
World Applied Sciences Journal 15 (3): 364-371, 2011
ISSN 1818-4952
© IDOSI Publications, 2011

Corresponding Author: Nadia M.G. Al-Saidi, Department of Applied Sciences, Applied Mathematics University of Technology,
Baghdad  Iraq.   Tel : +9647901305365/+9647712876443.

364

A New Idea in Zero Knowledge Protocols Based on Iterated Function Systems

Nadia M.G. Al-Saidi and Mohamad Rushdan Md Said

Institute for Mathematical Research (INSPEM), 
University Putra Malaysia (UPM), 43400, Serdang, Darul Ehsan, Malaysia

Abstract: A secure method of identification is crucial to avoid computer deception dynamics. This could be
attained by using zero-knowledge protocols. Zero-knowledge protocols are cryptographic protocols that have
been proven to provide secure entity authentication without revealing any knowledge to any entity or to any
eavesdropper and used to build effective communication tools and ensure their privacy. Many schemes have
been proposed since 1984. Among them are those that rely on factoring and discrete log which are practical
schemes based on NP- hard problems. Our aim is to provide techniques and tools which may be useful towards
developing those systems. Fractal code was proven as a NP-hard problem, which means it cannot be solved
in a practical amount of time. In this paper a new zero-knowledge scheme is proposed based on iterated function
systems and the fractal features are used to improve this system. The proposed scheme is a generalization of
the Guillou-Quisquater identification scheme. The two schemes are implemented and compared to prove their
efficiency and security. From the implementation results, we conclude that zero knowledge systems based on
IFS transformation perform more efficiently than GQ system in terms of key size and key space.
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INTRODUCTION

Following the publication of Diffie and Hellmen [1], purpose of securing the exchange of public keys. CAs are
new explosion of researches emerged. Their paper showed servers that could be used for verification; i.e. to certify
for the first time that secret communication was possible the issued certificates which include the public keys [4].
without any transfer of secret key between sender and Zero knowledge proof (ZKP) was first introduced by
receiver. Another proposal is the public key cryptosystem Goldwasser, Micali and Rackoff [5] in 1985. The wide
that is based on algebraic coding theory in 1978 by applicability of zero-knowledge was demonstrated by
McEliece [2]. Goldreich, Micali and Wigderson in [6]. Fiat and Shamir

The Zero-Knowledge  (ZK) Protocol is a method [7] presented a simple identification and signature scheme
used for authentication. The first party must prove it that enables any user to prove his identity and the
knows the right password without giving any information authenticity of his messages. The difficulty of this task is
about that password to the authenticating second party. based on RSA problem. 
This  is a  method  to  avoid  sending  a  password  over Micali and Shamir [8] presented an improvement to
a network that could be detected by a third party. It is their previous scheme that reduces the verifier's
proposed at first as a method for exchanging public keys, complexity to less than 2 modular multiplications and
for creating digital  signatures  or  for  protection of leaves the prover's complexity unchanged. Although it is
digital  cash  on  smart  cards. Itis considered as more computationally fast, it is still based on RSA problem.
time-consuming than other authentication methods, but Fiege et al [9] introduced the notion of interactive proofs
also harder to decipher [3]. With the use of smart cards, of assertions to interactive proofs of knowledge.
user identification and certificate authority are contained Ong-Schnorr identification and signatures [6] are
and accessed  by  use  of a user personal identification variants of the Fiat-Shamir scheme with short and fast
number (PIN). communication and signatures. This scheme uses secret

Where Certificate Authority (CA) can be used for the
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keys that are square roots modulo N of the public keys.
Its security is based on the intractability of certain
discrete logarithm problems. It is also proven to be secure
against passive and concurrent attacks. Guillou and
Quisquater (GQ) identification scheme [10] is an extension
to Fiat-Shamir scheme, which reduces the number of
exchanged messages and memory requirements for secret
keys.

The GQ protocol is an extension of the RSA protocol
which reduces the number of rounds needed to 1 and its
security is based on the intractability of RSA problem. Fig. 1: A copy machine that makes three reduced copies
Goldwasser and Kalai [11] showed that the signature of the input image
based on Fiat-Shamir (and also Fiege-Fiat-Shamir) is
forgeable. Courtois [12] proposed a new Zero-knowledge major concepts and results of Iterated Function System
scheme based on an NP-complete problem known as (IFS) and their application. A more detailed review of the
MinRank. Wolf [13] showed how zero knows proofs can topics in this section are in [18-20]. The theory of fractal
be used to solve authentication problems. All the sets is a modern domain of research. Iterated function
previous studies are applicable on finite field, so using systems (IFS) have been used to define fractals. Such
new systems that work on an infinite field is a new systems consist of sets of equations, which represent a
challenge in modern cryptosystems. Alia, M. and A. rotation, a translation and a scaling. These equations can
Samsudin in [14], proposed a new zero-knowledge proof generate complicated fractal images [21]. 
of identity protocol based on Mandelbrot and Julia Fractal The metaphor of a Multiple Reduction Copying
sets. They discovered that the security of the proposed Machine Figure (1) is an elegant way to introduce Iterated
fractal zero-knowledge proof of identity is based on the Function Systems. The MRCM is to be understood as a
NP-hard problem and the randomness of the output regular copying machine with the exception that the lens
generated. Shuichi Aono, Yoshifumi Nishio, in [15] arrangements are such that they reduce the size of the
proposed an authentication protocol using three times the original picture and they overlap copies of the original
authentication interaction. This authentication protocol is into the generated copy. Further, the MRCM operates
based on iterations of the logistic map in public-key with a feedback loop in which the output of the previous
cryptography. copy is used as the input of the next stage. It doesn’t

The rest of this paper is organized as follows. Section matter with what picture the user begins with. What will
2 focuses on the material and methods used in this study; determine the attractor, or the output of an iterated
some mathematical preliminaries about the iterated function system, will be the rules that are used in the
function system are provided. The concepts of zero copying, which acts as the iteration [22]. 
knowledge protocol/proof, in addition to some existing
schemes are analyzed. Section 3 presents the new zero Definition 1: Given a metric space (X,d), the space of all
knowledge proof based on IFS and then evaluates the nonempty compact subset of X is called the Hausdorff
scheme with comparable existing ZKP schemes space H(X). The Hausdorff distance h is defined on H(X)
qualitatively. The algorithms for both methods with their by,
implementation are discussed briefly. The performance
and security aspects are analyzed in Section 4 followed by h(A,B)= max{inf{ >0; B N  (A)}, inf{ >0; A N (B)}}(1)
the conclusion in Section 5.

MATERIALS AND METHODS a transformation w: X Y is said to be a contraction if and

Iterated Function Systems: The term “iterated function d (w(x ),w(x ))< sd (x ,x ), for any x ,x  X, where s is the
system” (abbreviated: IFS) was coined in [16] by Barnsley contractivity factor for w.
& Demko to describe a general framework of dynamics. An IFS describes a unique set: its attractor. The
However, most of the results on the IFS model were attractor is invariant under the Hutchinson operator of the
shown in [17]. This section presents an overview  of  the IFS  and  is  very  often  fractal.   The  following  theorem,

Definition 2: For any two metric spaces (X,d ) and (Y,d ),X Y

only if there exists a real number s, 0 s  1, such that
Y i j X i j i j
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fundamental to the study of iterated function systems, “proof system” is a randomized protocol by which one
asserts that, for any IFS, there always exists such a set. It party (called  the  prover) tries to convince another party
first appeared in Hutchinson [17]. (called the verifier) that the given statement is true. The

Theorem 1: (Fundamental Theorem of Iterated Function
Systems) For any IFS w={w},i=1,…N there exists a unique Peggy the Prover: Peggy has some information that shei

non-empty compact set A R  the invariant attractor of the wants to prove to Victor, but without telling the secretn

IFS, such that A=w(A). itself to Victor.
Another important property (Theorem 2) of

contractive transformations of a complete metric space Victor the Verifier: Victor asks Peggy a series of
within itself, is known as the contraction mapping questions, to find out if Peggy really knows the secret or
theorem, not. Victor does not learn anything about the secret itself,

Theorem 2: Let w:X Y be a contraction on a complete
metric space (X,d). Then, there exists a unique point x X Eave the Eavesdropper: Eave is listening to thef

such that w(x )=x . Furthermore, for any x X, we have conversation between Peggy and Victor. A good zero-f f

, where w denotes the n-fold knowledge protocol also ensures that no third-partyºn

composition of w. comes to know about the secret.

Definition 3: Any affine transformation w:R R  of the game between a prover and a verifier and it satisfies two2 2

plane has the form, properties [24]:

Completeness: Peggy has very high probability of
(2) convincing Victor if she knows O S,

where (u,v), (x,y) R , are any point on a plane. Soundness: Peggy has very low probability to fool Victor2

By considering a metric space (X,d) and a finite set of some special features; the verifier cannot learn anything
contractive transformation w  : X X, 1=n=N, with from the protocol, the prover cannot cheat the verifier, then

respective contractivity factors s , we proceed to define a verifier cannot cheat the prover and the verifier cannotn

transformation W: H(X) H(X), where H(X) is the collection pretend to be the prover to any third party .
of nonempty, compact subsets of X,

by,  for any B H(X) (3)

It is easily shown that W is a contraction, with
contractivity factor s=max s . The mapping W is1=n=N n

usually referred to as Hutchinson operator. It follows
from the contraction mapping theorem that, if (X,d) is
complete, W has a unique fixed point A H(X), satisfying
the remarkable self covering condition.

(4)

Zero-Knowledge Protocol: A lot of theories have been
written about zero-knowledge protocols. However not
much practical information is available even though zero-
knowledge techniques have been used in many
applications. Proofs are often seen (by scientists) as a
static mathematical object. A “proof” or equivalently a

following names appear in zero-knowledge protocols [23]:

even if he cheats or does not adhere to the protocol. 

An interactive proof system for a set S is a two party

if she does not know O. Zero-knowledge protocols having

Example
Ali Baba's Cave (Magical Cave): Consider the non-
computer example that illustrates a zero-knowledge proof,
the Ali Baba's cave Figure (2), with a secret door that can
be opened by a password. Peggy knows the password of
the door and wants to convince Victor that she knows it,
but doesn't want Victor to know the password itself. They
work as follows [1]:

Peggy goes into a random branch of the cave, which
Victor doesn't know as he is standing outside the
cave.
Victor comes into the cave and calls out a random
branch of the cave (left or right), where Peggy should
come out
If Peggy knows the secret password, she can come
out the right  way  every  time,  opening  and passing
through   the   secret   door   with   the   password  if
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Fig. 2: A magical cave.

necessary. If Peggy doesn't know the password, she has
a 50% chance of initially going into the wrong branch and
as she is not able to pass the secret door, Victor can call
her bluff.

Feige-Fiat Proof of Identity: Feige-Fiat-Shamir was the
first practical identity-based protocol. It minimized
computation by increasing the number of iterations and
accreditations per iteration. However it was less than ideal
for some applications, like smart cards. Exchanges with
the outside world are time-consuming and the storage
required for each accreditation could strain the limited
resources of the card.

Before issuing any private keys, the arbitrator
chooses a random modulus, n, which is the product of
two large primes. In real life, n should be at least 512 bits
long and probably closer to 1024 bits. This n can be
shared among a group of prover’s. (Choosing a Blum
integer makes computation easier, but it is not required for
security.)

To generate Peggy’s public and private keys, a
trusted arbitrator chooses a number, v, where v is a
quadratic residue mod n. In other words, choose v such
that x v (mod n) has a solution and v  mod n exists.2 1

This v is Peggy’s public key. Then calculate the smallest
s for which s sqrt (v ) (mod n). This is Peggy’s private1

key [12].

The Identification Protocol Can Now Proceed:

Peggy picks a random r, where r is less than n. She
then computes x = r  mod n and sends x to Victor.2

Victor sends Peggy a random bit, b.
If b = 0, then Peggy sends Victor r. If b = 1, then
Peggy sends Victor y = r * s mod n.
If b = 0, Victor verifies that x = r  mod n, proving that2

Peggy  knows  sqrt  (x).  If b = 1, Victor verifies that
x = y  * v mod n, proving that Peggy knows sqrt2

(v ).1

This is a single round-called an accreditation-of the
protocol. Peggy and Victor repeat these protocol t times,
until Victor is convinced that Peggy knows s.

Guillou-Quisquater Proof of Identity.: Louis Guillou and
Jean-Jacques Quisquater [25] developed a zero-
knowledge identification algorithm more suited to
applications like these. The exchanges between Peggy
and Victor and the parallel accreditations in each
exchange are both kept to an absolute minimum: There is
only one exchange of one accreditation for each proof.
For the same level of security, the computation required
by Guillou-Quisquater is greater than by Feige-Fiat-Shamir
by a factor of three. As with Feige-Fiat-Shamir, this
identification algorithm can be converted to a digital
signature algorithm.

Peggy is a smart card who wants to prove her
identity to Victor. Peggy’s identity consists of a set of
credentials: a data string consisting of the card’s name,
validity period, a bank account number and whatever else
the application warrants. This bit string is called J.
(Actually, the credentials can be a longer string and
hashed to a J value. This complexity does not modify the
protocol in any way.) This is analogous to the public key.
Other public information, shared by all “Peggys” who
could use this application, is an exponent v and a modulus
n, where n is the product of two secret primes. The private
key is B, calculated such that JB 1 (mod n).v

Peggy sends Victor her credentials, J. Now, she
wants to prove to Victor that those credentials are hers.
To do this, she has to convince Victor that she knows B.
Here’s the protocol [25]:

Peggy picks a random integer r, such that r is
between 1 and n - 1. She computes T = r  mod n andv

sends it to Victor.
Victor picks a random integer, d, such that d is
between zero and v - 1. He sends d to Peggy.
Peggy computes D = rB  mod n and sends it tod

Victor.
Victor computes T´ = D J  mod n. If T T´ (mod n),v d

then the authentication succeeds.

To Prove that,
T´ = D J  = (rB ) J  = r B J  = r (JB )  = rv T (mod n),v d d v d v dv d v v d

since B was constructed to satisfy JB 1 (mod n).v

The Proposed Fractal Method for Zero-knowledge Proof:
In this section, proof of knowledge scheme based on IFS
transformations is detailed as follows.

The Fractal Method: To generate fractal attractor, the
Hutchinson operator is constructed based on a given
affine  transformation.  Consider  an  IFS  consisting  of
the maps,
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(5) This W is used to generate the attractor, without

Instead of writing them as above, they can be written in a
matrix form,

(6)

To explain this method, fractal generated using IFS of
four affine transformation (w ,w ,w ,w ) are used, where1 2 3 4

the generalized case can be easily followed. Fractals
generated by affine transformation in (7) satisfy the semi-
group property.

(7)

A dummy coordinate Z with value 1 is added to
represent the translation in the affine transformation and
the 2-dimensional matrix (7) are structured by (3 by 3)
matrix as in (8). 

(8)

 Then the 4-affine transformations in (7) are arranged in a
(4 by 4) matrix in (9), 

(9)

We calculate the Hutchinson operator W=w w w w ,4 3 2 1

and represent it in the form of (8), as in (10).

where (10) 

A= a a a a , A 1.4 3 2 1

B=b b b b , B 1,4 3 2 1

C=a a a c +a a c +a c +c .4 3 2 1 4 3 2 4 3 4

D=b b b d +b b d +b d +d .4 3 2 1 4 3 2 4 3 4

dealing with iteration process. The attractor is then
generated by computing W  for large n.n

Algorithm: This algorithm is a generalization of Guillou-
Quisquater identification protocol using IFS
transformations. It consists of two parts, the initialization
and the identification.

Initialization: Initially the parameters (matrix H, g, p) must
be agreed upon by the prover and the verifier, (where g Z
and p is prime number). We need to generate the number
of iteration secretly in order to find the attractor of the
IFS. This fractal attractor is used for generating the public
keys and also for the proving and verifying processes. A
Diffie-Hellman [26] key exchange protocol is used to
generate this shared private key n.

Generate numbers (x, s), (x’,r) as receiver and signer
of private keys, where x,x’ R, r,s Z.
Calculate F =g  (mod p), F =g  (mod p) as prover ands r

s r

verifier of public keys.
Exchange F  and F .s r

After receiving F , the receiver calculates a privater

shared key n=(F ) (mod p), the number of iteration fors
r

the IFS and generates the fractal attractor W  used inn

the cryptosystem,

(11)

where, T (A)=A +A +…+A+1 andn
n-1 n-2

 T (B)= B +B +…+B+1.n
n-1 n-2

Identification:
Based on their private keys x, x’ and using the fractal
attractor W  the prover and the verifier generate then

public key u = W (x,0,1) and u’ = W (x’,0,1) then,n n

Exchange (u) and (u’) between them.
The prover has the public key u’ and the private key

x and uses them to calculate 

The verifier on the other hand has the public key u
and the private key x’ and uses them to calculate
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Now the prover uses z’ and the fractal attractor W  ton

find v’ = W (0,z’,1) and sends it to the verifier wheren

.

The verifier after receiving the prover’s key v’, uses
his private key z and the fractal attractor W  to find vn

= W (0,z,1), where  and comparesn

with v’.
If v=v’, then the authentication succeeds.

RESULTS

In this section the implementation of GQ method and
its generalization using fractal functions are discussed
with two computer examples.

Software Implementation: The Guillou-Quisquater
algorithm and its generalization using IFS, with its graphic
user interface Figure (3,4), are carried out using Java
under Net-Beans IDE 6.8. They are compared according to
the time and key space parameters as performance
parameters under the same environment. The efficiency of
the algorithms is documented and analyzed in the next
section. All the results were obtained using a computer
with these specifications: 3.0GHz Intel (Cor.2 Duo) CPU
and 2GB RAM.

Examples
Example 1: Figure (5) shows the executing results for GQ
method using random data with 1024 bits.

Example 2: We use the IFS transformations as in (12).

(12)

The fractal attractor of this affine transformation
functions is illustrated in Figure (6) and the Hutchinson
operator W is,

(13)

The data in Figure (7) is the executing result using
random keys with 1024 bits. 

Fig. 3: Fractal zero-knowledge user interface

Fig. 4: Guillou-Quisquater user interface

Fig. 5: Executing results for GQ method 

Fig. 6: Fractal Attractor for the given IFS
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Fig. 7: Executing results for Fractal zero-knowledge
protocol.

DISCUSSION

Design of efficient and secure identification
mechanisms is a major research topic in data security.
Modern cryptography is concerned with the
implementation of cryptosystems that assure a
sufficiently high level of security to prevent any attempt
to foil the protection of information. Fractal cryptography Fig. 9: Comparison of key generation times
is based on an NP-hard problem [14,27], which means that
it cannot be solved within a reasonable period of time. So CONCLUSION
it could be considered as a useful tool in the design of
secure systems. A novel fractal protocol is proposed in this paper to

The proposed zero knowledge protocol based on IFS be used in zero-knowledge systems, provided all fractal
involves two parties, Peggy and Victor. Peggy tries to functions are based on a continuous infinite interval (0,1)
prove her identity to Victor without telling her private to ensure the satisfaction of the contraction property and
information (x,n). Then she generates a public key u, create a massive search space. Another important fact is
using the Hutchinson matrix W  and sends it to Victor. On the security of fractal cryptography functions, which isn

the other hand Victor has the same strategy and sends his based on NP-hard problem, to ensure it cannot be solved
public key u’ to Peggy. Now Peggy uses the IFS and her within a reasonable period of time. Hence, many well
private keys to compute V’ and sends it to Victor. To known attacks fail to solve the nonlinear systems and find
verify Peggy’s secret, Victor needs to compute V. If V=V’, the imprecise secret key parameter from the given public
then Victor can convince that Peggy knows the secret and one. Even if it is theoretically possible, it is
the authentication process is deemed successful. Trying computationally not feasible. After implementing the
to find the private keys entails solving the equation with fractal protocol and the GQ protocol, we conclude that
two unknowns which is computationally impossible. This zero knowledge systems based on IFS transformation
will prevent attacks on private key values. If the number perform more efficiently than GQ system in terms of key
of bits is k, then there are 2  possibilities for every value size and key space.k

of x and n. In this case the brute force attack does not
work when the length of these keys is as long as possible. ACKNOWLEDGMENT

Using the same key size, performance comparison is
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Fig. 8: Comparison of identification times



World Appl. Sci. J., 15 (3): 364-371, 2011

371

REFRENCES 14. Alia, M. and A. Samsudin, 2008. Fractal (Mandelbrot

1. Berson,   T.,   S.   Guillou,   G.   Guillou,   A.   Guillou, Computer Sci., 4(5): 408-414.
G. Guillou, M. Guillou, L. Guillou, Mi. Quisquater, 15. Shuichi  Aono†     and    Yoshifumi     Nishio,    2007.
Mu. Quisquater, My. Quisquater and J. Quisquater, A User Authentication Protocol Using Chaotic
1990. How to explain zero-knowledge protocols to Maps.  RISP International Workshop on Nonlinear
your children. In: Advances in Cryptology- CRYPTO Circuits and Signal Processing (NCSP'07).
89, G. Brassard, editor, Santa Barbara, California, 16. Barnsley, M.F. and S. Demko, 1985. Iterated function
USA, August 20-24, 1989, pp: 628-631. systems and the global construction of fractals, Proc.

2. Sharma, A. and D. Brat Ojha. 2010. “Application of Roy. Soc. London A399: 243-275.
Coding Theory in Fuzzy Commitment Scheme”. 17. Hutchinson, J., 1981. Fractals and self-similarity.
Middle-East J. Scientific Res., 5(6): 445-448. Indiana University Mathematics J., 30(5): 713-747.

3. Menezes, A.J., P.C.V. Oorschot and S.A Vanstone, 18. Barnsley, M., 1993. Fractals Everywhere. Academic
1997. Handbook of Applied Cryptography, Boca Press Professional, Inc. San Diego, CA, USA,
Raton, CRC Press. Second Edition.

4. Al-Momani  I.,  M.  Al-Saruri and M. Al-Akhras, 19. Nikiel,  S.,  2007.  Iterated  Function  Systems  for
2011. “Secure Public Exchange Against Man in the Real-Time Image Synthesis, Springer-Verlag London
Middle  Attacks  During  Secure  Simple  Pairing Limited.
(SSP)  in  Bluetooth.  World  Applied  Sciences  J., 20. Fisher, Y., 1995. Fractal Image Compression: theory
13(4): 769-780. and application. Springer-Verlag. New York, USA.

5. Goldwasser,  S.,   S.  Micali  and  C.  Rckoff,  1989. 21. Dugelay, J.L., E. Polidori and S.  Roche,  1996.
The Knowledge Complexity of Interactive Proof Iterated Function Systems for Still Image Processing.
Systems, SIAM J. Computing, 18: 186-208. IWISP-96, Manchester, UK, November. Indian

6. Goldreich, Micali and Wigderson Proofs that Yield Institute of Technology Bombay. Mumbai. 
Nothing but their Validity or All Languages in NP 22. Jacquin, A.E., 1992, Image coding based on a fractal
have Zero-Knowledge Proofs. JACM, July 1991. theory of iterated contractive image transformations.

7. A. Fiat and A. Shamir, 1987. How to Prove Yourself: EEE Trans. Image Processing, 1(1): 18-30.
Practical Solutions to Identification and Signature 23.  Goldreich, O. and Y. Oren, 1994. Definitions and
Problem, Crypto, 86(263): 186-189. Properties of Zero-Knowledge Proof Systems, J.

8. Micali, S. and A. Shamir, 1988. An Improvement of Cryptol., 7(1): 1-32.
the Fiat-Shamir Identification and Signature Scheme, 24. Goldreich, O., 2002. Zero Knowledge Twenty Years
Crypto, 88(403): 244-250,1988. after its Invention, Electronic Colloquium on

9. Fiege, U., A. Fiat and A. Shamir, 1987. Zero Computational  Complexity,  Technical   Report
Knowledge  Proof of Identity, Proc. of 19th STOC, TR02-063.
pp: 210-217. 25. Guillou, L.C. and J.J. Quisquater, 1988. “A Practical

10. Guillou, L.C. and J.J. Quisquater,  A.  Paradoxical Zero-Knowledge Protocol Fitted to Security
Identity-Based Signature Resulting From Zero Microprocessor Minimizing Both Transmission and
Knowledge, Crypto, 88(403): 216-231, 1988. Memory,” Advances in Cryptology-EUROCRYPT ’88

11. Shafi Goldwasser, 1991. Yael Tauman Kalai: On the Proceedings, Springer-Verlag, pp: 123-128.
(In)security of the Fiat-Shamir Paradigm. FOCS 2003: 26. Diffie, W. and M.E. Hellman, 1976. New Directions in
102-107, 2003.  38(1): 691-729. Cryptography, IEEE Transaction on Information

12. Courtois, N.T., 2001. Efficient Zero-Knowledge Theory, 22(6): 644-654.
Authentication Based on a Linear Algebra Problem 27. Massopust,  P.R.,  1997.  Fractal  Functions   and
MinRank , Asiacrypt, 2248: 402-411. their  Applications,  Chaos,  Solitons  and  Fractal,

13. Wolf, C., 2004. Zero-Knowledge and Multivariate 8(2): 171-190. 
Quadratic Equations, Workshop on Coding and
Cryptography.

and Julia) Zero-Knowledge Proof of Identity. J.


