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Application of the Differential Transformation Method
to Non-Linear Shock Damper Dynamics
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Abstract: This paper adopts the differential transformation method (DTM) to non-linear shock damper
dynamics with non-linear spring and non-linear damping. The principle of differential transformation is briefly
introduced and is then applied in the derivation of a set of difference equations for the problem. The solutions
are subsequently solved by a process of inverse transformation. The time responses of the equations are
presented for two cases and the current results are then compared with those derived from the established

Runge-Kutta method 1 order to verify the accuracy of the proposed method. It is shown that there 1s excellent
agreement between the two sets of results. This finding confirms that the proposed differential transformation
method 1s a powerful and efficient tool for solving non-linear problems.
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INTRODUCTION

Most of engineering problems, especially some
equations of motion of vibratory systems are non-linear.
Therefore some of them are solved using numerical
solutions and some are solved using the analytical
methods. In order to obtamn the equation of motion of
vibratory systems,
description of the forces and moments involved, as
function of displacement or velocity. The solution of
vibration models to predict system behavior requires
solution of differential equations. The differential
equations based on linear model of the forces and
moments are much easier to solve than the ones based on

we will need a mathematical

non-linear models. Sometimes a non-linear model 1s
unavoidable; this 1s the case when a system 1s designed
with non-linear spring and non-linear damping. Chi and
Rosenberg [1] studied non-linear mass-spring-damper
systems with many degrees of freedom in which all of the
springs and dampers were strongly non-linear. Their
results indicated that the ultimate state of such damped
systems generally rests in the equilibrium position, or
possibly exists as a normal mode vibration. The authors
also identified the conditions necessary for the existence
of classical normal modes in damped non-linear systems.
Andrianov and Awrejcewicz [2, 3] developed an
asymptotic approach for the analysis of strongly non-

linear dynamic systems and compared the approximated
results with those obtained by the fourth-order Runge-
Kutta method. It was found that the asymptotic
approximations were m good agreement with the Runge-
Kutta solutions at high orders of non-linearity, but were
less satisfactory at lower power-form orders. Jang and
Chen [4] applied the differential transformation method to
analyze the response of a strongly non-linear damped
system. Lo and Chen [5] employed the differential
transformation technicue to investigate duffing oscillators
with time-varying parameters. Chen and Ho [6] utilized the
differential transform concept to solve the free vibration
problem of a rotating twisted Timoshenko beam under
axial loading.

The differential transformation method was first
applied in the engineering domain by Zhou [7] and is
commonly used for the solution of electric circuit
problems. The differential transformation method 1s
based on the Taylor series expansion and constructs an
analytical solution in the form of a polynomial [8-12]. The
traditional high-order Taylor series method requires
symbolic computation. However, the differential
transformation method obtains a polynomial series
solution by means of an iterative procedure.

In this paper, the basic idea of DTM is described and
then it is applied to non-linear shock damper dynamics
with non-linear spring and non-linear damping. The study
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considers two examples and employs the proposed
method to solve the corresponding differential equations
in the form of a power series. A comparison of the present
results with those yielded by the established Runge-Kutta
method confirms the accuracy of the proposed method.

Problem Statement: The basic function of the shock
absorber is to absorb and dissipate the impact kinetic
energy to the extent that accelerations imposed upon the
airframe are reduced to a tolerable level. Existing shock
absorbers can be divided into two classes based on the
type of the spring being used: those using a solid spring
made of steel or rubber and those using a fluid spring with
gas or oil, or a mixture of the two that is generally referred
to as oleo-pneumatic. The high gear and weight
efficiencies associated with the oleo-pneumatic shock
absorber make it the preferred design for commercial
transports.

A spring element exerts a reaction force in response
to a displacement, either compression or extension, of the
element. The linear spring relation f = kx becomes less
with increasing deflection (for either
compression or extension). In such case it is often
replaced by [13]:

accurate

J=kx (la)
f=kx+ kyx® (1b)

Where k, > 0 and has dimension of N/m and x is thespring
displacement from its free length. The spring elements is
said to be hardening or hard if k£, > 0 and has dimension
of N/m’ and softening or soft if k, > 0. These cases are
shown in Fig. 1.

The spring stiffness k& is the slope of force-
deflection curve and is constant for the linear spring
element. A non-linear spring does not have a single
stiffness value since its slope is variable. A damper
element is an element that resists relative velocity across
it. A simple way to achieve damping is with a dashpot or
damper, which is the basis of shock absorber. It consists
of a piston moving inside a cylinder that is sealed and
filled with a viscous fluid (Fig. 2) the piston has a hole or
orifice through which the fluid can flow when the piston
moves relative to the cylinder, but the fluid’ viscosity
resists this motion [13].

There are many applications where we can derive an
expression for the spring force as a function of deflection
or the damping force as a function of velocity [13]; in
practice forms for the spring relation are the linear model
and the cubic model as shown in Eq. (1a) and (1b)
respectively.
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Displacement from
free length
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Linear Hard

Fig. 1: Hard, soft and linear spring function [13]
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Fig. 2: A fluid damper consists of a piston moving inside
a cylinder filled with a viscous fluid
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Fig. 3: Compare results of Example 1 obtained by the
DTM (solid line) and the Runge-Kutta method

(circle)

Also the most common model forms for the damping
relation are:

fv)y=cv The linear model (2a)
) =cv? The square-law model (2b)
fiv)=cv", n>1  The general progressive model  (2¢)
fv)=cv", n<1  The degressive model (2d)
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Fig. 4: Compare results of Example 2 obtained by the
DTM (solid line) and and the Runge-Kutta method
(circle)

Fundamentals of Differential Transformation Method:
Let x(¢) be analytic in a domain D and let 7 = ¢ represent
any point in D. The function x(¢) is then represented by
one power series whose center is located at #. The Taylor
series expansion function of x(¢) is in form of:

© [t k dk
=3 ) {—dfka)} vieD @)
k=0 =1,

The particular case of Eq. (3) when ¢, = 0 is referred to
as the Maclaurin series of x(f) and is expressed as:

o k
g e
[ =

k=0
As explained in [14] the differential transformation of
the function x(¢) is defined as follows:
} (=0

d*x(t)
dr*

Where x(f) is the original function and X(k) is the

transformed function. The differential spectrum of X(k) is

confined within the interval €[0,H], where H is a constant.

The differential inverse transform of X(k) is defined as

follows:

d*x(t)

ik 4

H )
k1

X (k)= (

®)

82

Table 1: The fundamental operations of the differential transform method
Original function

X0 =of ()£ Bg(1)

Transformed function
X(k)=orF (k)x BG(k)

x(,):@ X(k)=(k+1)F(k+1)
3
2 X(k)=(k+1)(k+2) 1 (k+2
i (0)=(k+1)(k+ 2 (k+2)
dt
x(=1" sy [lk=m
X (k)=8(k m)—{Ok#m
x(t) = exp(Ad) X (k)= /lk_’:
)
xn)=f(0gw) X(k)="Y r()G(k-1)
o) p k
x(t) = — | X(k
® Z[ H] (#) ©)
k=0
It is clear that the concept of differential

transformation is based upon the Taylor series expansion.
The values of function X(k) at values of argument k are
referred to as discrete, i.e. X(0) is known as the zero
discrete, X(1) as the first discrete, etc. the more discrete
available, the more precise it is possible to restore the
unknown function. The function x(#) consists of 7-
function X(k) and its value is given by the sum of the 7-

function with ( t jk as its coefficient. In real applications,
H

at the right choice of constant H, the larger values of

argument K the discrete of spectrum reduce rapidly. The

function K is expressed by a finite series and Eq. (6) can

be written as:

(1) = i(%jk X (k)

@

Mathematical operations performed by differential
transform method are listed in Table 1.

Applications of the DTM: We applied the differential
transformation method to non-linear shock damper
dynamics with non-linear spring and non-linear damping
and assess the advantage and the accuracy of proposed
method. We will consider the two examples as follows:

Example 1: We consider the equation of motion and the

initial conditions as [15]:
d*x (dx)
—+|— | +100x=0,
dr* (dt) ®

With initial conditions:
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(0 =0 (9a)
v
#0=1 (9b)

We applied the DTM for the Eq. (8) and taking the
differential transform Eq. (8) with respect to f gives:

(k+2)(k+1)X(k+2)+100X(k)+i(k—erl)X(k—wH)
i(wfj+1)X(wfj+1)><(j+l)X(j+1)

=0 (10)

From a process of mverse differential transformation,
it can be shown that the solutions of each sub-domain
take n+1 term for the power series like Eq. (), we can
write:

t

n g
{FJ X (k) O0<r<H, (1D

i

Where k represents the number of term of the power
series,i = 0,1,2... expresses the #* sub-domain and H, is the
sub-domain mterval. We calculated X(4+2) from Eq. (10)
as following:

X(2)=-05 (12a)
X(3)=-16.16 (12b)
X(4)=16.04 (12a)
X(5) =567 (12b)

: (12a)
X(21) = -2.26x10" (12b)

Substituting Eq. (12) into the main equation based on
the DTM, it can be obtained that the closed form of the

solutions 1s:

x(f)=1-05-1616° +1604¢ +567F ~29936° + 6418
3042878 —17495 720 + 143159870 + 224 10° 1 - 1. 1 10P#2
—102x10°5 +1.96: 107 - 694:1077° 11 P A
H167x10°47 - 430078 ~ 1581010 + 1411012 - 226 1012

(13)

In the similar manner, we will obtain another sub-
domain's series solution and we can present the solution
of Eq. (8) accurately

Example 2: We consider the equation of motion and the
mitial conditions as [15]:

83

2 3
d+dx01(dx] 20 4100x=0 (1
drit  dt dt

With mitial conditions:

#(0)=0 (15a)
de, (15b)
E(O) =1

We applied the DTM for the Eq. (14) and taking the
differential transform Eq. (14) with respect to £ gives:

(k+2)(k+ D)X (k+2)+(k+1)X (k+1)+100X (k) +
ZX(k—w) ZW:X(W—_j)X(_])

rF
Zk w+1 k w+1)

-0.1 , =0

D v DX (w4 1) ()X (1)

=0

(16)

Similar to example 1 we have:
X(2)=-045 (17a)
X3 =1656 (17t
X(4)=6.66 (17a)
X(5)=8316 (17b)
: (17a)
X(21) = -4.42x10° (17b)

Substituting Eq. (17) into the main equation based on
the DTM, it can be cobtained that the closed form of the
solutions is:

x6(7)=1-045" -16567 + 6661 +83.16° -8 0&° ~ 236,024
387585 + 80183 + 4734.050 — 468005 — 3700668

H2071178 + 254107 M 133700 £ —1.69x 1054 — 494:10P 47
49.47x10°48 ~1.58: 10147 + 5.02:1077%° —2.4x107° — 442105

(18)

In the sumilar manner, we will obtain another sub-
domain's series solution and we can present the solution
of Eq. (14) accurately.
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Table 2: Theresults of the DTM and fourth order Runge-Kutta method for

example 1.
t x(on i(zx Error = w{)onex({zd
0 0 0 0
1 -0.042389180 -0.041037598 0.001351582
2 0.057676656 0.0576663784 0.000010277
3 -0.054189824 -0,054836214 0.000646390
4 0.036444190 0.037277259 0.000833069
5 -0.011053633 -0.011992513 0.000938880
6 -0.013778616 -0.013040705 0.000737911
Table 3: The results of the DTM and fourth order Runge-Kutta method for
example 2.
t 2@ omy x2(rg Brror = () oryrx() el
0 0 0 0
1 -0.033224341 -0.033223959 3.82E-07
2 0.034385642 0.034385873 2.31E-07
3 -0.023020243 -0.023020481 2.38E-07
4 0.010940017 0.0109401 86 1.69E-07
5 -0.002746481 -0.002746541 6.00E-08
6 -0.012087954 -0.001208841 0.010879113
RESULTS AND DISCUSSION
The present study employs the differential

transformation method to generate a number of numerical
results for the respomse of non-linear shock damper
dynamics with non-linear spring and non-linear damping.
The calculations presented in this paper adopt a value
of n=20. Having determined the various values of X(k+2)
from Egs. (10) and (16) with the transformed iutial
conditions of Eqs. (9) and (15), the first sub-domain
solutions of Egs. (8) and (14) can be obtained by means of
the inverse transformed equations of Eq. (11). The final
values of the first sub-domain, 1.e. the sclutions of the
previous calculation, are then taken as the mitial condition
of the second sub-domain, which is subsequently
calculated using the same procedure as that described
above. By repeatedly adopting the final values of one
sub-domain as the mitial condition of the following sub-
domain, the differential equation can be solved from its
first sub-domain to its final sub-domain. Therefore, the
proposed method enables the solutions of Eqgs. (8) and
(14) to be solved over the entire time domain.

The response of x(f) are plotted in Figs. 1 and 2 for
two examples. Also these results are seen in tables 2 and
3 for more clearly. In order to verify the effectiveness of
the proposed differential transformation method, the
fourth-order Runge-Kutta numerical method is used to
compute the displacement response of the non-linear
oscillator for a set of initial amplitudes. It 1s noted that the
present results are in excellent agreement with the
numerical results obtained from the fourth-order Runge-
Kutta approach.
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CONCLUSION

The current study has applied the differential
transformation method to non-linear shock damper
dynamics with non-linear spring and non-linear damping.
The non-linear equations are first expressed as algebraic
relationships. These relationships are transformed into a
set of difference equations, which are then solved via a
process of inverse transformation. Tt has been shown that
the results of the differential transformation method are in
good agreement with those obtained from the fourth-order
Runge-Kutta numerical method. The present study has
confirmed that the DTM offers significant advantages in
terms of its straightforward applicability, its computational
effectiveness and its accuracy.
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