processor one is filled with tasks 100 percent and
remaining processor are filled according to some specific
value. Tasks are split able but these subtasks can be
executed in any order if they are not corresponding to
each other. But these tasks cannot be executed in parallel
in any case. In our proposed technique splitted subtasks
cannot execute in any order or in parallel. ' will always1

has the highest priority then other tasks that are assigned
to that core. In our case utilization of each core is equal to
the average utilization but in real-time scheduling with
task splitting processor, core one is filled up to 100
percent capacity.

World Appl. Sci. J., 22 (10): 1431-1439, 2013

1437

Table 1: Comparative Study

Simple power-aware

Partitioned fixed-priority Real-time scheduling with scheduling for multi-core

Proposed scheme preemptive scheduling task splitting on MP systems

Workload on cores 100 percent Equal 88 percent N/A Never equal

Task migration m-1 N/A N/A Until cores are balanced

Task splitting Yes Yes Yes No

Number of splitted tasks m-1 m-1 N/A No

Extra load on any core No N/A N/A Yes

Energy expenditure due to unbalanced workload No N/A N/A Yes

Splitted objects per core At least one and At most one N/A N/A

at most two

Utilization bound per core 100% with EDF 60% with partitioning N/A N/A

DM scheduling

Number of splitted portions Two N/A Two N/A

Execution order of splitted portions Not in parallel and N/A Not in parallel but ' and N/A1

' before than " " execute in any order1 2 2

This biggest difference between our proposed move the complete task to less loaded core so it is depend
scheme and fixed-priority preemptive scheduling is that on the size of the task. It is online algorithm therefore
we can have at least one and at most two splitted objects whenever new task come, scheduler search for the less
on same core but different objects. However in partition loaded core and when it find the less loaded core it assign
fixed-priority preemptive scheduling core can have at the task to that core. Simple power-aware scheme do not
most one splitted object remaining objects moved on the split the task so it move the complete task to other core.
last processing core [28]. In partitioned fixed-priority
preemptive scheme, if a task on processor is need to be CONCLUSION
split then the highest priority task on the processor ish

selected for splitting. This is referred as the Highest Due to increasing complexity of real-time
Priority Task Splitting (HPTS) [28]. In our proposed applications, powerful processors are needed to
scheme tasks are arranged in ascending order and these accommodate computational starving applications.
tasks are assigned to cores one by one. We only split that Multi-core processor is a solution to such applications.
task is the reason of increasing the core’s utilization more However, multi-core processor is still in its immaturity
the average core utilization. That task has the lowest stage and there is need to address the multi-core
priority on that core. But after splitting portion one will partitioning issues with perspective that all cores are
get the highest priority o the next core. Rajkumar et al. equally utilized.
[28] have also proved that 60% utilization bound per core In this literature we proposed a workload
can be achievable by partitioned deadline-monotonic partitioning algorithm for multi-core systems. We have
scheduling. It is also possible to achieve utilization bound achieved workload partitioning with 100 percent precision.
about 65% with light weight tasks. This algorithm is capable to distribute workload among

Bautista et al. [32] proposed a simple power-aware all processing cores equally and keep the utilization of
real time scheduling for multi-core systems. This algorithm all processing cores on average. This means that no
moves the complete task to those cores which are less processing core is extra loaded or extra burdened. In
load or they don’t have any workload. This algorithm proposed technique all the processing cores are
reduces the energy consumption while fulfilling the considered to be homogeneous, so if the workload is
constraints of soft real-time application. Table 5-1 shows distributed evenly, all cores will complete their work at the
the difference between proposed technique and simple same time. We can state that this proposed scheme is fair
power-aware scheduling. As compare to our proposed scheme to distribute the workload on multi-core system
technique simple power aware technique is never able to and it is the finest algorithm to fully utilization of the
maintain the workload equal on cores because it tries to available processing cores.

World Appl. Sci. J., 22 (10): 1431-1439, 2013

1438

The efficiency of proposed algorithm is highlighted 7. Xing Fu, Khairul Kabir and Xiaorui Wang, 0000.
through the simulation and synthetic data is tested on the Cache-Aware Utikization Control for Energy
simulation. We found that proposed algorithm is enough efficiency in Multi-Core Real-Time Systems.
efficient to distribute all kind of data set equally among all 8. Wan Yeon Lee, 0000. Energy-effcient Scheduling of
processing cores. Through this simulation we can also Periodic Real-timr Tasks on Lightly Loaded Multi-
find out that provided data set to the simulation is Core Processor.
schedulable with our technique or not after partitioning 9. Haisang Wu, E. and Douglas Jensen, 0000. The
the data set on all the processing cores. impact of Energy-Efficient Scheduler Overhead on

Proposed workload partitioning algorithm can be the performance of Enbeded real-time Systems.
used for reducing the energy consumption in multi-core 9. Amit Sinha and Ananth P. Chandrakasan, 0000.
systems. This proposed algorithm can easily be used with Energy Efficient Real-Time Scheduling.
cycle-conserving technique which can update the 10. Wei-Mei Chen, His-Yin Hung and Jhe-Ming Liang,
utilization of core dynamically on release and completion 2011. Energy-efficient scheduling of periodic real-
of a task. These tasks are capable to complete their time tasks for reliable multi-core systems, 978-1-4244-
execution earlier than it’s provided worse case execution 8165-1/11/$26.00 2011 IEEE.
time. So we are able to propose repartitioning algorithm 11. Santhi Baskran and P. Thambidurai, 2012. Energy
for multi-core systems to reduce the energy consumption. Efficient Scheduling for Real-time Embedded

REFERENCES international journal of computer Science,

1. Diana Bautista, Julio Sahuquillo, Houcine Hassan, 2012.
Salvador Petit and Jos´e Duato, 0000. A Simple 12. Audsly, N., A. Burns, M. Richardson, K. Tindell and
Power-Aware Scheduling for Multicore Systems A.J. Wellings, 0000. Applying New Scheduling
when Running Real-Time Applications, Department Theory to Static Priority Pre-emptive Scheduling.
of Computer Engineering (DISCA)Universidad 13. Santh Baskaran and P. Thambiduraib, 2010. Energy
Polit´ecnica de Valencia, Spain. Efficient real-Time Scheduling in Distributed

2. Muhammad Zakarya and Izaz Ur Rahman, 0000. Systems, IJCSI International Journal of computer
Towards Energy Efficient High Performance Science Issue, 7(3): 4.
Computing Perceptions, Hurdles & Solutions, 14. Jagbeer Singh, Bichitranda Patra and Satyendra
Technical Journal, University of Engineering and Prasa Singh, 2011. An Algorithm to Reduce the Time
Technology Taxila,2011 complexity of Earlist Deadline First Scheduling

3. Junyang Lu and Yao Guo, 0000. Energy-Aware Fixed- Algorithm in Real-time System, IJCSI International
Priority Multi-core Scheduling for Real-Time Journal of Advance Computer Science Issue, 2(2):
Systems, 17th IEEE International Conference on February 2011.
Embedded and Real-Time Computing Systems and 15. Jagbeer Singh, 0000. An Algorithm to Reduce the
Applications. Time Complexity of Earlist Deadline First Scheduling

4. Frederic Pinel, Jhonatan E. Pecero, Samee U. Khan Algorithm in Real-Time System.
and Pascal Bouvery, 2011. Energy-efficient 16. Omid Amir Ghiasvand and Maziar Ahmad Sharbafi,
scheduling on millicluster with performance 2011. Using Earlist Deadline First Algorithm for
constraints, 2011 IEEE/ACM International Coalition Formation in Dynamic Time-critical
Conference on Green Computing and Envirnament, International Journal of Information
Communications. and Education Technology, 1(2): June 2011.

5. Alexandra Fedorova, Mergo Seltzer and Micheal D. 17. Jorn B. Brandenburg, Jhon M. Calandrino and James
Smith, 0000. Cache-Fair Thread Scheduling for H. Anderson, 0000. On the Scheduling of Real-Time
Multicore Processor. Scheduling Algorithms on Multi-core platforms: A

6. Jian-ia Chen and Chin-Fu Kuo, 0000. Energy-Efficient Case Study.
Scheduling for Real-time Systems on Dynamic 18. Claudio Scordino and Giuseppe Lipari, 0000. Using
Voltage Scaling(DVS)platforms. Resource Reservation for Power-Aware Scheduling.

Systems with Precedence and Resource Constraints,

Engineering and Applications (IJCSEA), 2(2): April

World Appl. Sci. J., 22 (10): 1431-1439, 2013

1439

19. Andreas Merkel, Frank bellosa, Memory-aware 21. Nasro Min-Allah, Hameed Hussain, Samee Ullah
Scheduling for Energy Efficient on Multicore Khan and Albert Y. Zomaya, 0000. Power efficient
Processor. rate Monotonic Scheduling for Multi-core Systems.

20. Trevor Pering, Prof. Ropberi Brodersen, Energy
Efficient Voltage Scheduling for Real-Time Operating
System.

