World Applied Sciences Journal 18 (7): 945-949, 2012
ISSN 1818-4952

© IDOSI Publications, 2012

DOI: 10.5829/idosi.wasj.2012.18.07.1395

Node Numbering and Classification Technique to Optimize XML Query

Mohammed Ibrahim Alowais, Khairil Imran Ghauth and Ng Kok Why

Faculty of Computing and Informatics, Multimedia University, Malaysia

Abstract: As the eXtensible Markup Language XML becomes a standard for data exchange and retrieval over
the Internet, the topic of optimizing the search time and space is a matter of discussion among several research
and educational communities. In this research we discuss the XML query optimization methods and techniques
and highlight some of the important work done in the topic so far. At the end of this paper we propose a node
numbering and classification technique (NNC) to restrict the search in XML document to small portion of the
XML data. The node numbering and classification technique showed good performance in shortening the time

taken to process queries.

Key words: XML - Node classification - Node numbering - Query optimization

INTRODUCTION

The extensible markup language XML is widely used
in today’s World Wide Web as a standard for information
exchange and retrieval. XML allows for easy exchange of
information and documents in a standardize environment
regardless of the running platform. The main goal of XML
is to encourage the interoperability and simplicity in the
use and development of the web. However the speed of
processing XML queries tend to slow down as larger
number of XML documents involved in the data
exchange. This is due to the procedure the query has to
go through and it also depends on the strategy adopted.
Many query languages are based on path expression
which requires us to navigate the whole graph. XML is
seen as a graph starts with the root then node and ends
with leaves (Figurel).

Path expression query needs to navigate from the
root till the leave or till the node being searched and this
would consume time and make the process slower.
Another issue is that most of the XML systems use
relational databases which take time to translate and
transfer the query into SQL query. According to Florescu
and Kossmann [1] in order to map XML data into
relational DBs table, we scan and parse documents and
store all information into the relational tables and
then the XML queries are translated into the SQL queries.

N

| Faculty |

e ™, y

Staff I| |: Students :|

\ / /

S e
/ "__‘\ : ~N N N S
{ \ AW \
IA dmin nﬂu:.e|| | Lechurers J l Name)| |I D rl| |“ E-Mail)
“ / \\.._../ S NS

-~ : ;— ;\ : TN g
I: E-Mail] (Phone | Name I |I E-Mail || Phong | | Name :1

S __/ S N S/ \x,_/ '__/'

Fig. 1: Tree for Faculty staff and students

The challenge in the regular path expression is whether
query contains single or multiple regular path expressions.
Most optimization techniques perform well with single
values but when multiple path expression is involved, the
efficiency of the technique decreases. Also, ignoring the
schema in some methods and techniques may cause the
query optimization less efficient.

In this research, we will use Node Numbering and
Classification (NNC) approach because the nodes contain
valuable information about the data that would help in
optimizing the search time and will number XML
documents in order for the query to be processed faster.

Corresponding Author: Mohammed Alowais, Faculty of Computing and Informatics, Multimedia University, Malaysia.
Address: Riyadh 11646 Saudi Arabia. P.O.Box: 105441.

Tel: +966555467233.

World Appl. Sci. J., 18 (7): 945-949, 2012

Even if query is single of multiple path expression, the
effect will be less with using the schema numbering.
Similar approach has been used by Li and Moon [2].

The objectives of this research are to shorten the
search time of XML query, determine the effect of the
schema numbering on the performance of the querying
process.

The rest of the paper is organized as follows: Section
two describes literature review where we reviewed others
work; Section three illustrates our proposed method in
details; Section four describes the experiment evaluation;
the result and discussion is discussed in section five; and
this is followed by the conclusion section.

Literature Review: There are many query languages that
have been proposed such as X-Query, XML QL, XQL,
Lorel and XPath. These query languages retrieve data
from databases or documents. They are based on regular
path expression. Many researchers discovered various
methods and techniques for the evaluation of XML
queries. Wang et al. [3] proposed two path expression
optimization principles, which were the path shortening
and path complementing. The two strategies utilized
extent join algorithm. However, the first one reduced the
number of join operations. The latter replaced a high cost
path expression with a lower cost path expression. The
path expression stored the full path of the XML document
and whenever a query came in, it went along multiple join
operations which slowed down the searching process.

Other researchers studied the path index. Yang et al.
[4] proposed a path index based on Patricia-tries (PT)
which helped to make the search faster, compressed the
path indexes and stored the text and structure of XML
data. So, it needs not to read the data from disk, which at
the end enhances the searching process. The PT merged
single child nodes with the parents to allow more free
space and less searching. Li and Moon [2] proposed their
XISS system for storing and indexing XML based on
numbering scheme. The numbering scheme allows us to
determine the ancestor-descent relationship which speeds
up the process by determining the relationship between
them faster. The last two papers are similar in using the
numbering method in which the first one uses alphabetic
and the second uses numbers to label each node and both
of them decompose the paths into smaller size.

Cheng and Ng [5] suggested an efficient index lattice
for XML query optimization. They discussed the
inadequacy of the structural index to process the value-
based queries where these indexes would examine the

data value of each node in an equivalent class.

946

Their proposed Structure Index Tree (SIT) considers
different combinations of the root-to-leaf paths. In total,
there are 2”n combination where n is the number of leaf
nodes. The lattice elements exclude the inappropriate
elements to speed up the query performance. Grimsmo [6]
introduced two techniques for faster path indexes by
combining inverted lists, selectivity estimation, hit
expansion and brute force search for the first technique.
The second technique used the suffix trees with
additional statistics and multiple entry points into the
query. These techniques are faster especially when path
query uses descents axis and wildcards.

The use of DataGuides was proposed in [7]. It was
intended to be a short and accurate summary of the
database structure. The same path needed not to be
repeated many times. DataGuides re-wrote the original
database in a way that every path was repeatedly written
only once. Nevertheless, the path index PT in [4] was
much faster in processing the queries. Paparizos et al. [8]
proposed the use of schema to optimize the query
processing. They built a structure and named it as the
schema information graph (SIG). This would store the
metadata and process the graph to produce several paths
that could be used, which had lower cost than the main
ones.

In the PT index study, the objects are named using
the alphabets for example; node 1 = a, node 2 = b, node 3
= ¢ and etc. So, when the number of objects is more than
the letters, a combination of two or more letters can be
used. The document is compressed. For example, the
document with size of 153M will be compressed to be 20M
only. In the process of locating the elements, there are
two mapping tables: one is the tag and alphabet table and
the other is the element table. The elements are located
using head node in the XML document.

Li and Moon [2] proposed their XISS system for
storing and indexing XML. In their system, the schema
numbering was used to address the problem of the
insertion and deletion (update). The numbering schema
allowed one to determine the relations between the
different nodes. Three indexes structured had been
proposed, which are element, attribute and structure
index. As well as the proposed join algorithms that could
process the regular path expression without going
through the hierarchy of the XML document.

These methods are efficient in processing XML
query. However, combining the numbering with other
technique would result in a stronger query optimization
technique. In the following section, we will explain our
proposed method based on our findings in the literature
review.

World Appl. Sci. J., 18 (7): 945-949, 2012

Faculty
Staff Student
E]
=]
Admi i
e lecturers. | Name [1D : E-Mail
|
i |
[, it I R O
<\ I Y |
E-Mail - Phone I Name E-Mail |- Phone I Name
|
! | i |
—~ Category 2
Fig. 2: Node Classification Example
0
2 1
N
P 5) 6 |
3 4 4
@& s)5)@ s)5
- - y
Fig. 3: Node Numbering Example
Proposed Method: To optimize the query of XML, we Figure 2 illustrates the classification method.
propose an approach similar to the ones proposed in [2,4]. The figure indicates how to classify the objects
Node numbering and classification technique (NNC) is based on their types. For example, the phone

used in our method to number the nodes of the XML
documents and to classify or categorize the node based
on the content of the nodes. For instance, if the query
asks for objects that contain numbers like amount, price,
phone and so on, the query does not need to search the
other categories such as information about customers like
name, address and so on. Consider the first XML tree
example which we can explain our method as follow.

947

and ID are of numerical types. So, it is categorized
under category 2. The first category includes
text types for the objects which are in this
example the name. The third one is the email which
is classified wunder category type number 3,
because it contains mix of values numbers and
alphabets. The node numbering is illustrated in the
following Figure 3.

World Appl. Sci. J., 18 (7): 945-949, 2012

Figure 3 shows the numbering of the nodes. If we
refer back to the Figure 2, we can see that the similar
nodes’ contents are numbered with the same number. For
example, the node 7 represents the E-mail tag, node 5
represents the name and node 8 represents the phone tag
and so on. Any query search for name will have node
numbers that will minimize the search and restrict it for
only the nodes number 5 which contains the names. Same
thing goes for the other nodes Email, phone and ID.

The advantage of using the classification and
numbering technique (NNC) is to limit the search for very
small part of the XML documents instead of searching the
complete tree.

» The numbering method is based on the following
pseudo-code:

For each node (n) where n =! Root node

Find node tag(n) = node tag(ni) join tag n with tag(ni)
* The classification method looks for the similar data
type or the content type.

v

node category number find same v in each (ni)
set N elements to V

Experimental Evaluation: In this experiment, we used the
eBay dataset of size 36KB and Book Catalogue dataset of
size 4KB to evaluate the effectiveness of the proposed
method against the SAX method in terms of time to
retrieve data. The experiment was carried on using a
personal computer with Intel core i5 2.5 GHz with RAM of
4.0GB and disk storage of 300 Gigabytes. The
measurement of the method performance is based on the
time taken to complete the query.

For the performance measurement, we have created
a program on C# to retrieve the data, process the query
and to calculate the time taken to complete a query.

RESULT AND DISCUSSION

This section describes the performance result of our
proposed method (NNC) and the result of the comparison
with the SAX method.

Table 1 shows the comparison between the SAX way
of retrieving data from XML and the node numbering and
classification method (NNC). The NNC makes the search
time faster by 54.54% for the eBay dataset and 66.67 % for
the Book Catalogue, which is obviously faster than the
SAX in retrieving document.

948

Table 1: Comparison between SAX and NNC
Method
SAX
SAX

Method
NNC
NNC

Dataset Time(s)
0.011

0.004

Time(s)
0.006
0.002

eBay
Book Catalogue

4

0.015
0.014
0.013
0.012
0.011
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

Time (s)

B
Class

Fig. 4: Retrieve time on eBay dataset using NNC

2

0.015
0.014
0.013
0.012
0.011
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

Time (s)

B
Class

Fig. 5: Retrieve time on eBay dataset using SAX

More details on the time measurement is illustrated in
the next figures. The eBay dataset contains three classes;
numbers, letters and mix values. The Book Catalogue
contains only two classes; letters and numbers. The
figures show the retrieval time for each class using both
SAX and NNC. The unit used is second.

The graph in Figure 4 above indicates the
performance of the proposed NNC on the eBay dataset.
The figure shows the retrieve time for each of the classes
in the dataset. Figure5 indicates the retrieval time using
the SAX on the eBay dataset. We can see that our
method is faster in retrieving all the classifications of A,
B and C.

World Appl. Sci. J., 18 (7): 945-949, 2012

0.015
0.014
0.013
0.012
0.011
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

Time (s)

—

Class

Fig. 6: Retrieve time on Book Catalogue dataset using

NNC

4

0.015
0.014
0.013
0.012
0.011
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

Time (s)

Y

Class

Fig. 7: Retrieve time on Book Catalogue dataset using
SAX

Figure 6 shows the retrieve time on the Book
Catalogue dataset using the NNC. This dataset has only
two types of data numeric and characters. So, we have
only two classifications of A and B. Figure 7 show the
retrieve time on the Book Catalogue using the SAX. The
two classes take similar amount of time. We can see that
the NNC is faster by almost 50%.

CONCLUSION AND FUTURE WORK

In this research work, we have proposed a
method that is able to optimize the speed of querying an
XML data. We use the node numbering to limit the search
for certain objects or nodes. In the result, our method
showed an acceptable performance as compared to the
others.

949

However, the matter of optimizing the search time and
space is still open for discussion from many perspectives.
The suggested works to be done in future are
improvement of the schema naming or numbering
techniques to locate the object being searched faster and
adapting the tags classification method and expand it to
function on the different XML document contents.

REFERENCES

Florescu, D. and D. Kossmann, 1999. Storing and
Querying XML Data using an RDMBS. IEEE
Database Engineering Bulletin DEBU, 1-8. Citeseer.
Li, Q. and B. Moon, 2001. Indexing and Querying
XML Data for Regular Path Expressions. Data Base,
361-370. Morgan Kaufmann Publishers Inc.

Wang, G., M. Liu, J.X. Yu, B. Sun, G. Yu,J. Lvand H.
Lu, 2003. Effective schema-based XML query
optimization techniques. Symposium A Quarterly
Journal In Modern Foreign Literatures, pp: 230-235.
IEEE Comput. Soc.

Yang L., Y. Ping and L. Qiyan, "Optimizing Path
Expression Queries of XML Data," icebe, pp: 497-504,
IEEE International Conference on e-Business
Engineering (ICEBE'05), 2005.

Cheng, J. and W. Ng, 2007. “An Efficient Index
Lattice for XML Query Optimization”, Department of
Computer Science, The Hong Kong University of
Science and Technology, Hong Kong.

Grimsmo, N., 2008. Faster Path Indexes for Search in
XML Data. Proceedings of the nineteenth conference
on Australasian Database, pp: 127-135

Goldman, R. and J. Widom, 1997. DataGuides:
Enabling Query Formulation and Optimization in
Semistructured Databases. (M. Jarke, M.J. Carey,
K.R. Dittrich, F.H. Lochovsky, P. Loucopoulos and
M.A. Jeusfeld, Eds.)proceedings of the international
conference on Very Large Data Bases, pp: 436-445.
Paparizos, S., J.M. Patel and H.V. Jagadish, 2007.
SIGOPT: Using Schema to Optimize XML Query
Processing. Data Engineering 2007 ICDE 2007 IEEE
23rd International Conference on. pp: 1456-1460. Ieee.
Mchugh, J. and J. Widom, 1999. Query Optimization
for XML. (M. P. Atkinson, M. E. Orlowska, P.
Valduriez, S. B. Zdonik and M. L. Brodie, Eds.) VLDB,
pp: 315-326. Morgan Kaufmann..

Chung, T., 2003. Techniques for the evaluation of
XML queries: a survey. Data and Knowledge
Engineering, 46(2): 225-246.

Buneman, P., A. Deutsch, W. Fan, H. Liefke, A.
Sahuguet and W.C. Tan, 1998. Beyond XML Query
Languages. Query Language Workshop QL98.

10.

11.

