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Abstract: In this paper, an aproximate analytical method called the differential transform method (DTM) is used
as  a  tool  to  give  approximate  solutions  of  oscillation  models of the Lazer-McKenna suspension bridge.
The differential transformation method is described in a nuthsell. DTM can simply be applied to linear or
nonlinear problems and reduces the required computational effort. The proposed scheme is based on the
differential transform method (DTM), Laplace transform and Padé approximants. The results to get the
differential transformation method (DTM) are applied Padé approximants. The reliability of this method is
investigated by comparison with the classical fourth-order Runge–Kutta (RK4) method. Our the presented
method showed results to analytical solutions of nonlinear ordinary differential equation. Some plots are gived
to shows solutions of oscillation models of the Lazer-McKenna suspension bridge for illustrating the accurately
and simplicity of the methods.

Key words:Padé approximants  The differential transform method  Oscillation models of the Lazer-McKenna
suspension bridge

INTRODUCTION The goal of this paper is to extend the differential

The modified differential transform method (MDTM) oscillation models of the Lazer-McKenna suspension
will  be  employed in a straightforward manner without bridge. The results of the differential transformation
any  need  of linearization or smallness assumptions. method are numerically compared with conclusions
DTM was first applied in the engineering domain by [1, 2]. obtained by the modified differential transformation
DTM provides an efficient explicit and numerical solution method  and  the  fourth-order  Runge–Kutta  method.
with high accuracy, minimal calculations, avoidance of The MDTM is useful to obtain exact and approximate
physically unrealistic assumptions. However, DTM has solutions of linear and nonlinear oscillations equations.
some drawbacks. By using DTM, we obtain a series No necessity to linearization or discretization, large
solution,   in   practice   a   truncated   series  solution. computational  work  and  round-off  errors  is  bewared.
This  series solution does not exhibit the periodic It has been used to solve efficiently, easily  and
behavior which is characteristic of oscillator equations accurately a large class of nonlinear problems with
and gives a good approximation to the true solution in a approximations. These approximations converge rapidly
very small region. In order to improve the accuracy of to exact solutions [12-25].
DTM, we use an alternative technique which modifies the For over seventy years, scientists in many disciplines
series solution for non-linear oscillatory systems as have endeavoured to explain the cause of the dramatic
follows: we  first  apply  the  Laplace  transformation  to and eventually destructive torsional oscillations of the
the truncated  series  obtained  by  DTM,  then  convert Tacoma Narrows Bridge which preceded its collapse in
the transformed series into a meromorphic function by 1940. The original Tacoma Narrows Bridge displayed
forming its Padé approximants [3] and finally adopt an significant vertical oscillations after it opened on July 1,
inverse Laplace transform to obtain an analytic solution, 1940. Until Tacoma Narrows Bridge collapsed, had not
which may be periodic or a better approximation solution made torsional oscillations. The amplitude of the vertical
than the DTM truncated series solution. movement  is  large  enough  to bridge the transition was

transformation method proposed by Zhou [1] to solve
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Fig. 1: A simple model of the center span and its horizontal cross section

a sudden large amplitude torsional motion. As a result of Where v  = max {v, 0}. Analogously, the force exerted by
the fact that occured slackening of the cables that the    left       hand     cable    is  –k(y + l + L  sin ) .
suspended the roadbed. Because of suddenly lateral Using Newton's second law, the torsional and vertical
asymmetry is the loss of one or more hangers on one side motions are governed by
of a bridge. Due to growing amplitude of the torsional
oscillations, the bridge collapsed within an hour.

The Model for a Horizontal Cross Sect on of the Center
Span: We deal with the center span of the bridge as a
beam of length L  and width 2L  suspended  by  cables. (2)B E

To model the motion of a horizontal cross section of the
beam, we consider it as rod of length 2L  and mass m is  are  damping constants,  ; w are the amplitude andE

the masser per unit length of the road bed. As we can see frequency of the external vertical forcing and is the g  9.8
in Figure 1, y(t) indicates the downward(upward) distance gravitational acceleration.
of the center of gravity of the rod from the loaded state Let’s suppose that the cables never get loose, we
and (t) defines the angle of the rod from horizontal at have y + l±L  sin 0 and so (y + l±L  sin )  = y + l±L
time t. sin . Therefore, the equations (2) become uncoupled and

Here, we will assume that that the cables resist torsional and vertical motion satisy
elongation according to Hooke's law with spring constant
k, but do not resist compression [6-11]. Observe that the
stretch  in the right hand cable is given y + l – L  sinE

and  the  stretch  in  the  other  cable  is y + l + L  sin , (3)E

see Figure 1.
Then the force exerted by the right hand cable is

(1)

+

E
+

v t v

E E E
+

respectively. The first term in the equation  for  the
vertical motion approaches , the acceleration due to

gravity [10].
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Differential  Transformation   Method:  As  in  [14-25],
the basic definition of the differential transformation (9)
method are gived as follows:

Definition 3.1: If y(t) is analytic in the domain T, then it To find other transformed functions, we differentiate
will be differentiated continuously with respect to time t, y(x) = sin ( x), w(x) = cos( x) obtaining:

(4)

for t = t , then (t,k) = (t , k), where k belongs to set of (10)i i

nonnegative integers, denoted as the K-domain.
Therefore, Eq. (4) can be rewritten as Applying the differential transform to Eq. (10) obtain:

(5)

Where Y(k) is called the spectrum of y(t) at t = t,

Definition 3.2: If y(t) can be described by Taylor’s series, Similarly, replacing k–1 by k gives:
then y(t) can be shown as

(6) (12)

Eq.(6) is called the inverse of y(t),  with  the  symbol
D denoting the differential transformation process. Upon Combine Eqs. (9) and (12) to give the recursive relation:
combining (5) and (6), we attain

(13)
(7)

Using the differential transformation, a differential
equation in the domain of interest can be transformed to (14)
an algebraic equation in the K-domain and the y(t) can be
obtained  by  finite-term  Taylor’s  series  plus a
remainder, as

(8) Padé Approximation: A rational approximation to f(x) on

From the definitions (5) and (7), it is easy to obtain R (x) to denote this quotient. The R (x) Padé
the following mathematical operations: approximations to a function f(x) are given by [3].

Trigonometric nonlinearity: y(x) = sin ( x), w(x) =
cos( x) By definition, (15)

(11)

and

are given by [4].

[a, b] is the quotient of two polynomials P (x) and Q (x)N M

of degrees N and M, respectively. We use the notation
N,M N,M
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Table 1: The fundamental operations of the differential transformed method

Original function Transformed function

y(t) = cw(t) Y(k) = cW(k)

Y(k) = (k + 1)W(k + 1)

Y(k) = (k + 1)(k + 2)...(k + i)W(k + i)

y(t) = u(t)v(t)

y(t) = u(t)v(t)w(t)

y(t) = u(t) v(t) Y(k) = U(k) V(k)

y(t) = sin(wt + )

y(t) = cos(wt + )

y(t) = Ce  sin(wt + )at

y(t) = tm

The method of Padé requires that f(x) and its (18)
derivative be continuous at x = 0. The polynomials used
in (15) are And from the difference f(x)Q (x) – P (x) = Z(x):

P (x) = p  + p x + p x +...+p x (16)N 0 1 2 N
2 N

Q (x) = 1 + q x + q x +...+q x (17)N 1 2 M
2 M

The polynomials in  (16)  and  (17)  are  constructed The lower index j = N + M + 1 in the summation on the
so  that    f(x)     and    R (x)     agree      at  x = 0   and right side of (19) is chosen because the first N + MN,M

their   derivatives    up     to   N + M    agree     at    x = 0. derivatives of f(x) and R (x) are to agree at x = 0.
In    the     case    Q (x) = 1,  the   approximation   is  just When the  left  side  of  (19)  is  multiplied  out  and0

the  Maclaurin expansion  for  f(x).  For  a  fixed  value of the coefficients of the powers of x  are set equal to zero for
N + M the error is smallest when P (x)  and  Q (x)  have k = 0,1,2,...,N + M, the result is a system of N + M + 1N M

the  same degree or when P (x) has degree one higher linear equations:N

than Q (x).M

Notice that the constant coefficient of Q  is q  = 1.M 0

This is permissible,  because  it  notice  be  0  and R (x)N,M

is not changed when both P (x) and Q (x) are divided by (20)N M

the same constant. Hence the rational function R (x) hasN,M

N + M + 1 unknown coefficients. Assume that f(x) is
analytic and has the Maclaurin expansion.

M N

(19)

N,M

i
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and Notice that in each equation the sum of the

this sum increases consecutively from 0 to N + M. The M

(21) equations (3).

subscripts on the factors of each product is the same and

equations in (21) involve only the unknowns q ,q ,q ,...,q1 2 3 M

and must be solved first. Then the equations in (20) are
used successively to find p ,p ,p ,...,p .1 2 3 N

Aplications: In this section, we will apply the differential
transformed method to nonlinear ordinary differential

Differential Transformed to the Model for a Horizontal Cross Section of the Center Span: Now, the application of the
differential transform to Eq. (3) give the following recurrence relations for k  0 :

(22)

and

(23)

Here, from (11) and (12)

(24)

and

(25)

Where Y(k) and (k) are the differential transforms of y(t) and (t), respectively and the transform of  the  initial
conditions are Y(0) = 0.3, Y(1) = 0.1, (0) = 0.3 and (1) = 0.1. The length and width of the center span were about 1000
and 12 meters, respectively, thus we choose L  = 1000 and L  = 6. From [25], we chooseB E

and  Using these recurrence relations by taking N = 8, we obtain a system of algebraic equations for k = 0,...,8. Byv

solving this equations fort pense he values of Y(2),Y(3),...,Y(8) and (2), (3),..., (8), by using Maple, we get

(26)

We apply Laplace transformation to (26), which yields



( )( )

( )( )

2 3 4 5 6

7 8 9

2 3 4 5

6 7

0.3 0.1 0.25 .6649999998 .1335 2.878149998- -

.1810149998 9.842690496 1.12908105 - ,

0.3 0.1 .6875709682 .1293234508 1.401979523- -

.4351638828 .6422069084 10.69795-

L y s
s s s s s s

s s s

L s
s s s s s

s s

= + + +

+ +

= + +

+ + 8 9
230 76.76939326- .

s s

1s
t

=

( )( )

( )( )

2 3 4 5 6

7 8 9

2 3 4 5 6

7

0.3 +.1 -.25 +.6649999998 +.1335 -2.878149998

 .1810149998 +9.842690496 -1.12908105 ,

0.3 0.1 -.6875709682 -.1293234508 +1.401979523 -.4351638828

        +.6422069084 10

L y t t t t t t t

t t t

L t t t t t t t

t

=

+

= +

+ 8 9.69795230 -76.76939326 .t t

2 3 4

2 3 4
( )

2 3 4

2
( )

4 0.3 +.1300000008 +.9720000004 1.1412 ,
4 1+.1000000025 +4.040000001 +.3240000028 2.591999994

4 0.3 +.2654018793 5.811434082 2.488207993
4 1 .5513395976 21.47957032 2

y t

t

t t t t
t t t t

t t t t
t t

+  =   +

+ +  =   + + + 3 4 .
.828865045 +43.8505469t t

1s
t

=

3 2

4 3 2
( )

3 2

( )

4 3000000001 1300000008. +9720000004 .1141200000e11
,

4 .1000000000e11 +1000000025 .4040000001e11 3240000028 +.2591999994e11

4 3000000000 2654018793 .5811434082e11 .2488
4

y s

s

s s s

s s s s

s s s

+ +
=

+ +

+ + +
=

 
  

 
   4 3 2

207993e11

9999999999 5513395976 .2147957032e12 .2828865045e11 +.4385054690e12s s s s+ + +

[ ]
[ ]

-.05000000009

-.1157367189e-8

-.2292139221

( ) .3120280647cos(.8930285535 ) .4580886004sin(.8930285535 )

 -.01202806464cos(1.8 )-.1630471093sin(1.8 )

( ) -.4706939516e-3cos(4.369691348 )-.561

t

t

t

y t e t t

e t t

t e t

= +

+

= [ ]
[ ]-.04645587676

0019295e-3sin(4.369691348 )

 .300470694cos(1.512639198 )+.07688690428sin(1.512639198 ) ..t

t

e t t+

World Appl. Sci. J., 15 (3): 372-381, 2011

377

(27)

For simplicity, let ; then

(28)

The [4/4] Padé approximant gives

(29)

Recalling , we obtain [4/4] in terms of s

(30)

By using the inverse Laplace transform to the [4/4] Padé approximant, we obtain the modified solution

(31)
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Fig. 2: The comparison of the results of the three methods for Eq.(3), at N=8.

Fig. 3: The comparison of the results of the three methods for Eq.(3), at N=8.

Fig. 4: The comparison of the results of the two methods for Eq.(3), at N=8.
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Fig. 5: The comparison of the results of the two methods for Eq.(3), at N=8.

Table 2. Displays the values of y(t) for N = 8 for t = 0.0 to 10.0

y(t )i
-----------------------------------------------------------------------------------------------------------------------------------------------------------

t RK4 y yi [2/2] [4/4]

0 0.30000000000000 0.30000000000000 0.30000000006000
1 0.28656455615509 0.33888868518004 0.36950237829753
2 0.25159958156418 0.34728811929504 0.42756008749797
3 0.14511885254060 0.35365384009666 0.05393941846376
4 -0.21926272599785 0.35998031168674 -0.52540337973351
5 -0.41338749093111 0.36640904244183 -0.46161875746108
6 -0.16713598402269 0.37295181681137 0.03036826544790
7 0.06790068192464 0.37961136855656 0.19194314387689
8 0.10414193891887 0.38638983172595 0.21489144141070
9 0.22633618661972 0.39328933305994 0.33856623555846
10 0.27229644819814 0.40031203409445 0.07978118808778

Table 3. Displays the values of (t) for N = 8 for t = 0.0 to 10.0 

(t )i
-----------------------------------------------------------------------------------------------------------------------------------------------------------

t RK4i [2/2] [4/4]

0 0.30000000000000 0.30000000000000 0.30000000000000
1 0.13167964927717 0.09572417325330 0.09049046313068
2 -0.20152265610648 -0.24801561903124 -0.26382392138971
3 -0.19029444249469 -0.11747800778000 -0.11159009453780
4 0.09794592177270 0.19976187847517 0.22825893099310
5 0.19820967062728 0.12977603604960 0.12680454008444
6 -0.00944573529767 -0.15605767367260 -0.19396300392096
7 -0.17089449189593 -0.13446768854013 -0.13692707756505
8 -0.05409082499452 0.11736140882256 0.16149558962120
9 0.12456245605187 0.13322624307296 0.14263760233941
10 0.09034747096136 -0.08384187688566 -0.13126517283032
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The following comparison of the results obtained 6. McKenna, P.J. and C. ´O’Tuama, 2001. Large
from three methods are given. Torsional  Oscillations  in Suspension Bridges

Figs. 2 and 3 show the results from the DTM and the Visited  Again:    Vertical    Forcing   Creates
modified DTM solutions y(t) and (t) compared with the Torsional Response, The Math. Assoc of America,
fourth-order Runge-Kutta (RK4) method solution y(t) and 108: 738-745.

(t), respectively, for N=8 and 0 t  3. 7. Lazer, A.C. and P.J. McKenna, 1990. Large Amplitude
Comparison  of the modified approximate solution Periodic  Oscillations   in   Suspension   Bridges:

(31) and the solutions obtained by the fourth-order Some New Connections with Nonlinear Analysis,
Runge-Kutta method in Fig. 4 and Fig. 5 show that the SIAM Review, 32: 537-578.
modified DTM greatly improves the differential transform 8. Humphreys, L.D. and P.J. McKenna, 2005. Using a
truncated series (26) in the convergence rate and the Gradient Vector to Find Multiple Periodic Oscillations
accuracy. Amplitude of torsional oscillation is nearly in Suspension Bridge Models, The Math.
reduced to zero. Amplitude of vertical oscillation reduced Association of America, 1: 16-26.
after a certain time the balance sits. 9. McKenna. P.J., 1999. Large torsional oscillations in

CONCLUSIONS approximation, Amer. Math. Monthly, 106: 1-18.

In this article, the application of differential transform oscillations in a nonlinearly sus-pended beam: a
method was extended to obtain approximate analytical and theoretical and numerical investigation. Dissertation,
numerical solutions of linear and nonlinear oscillations. University of Connecticut.
The differential transform method produces the Taylor 11. Moore, K.S., 2002. Large Torsional Oscillations in a
series of the exact solution. For the oscillatory systems, Suspension Bridge: Multiple Periodic Solutions to a
Laplace transformation of the differential transform series Nonlinear Wave Equation, SIAM J. Math. Anal,
solution has some specific properties, so we applied 33(6): 1411-1429.
Laplace transformation and Pade´ approximant to obtain 12. Chen, C.K. and S.H. Ho, 1996. Application of
an analytic solution and to develop the accuracy of differential transformation to eigenvalue problems,
differential transform method. The modified DTM is an Appl. Math. Comput, 79: 173-88.
efficient method for calculating periodic solutions for non- 13. Chen, C.L. and Y.C. Liu, 1998. Solution of two point
linear oscillatory systems. It is seen from the results of the boundary value problems using the differential
modified DTM and the results of the fourth-order Runge- transformation  method,   J.   Opt.    Theory.   Appl,
Kutta(RK4) solution that rate of convergence and 99: 23-35.
accuracy of the modified DTM is very good. 14. Jang,  M.J.,   C.L.   Chen    and    Y.C.   Liu,  2001.
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