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Solutions of Second Order Singular Boundary Value Problems
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Abstract: In  this  paper,  we  propose  a   simple  method for solving the singular boundary value problems.
The proposed method is tested on several problems and its results are very encouraging. 
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INTRODUCTION (2)

The boundary value singular differential equations Now  this  equation  is  defined  for  all  values  of x
occur in many disciplines e.g. Mathematics, Physics, in [0, 1]. It is assumed that a unique solution y(x) exists
Engineering. They are basically used to model physical and is analytic in the given interval [25]. Taking x 0 gives
phenomena in astrophysics, electro-hydrodynamics, y’(0)=0, which is the first boundary condition. We derive
theory of thermal explosions [1], to name a few. In this relations for obtaining higher derivatives at some point
paper, we will consider the following class of singular x=x  [0, 1]. Without loss of generality and because of
boundary value problems. simplicity, we can take x as zero. Then using Taylor series

(1)

subject to the boundary conditions (3)

y'(0)=0, y(1)=A. 

Where f is analytical function of x defined over [0,1], >0 In (3), some derivatives i.e. y (0), i=1,2,…, may be
and A is a real number. functions of y(0). Using other boundary condition, we

These types of problems have been investigated by obtain the value of unknown y(0). The method is
several researchers [2-8]. The common approach for illustrated using some examples from the literature [1]. 
solving such types of problems is to modify the original
problem at singular point and then an appropriate method Numerical Results: In this section, we test the efficacy of
is applied for solving the resultant boundary value our proposed method by applying it on the same
problem. The basic purpose to write the differential problems as discussed in [1].
equation in this fashion is to handle singularity. Many
scientists have discussed various methods for obtaining Problem 1: Consider the following Bessel’s equation of
their numerical solutions that include B-splines [1,4-7], order zero.
divided difference [8-11], Homotopy method [12-17],
variational    iteration    method    [18-22].   Details  about (4)
B-splines can be found in [23-25]. We write Eqn. (1) as
follows. Solution: We write (4) in the following form

0

0

we may write the solution y(x) as follows. 

(i)
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(5) Simple manipulations give 

Taking x 0 in (5), we get the first boundary condition, i.e.
y’(0)=0.
Differentiating (5) once, we have

Putting x=0 gives
(6)

Differentiating (5) twice, we have

(11)

Putting x=0 in this equation, we get The solution of the problem is given by (10) and y(0)

(7) (i.e. m ), y(x) becomes the Bessel function of order zero,

Differentiating (5) thrice, we have

Putting x=0 in this equation gives

(8)

In general, the nth derivative is given by following form

(13)

It may be written as Performing similar steps as in Problem 1, we get

(14)
(9)

We take the solution in the form of Taylor series at x=0,
i.e. (16)

(17)

Putting the values of different derivatives of y(x) at (18)
x=0 in the above eqn. and taking m terms, we have 

of  y(0).  We  write Taylor series of the solution about

(10)

Putting x=1, y(1)=1 in (10), we have 

is given by (11). It may be noted that in the limiting case

i.e. y(x)=J (x) and y(0)=J (1).0 0

Problem 2: Consider the following equation.

(12)

Solution: We write the differential eqn. (12) in the

(15)

It may be noted that all odd derivatives at x = 0 are0

multiple  of  y‘(0)  and   even   derivatives   are   multiple

x=0, i.e.
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(19) Performing similar steps as in problem 1, we have 

Taking few terms in (19) (say, 5) and noting x=1,
y(1)=17/16, we have y (0) = 0 (24)

(25)

It gives y(0)=1 y (0) = 0 (26)

In this way, we have y(0)=1, y’’(0)=1/8, y (0) =0. (27)(4)

In fact all higher derivatives, being multiple of y (0), are(4)

zero. Thus, we have solution from (19) as follows It may be noted that all odd derivatives are zero and

(20) formula

Problem 3: Consider the following problem

(21)

Solution: We write (21) in the following form

(22)

Putting x=0 in (22), we get the first boundary condition.

(23)

(3)

(5)

even derivatives are given by the following recurrence

It can be written as 

, where k is positive even

integer>2 (28)

Thus, the solution of the problem is given by

(29)

We need to find the value of y(0). Putting x=1 and noting y(1)=5.5, in (29), we have

It gives

Using this value in (29), the solution is

(30)
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This is same as analytical solution of the problem.

Problem 4: Consider the following problem

(31)

Solution: We write (31) in the following form
(32)

Performing similar steps as in problem 1, we have 

(33)

(34)

(35)

(36)

(37)

It may be noted that all odd derivatives are zero and even derivatives are given by the following recurrence formula

 , k is even integer >8 (38)

It may be noted that all even derivatives except second order are multiple of (y(0)-1).
The solution of the problem is given by

(39)

Putting y(1)=0 in (39), we have

It gives y(0)=1
Substituting the value of y(0) in (39), we have the solution 

(40)

Problem 5: Consider the following problem

(41)

Solution: We write (41) in the following form
(42)
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Performing similar steps as in problem 1, we have 

(43)

(44)

(45)

(46)

(47)

It may be noted that all odd derivatives are zero and even derivatives are given by the following recurrence formula

 , k is even integer >4

Or (48)

The solution of the problem is given by

Or

Or

Or (49)

Putting y(1)=0 in (49), we have

Thus, solution is given by

(40)
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