
1

1

2

2

2

2

b

n

b bD nb nb
x xt

n nD nb
xt

World Applied Sciences Journal 21 (5): 659-664, 2013
ISSN 1818-4952
© IDOSI Publications, 2013
DOI: 10.5829/idosi.wasj.2013.21.5.2865

Corresponding Author: Ahmed Salah, Mathematics and Theoretical Physics Dept., Nuclear Research Center,
Atomic Energy Authority, P.N.13759, Egypt. 

659

A General Algorithm for Solving the Fractional Reaction Diffusion Model
Arising in Bacterial Colony by Homotopy Analysis Transform Method

Ahmed Salah and Samia.S.A.Hassan
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Nuclear Research Center, Atomic Energy Authority, P.N.13759, Egypt

Abstract: In this paper, we study the approximation of analytical solution for Fractional Reaction Diffusion
model which describes the evaluation of bacterium Bacillus, which grows on the surface of thin  agar  plates,
by  using  homotopy  analysis  transform  method. The fractional derivatives are described by caputo sense.
A comparative study between the homotopy analysis transform method and the classical Adomain’s
Decomposition Method is conducted. Results show that the homotopy analysis transform method is accurate
when applied to a fractional reaction diffusion model. Numerical results with Tables and Figures are given.
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INTRODUCTION

In recent years much  attention  has  been  focused
on the analytical methods, Adomian decomposition (1.1)
method (ADM) has been studied [1], Variational iteration
method (VIM) has been applied in many problem [2],
Homotopy perturbation method (HPM)[3] has been As the initial conditions, we set 
investigated, Homotopy analysis method (HAM) [4-5]
properly overcomes restrictions of perturbation b(x, 0) = b
techniques because it does not need any small or large
parameters to be contained in the problems. Salah et al. n(x, 0) = n
[6] investigated a new algorithm for solving the nonlinear
problem by mean of the homotopy analysis method with where  D ,   D    are  the  diffusion  coefficients describe
addition to the Laplace transformation. The method so the  bacterial movement and nutrient, b(x, t) the
effective and has been applied in fuzzy heat equation [7]. population    density    n(x,    t)    the   concentration  of
This method has been used to obtain approximation the  nutrient,    n      is     the    initial   concentration  of
solution of a large class of linear and nonlinear differential the nutrient and b  is the density of the initial
equation. It is also very essay to applied in a computer concentration.
program. This model has  been  solved  by  a  classical

In this paper we present a solution of a more general Adomian  Decomposition  method   [8],   we  are
model of fractional reaction-diffusion problem has been comparing   between    the    classical   method  and the
raised in most biological system by using the new new  method,  also  the reason of using the fractional
method. It so call the homotopy analysis transform order  differential equation is that FOD are naturally
method. In more general we can write the Fractional- related to system with memory which exists in most
Reaction Diffusion equation by biological systems.
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Notations  and   Definitions    of    Fractional   Calculus:
A fractional derivative has received considerable interest (2.5)
in recent years. In many applications, fractional derivative
provide more accurate models of the systems than Observe that for zero ICs, the two derivatives are the
ordinary derivatives. Many applications of fractional same. Thus, for this condition we may switch between the
derivative in the areas of solid mechanics and modeling of two derivatives as necessary.
viscoelastic damping, electrochemical processes,
dielectric polarization, colored noise, bioengineering and Homotopy Analysis Transform Method: We consider the
various branches of science and engineering could be approximation solution of nonlinear fractional equation by
found, among others, in [9-16]. Caputo introduced an using HATM [7], we can write the system in the form
alternative definition, which has the advantage of defining
integer order initial conditions for fractional order
differential equations. Here, we mention the basic (3.1)
definitions of the Caputo fractional order integration and
differentiation, which are used in the up coming paper and With the initial condition
play the most important role in the theory of differential.

We begin with the Riemann-Lioville definition of the u  (x, 0) = u (x) (3.2)
fractional integral of order  >0, which is given as

(2.1)

where  is the gamma function, for integer  > 0, Eq.1 is
known as the Cushy integral formula. Here we take the
lower limit of the integral as 0, however, a nonzero limit
can also be taken. It can be verified that the integral
operator I  commutes, i.e.

(2.2)

We will largely deal with Caputo fractional
derivatives. However, we will also come across the
Riemann Liouville fractional derivatives these two
derivatives are given as:
Caputo Fractional Derivative

(2.3)

Riemann Liouville Fractional Derivative

(2.4)

where  > 0, n is the smallest integer greater than or equal
to  and the operator D  is the ordinary differentialn

operator. These two derivatives are related by the formula

i 0i

where  are the caputo derivate of order (i =i

1,2,...........,k), N  are nonlinear operator. u (x, t) is unknowni i

functions and (x, t) are independent variable can be
written as

(3.3)

Applying Laplace transformation

(3.4)

Equation (3.4) can be written as a nonlinear operator
from as follow

(3.5)

where  an Laplace transformation, we have a nonlinear
operator

(3.6)
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where q [0, 1] an embedding parameter and  0 an By applying inverse Laplace transform Eq(3.11)
auxiliary parameter, we can construct the zeroth-order becomes
deformation equation [4]

(3.7) where

When q = 0 and q = 1, the zero-order deformation
equation become

(3.8)

By Taylor's theorem,  can be expand in a (3.14)
power series of q as follows

nonlinear fractional reaction diffusion model for arising in
(3.9) the bacterial growth written as

where

(3.10) (4.1)

By using the zeroth order equation (3.7) and setting
q= 1, we have the mth order deformation

(3.11)

(3.12)

(3.13)

Application and Numerical Results: We consider the

Appling the inverses operators  and  to

the system

(4.2)

Take Laplace transform on the system and subject the initial conditions

(4.3)
Eq (4.3) can be written as a nonlinear operator from as follow:

(4.4)
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Bacteria growth at b(x, 0.01) Bacteria growth at b(x, 0.01)
Fig. 1: The numerical results at a = 1.2, D  = 0.01, t = 0.01, Fig. 2: The numerical results at a = 1.2, D  = 0.01, t = 0.01,b

 =  = 1 (red line),  =  = 0.5 (green line )  =  = 99  (red line),  = 1,  = 0.9 (green line)1 2 1 2

Concentration of nutrient n(x, 0.01) Concentration of nutrient n(x, 0.01)
Fig. 3: The numerical results at a = 1.2, D  = 0.01, t = 0.01, Fig. 4: The numerical results at a = 1.2, D  = 0.01, t = 0.01,b
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By mean of Zeroth deformation equation

(4.5)

where

(4.6)

With

(4.7)
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Subject the initial conditions

(4.8)

And by using (4.5)-(4.8) we shall be able to calculate some of terms of the convergent series as

(4.9)

And

(4.10)

Table 1: Bacteria growth b(x, t) in case a = 1.2, D  = 0.01, t = 0.01b

 = 1  = 1  = 1  = 1  = .5  = .5  = .5  = .51 1 1 1 1 1 1 1

x ADM[9] HATM ADM HATM
-0.4 1.632950 1.63295541 0.773 0.773
-0.2 1.2844171 1.28441117 1.28441 1.28441
0 1.010293 1.0102921 1.01029 1.01029
0.2 0.7946835 0.79468211 0.794682 0.794682
0.4 0.6250950 0.625094951 0.625094 0.625094

Table 1: Concentration  of  nutrient  n(x, t)  in  case a = 1.2, D  = 0.01,b

t = 0.01
 = 1  = 1  = 1  = 1  = 1  = 1  = 1  = 11 1 1 1 1 1 1 1

x ADM[9] HATM ADM HATM
-0.4 0.773 0.773 0.773 0.773
-0.2 1.28441 1.28441 1.28441 1.28441
0 1.01029 1.01029 1.01029 1.01029
0.2 0.794682 0.794682 0.794682 0.794682
0.4 0.625094 0.625094 0.625094 0.625094

CONCLUSION

In this paper, the homotopy analysis transform
method was applied to solve fractional reaction diffusion
model which describe the evolution of the bacterium
growth.

The result show that the solution continuously
depends on time-fractional derivative. we give the
solution in a convergence series. It provides series
solutions which generally converge very rapidly in real
physics phenomena.
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