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Abstract:  The   detour index   is  equal  to  the  sum  of  distances  between  all  pairs  of  vertices  of  the
connected   graph   on   the   longest  path  between  corresponding  vertices.  We  define  a generating
function, which we call the detour index polynomial, whose derivative is the detour index when q = 1. We study
some of  the  elementary  properties  of  this  polynomial  and   compute   it   for   some   common  graphs.
Finally,  we compute the detour index polynomial for some subdivision graphs with finding the detour distance
in these graphs.
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INTRODUCTION

The detour matrix is one  of  the  particularly (2)
important distance matrices which are based on the
topological distance for vertices in a graph. It was In the rest of this  section,  we  will  derive  some
introduces   into    the    mathematical   literature  in 1969 basic  properties   of  D(G; q)  and  find  its  value  when
by Frank Harary [1] and it was  discussed  in  1990 by G  specializes  to  a  number of simple graphs. In section
Buckley  and  Harary  [2]. The detour matrix was 2, the detour distances of some  subdivisions  graphs
introduced  into  the  chemical   literature  in 1994 under have been founded and in the section 3, the relations
the name “the maximum path matrix of a molecular graph” between detour index polynomials of these graphs have
[3-7] and theoretical graph theory contribution to finding been concluded.
the some interest in chemistry [8-16]. During these works, In  what  follows,  we  use |S|  to  describe  the
the detour index has been defined for a connected graph cardinal  of  a  set  S.  Also, if f(q) is a polynomial in q,
G as follows: then  deg  f(q)  is  its  degree  and [q ] f(q) is the

The next theorem summarizes some of the properties
(1) of D(G; q). Its proof follows easily from the definitions

Where (u,v) denotes the detour distance Which is the
distance between the vertices u and v on the  longest Theorem 1-1: The polynomial of detour index satisfy the
path. In [17-21], some work has been done on detour index following conditions:
of graphs.

In this paper, we wish to define and study the deg D (G;q) = diameter of G due to the detour
polynomial of detour index. If q is a parameter, then the distance
detour index polynomial of G is [q ]D(G;q) = 0.

i

coefficient of q .i

and so is omitted.
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D'(G;1) = D(G).

Next, we find the detour index polynomial of some specific graphs. Let K , P , C  and W  denote the complete graph,n n n n

path, cycle and wheel on n vertices, respectively. Also let K  be the complete bipartite graph on parts of size m and n.m,n

Finally, P denotes the Petersen graph and [n] = 1 + q + q  +...+q . Determining the detour index polynomial of these2 n–1

graphs is a matter of simple counting, so the proof of the next result is also omitted.

Theorem 2-2: Some specific detour index polynomials are as follows:

.

.

.

D(P; q) = 15q  + 30q .8 9

.

.

.

Combining the previous theorem with number of 5 of theorem 1-1, we obtain the well-known detour  indices  of
theses graphs.

Theorem 1-3: Some specific detour indices are as follows:

.

.

.

D(P) = 390..

.

.

.
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Fig. 1: The Hamiltonian cycle of G  + G  which DP(G ) = n  = 4.1 2 1 2

Now, we compute the polynomial of  detour  index  of   a   graph operator   for   special   graphs.  Let G  = (V ,E )1 1 1

and  G   =  (V ,E )  be  two  graphs  with  vertex  sets  V   and  edge  sets  E   such   that  |V | = n  and |E | = k  for i = .1,2.2 2 2 i i i i i i

The  join  of  two  graphs  G and  G    which   is  shown G  + G ,  has  vertex  set V(G  + G ) = V V   and  edge  set1 2 1 2 1 2 1 2

V(G  + G ) = E E {uv|u V , v V or v V , u  V }.  Furthermore,  we  use  the  notation MDP(G) and DP(G)1 2 1 2 1 2 1 2

which are the minimum number of distinct paths of a graph G and the number of distinct paths of  a  graph  G  in
following computation.

Theorem 1-4: Let G  = (V ,E ) and G  = (V ,E ) be two connected graphs such that |V | = n , |V | = n  and n n . The join1 1 1 2 2 2 1 1 2 2 1 2

graph G  + G  is Hamiltonian iff there exist a set of distinct paths of graph G  with size DP(G ) n .1 2 1 1 2

Proof: Let G  = (V ,E ) and G  = (V ,E ) be two connected graphs such that |V | = n , |V | = n , and n n .1 1 1 2 2 2 1 1 2 2 1 2

( ) If the join graph G  + G  is Hamiltonian, we consider the segments of Hamiltonian cycle of G  + G  which contains1 2 1 2

just vertices of G  as distinct paths. Therefore, it is clear that there exist a set of distinct paths of graph G  with size1 1

DP(G ) n .1 2

( ) There exist a set of distinct paths of graph G  with size DP(G ) n . At first, suppose DP(G ) = n . Then we consider1 1 2 1 2

the Hamiltonian cycle which constructed with paths and vertices of G  and is similar to cycle of Figure 1. Therefore it2

is clearly that G  + G  is Hamiltonian.1 2

Now, suppose DP(G ) < n . In this case, we divide the distinct paths G  to several small paths (it is possible some1 2 1

paths are P ) that we have new condition DP'(G ) = n . The equality DP'(G ) = n  is doable because of n n . Hence,1 1 2 1 2 1 2

according to the last part of this proof, the desire result can be concluded.

Result 1-5: Let G  = (V ,E ) and G  = (V ,E ) be two connected graphs such that |V | = n , |V | = n  and n n . If MDP(G )1 1 1 2 2 2 1 1 2 2 1 2 1

n , the join graph G  + G  is Hamiltonian.2 1 2

Result 1-6: Let G  = (V ,E ) and G  = (G ,E ) be two connected graphs such that |V | = n , |V | = n  and n n . If there1 1 1 2 2 2 1 1 2 2 2 2

exist a set of distinct paths of graph G  with size DP(G ) n  – 2, then, (u,v) = (n  + n  – 2) which u,v are nonadjacent1 1 2 1 2

in graph G  + G .1 2

Proof: G  and G  be two connected graphs such that |V | = n , |V | = n , n n  and there exist a set of distinct paths of1 2 1 1 2 2 1 2

graph G  with size DP(G ) n  – 2. Suppose u,v are nonadjacent  in  graph  G   +  G .  Therefore  due  to  definition  of1 1 2 1 2

G  + G , the vertices u,v are not adjacent in graph G  or G . If the vertices u,v are nonadjacent in graph G ,  then we1 2 1 2 1

divide the paths contain u and v to two part due to G  is connected. Hence we get the condition DP'(G ) n  which1 1 2

DP'(G )  = DP(G ) + 2. So, using the Theorem (1-4), G  + G  is Hamiltonian and (u,v) = (n  + n  –2).1 1 1 2 1 2

If vertices u and v are nonadjacent in graph G , then we divide the one path to two parts and separate one vertex2

from another path. Therefore, there exists DP'(G ) n  paths which one path is P . Therefore by the procedure which1 2 1

is shown in Figure 1, we consider the Hamiltonian cycle of G  + G  such that the path P  is connected to u and v. Then,1 2 1

G  + G  is Hamiltonian and (u,v)=(n  + n  – 2).1 2 1 2

Using the Theorem (1-4) and Result (1-6), we state the detour index polynomial of joint graph G  + G  which G  and1 2 1

G  are connected graphs with some properties.2



( ) ( ) 1 2 1 21 21 2
1 2 1 2 1 2 1 2;

2 2
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Fig. 2: The subdivision operators S, R and Q.

Theorem 1-7: Suppose G  and G  are connected and nontrivial (not equal to K ) such that |V | = n , |V | = n  and n n .1 2 1 1 1 2 2 1 2

If there exist a set of distinct paths of graph G  with DP(G ) n  – 2. Then with the preceding notation.1 1 2

Proof: Due to Theorem (1-4) and Result (1-6), we can conclude the desire relation with easy summation.

Now, we find the detour distances in some subdivisions graphs.

Distances in Subdivisions Graphs: Firstly, we restate subdivision graphs which constructed from a graph G.
Suppose G = (V,E) is a connected graph with the vertex set V(G) and the edge set E(G). Give an edge e = (u,v), let

V(e) = {u,v}. The line graph L(G), the subdivision graph S(G) and the total graph T(G) which are related graphs to graph
G have been defined as follows (See [22]):

Line graph L(G): L(G) is the graph whose vertices correspond to the edges of G with two vertices being adjacent if and
only if the corresponding edges in G have a vertex in common. See Figure 2(b).

Subdivision Graph: S(G) is the graph obtained from G by replacing each of its edge by a path of length two, or
equivalently, by inserting an additional vertex into each edge of G. See Figure 2(c).
Two extra subdivision operators named R(G) and Q(G) are defined as follows [22]:

R(G) is defined as the graph obtained from G by adding a new vertex corresponding to each edge of G and by
joining each new vertex to the end vertices of the edge corresponding to it. See Figure 2(e).
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Q(G) is the graph obtained from G by inserting a new vertex into each edge of G and by joining edges those pairs
of these new vertices which lie on adjacent edges of G. See Figure 2(d).

Given G = (V,E), where , we may define two other sets that we use frequently:

We can write the subdivision operators above as follows:

L(G) := (E(G), EE(G))
S(G) := (V(G) E(G),EV(G))
R(G) := (V(G) E(G), E(G) EV(G))
Q(G) := (V(G) E(G), EE(G) EV(G))

Now, we find the distances between subdivision graphs.

Lemma 2-1: For each two vertices x and y, we have:

Proof: Using  the  definitions  of  subdivisions  graphs  S(G)  and  R(G), we  can  conclude  the  desire  results easily.
(Use the Figure 2).

To simplifying the following computations, we use the notations which defined as follows.

Definition 2-2: M = {{e, f} E(G)|e,f are adjacent}and we have: |M| = |E(L(G))|,

N = {{x, y} V(G)|x,y are adjacent} and we have: |N| = |E(G)|,

O = {{x, e}x, y V(G)e E(G) s.t. e = xy} and we have: |O| = 2|E(G)|,

D  = {{x, y} V(G)|x or y has degree one} and.1

D  = {{x, y} V(G)|x and y has degree one}2

Lemma 2-3: For each two edge e and f, we have:

Proof: The first equality is easy for computation. And using the definitions of subdivisions graphs, S(G) and R(G) and
their figures, the distances between two adjacent and nonadjacent edges of S(G) and R(G) on longest path have the
differences 1 or 2, respectively. Then, the result can be concluded.
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Lemma 2-4: For each vertex x and edge e, we have:

Proof: Due to the definitions of subdivisions graphs, S(G) and R(G) and their figures, the distances between a vertex
x and an edge e in S(G) and R(G) are equal if x is not end vertex of edge e. Also, if x is the end vertex of edge e, then the
distances between a vertex x and an edge e in S(G) and R(G) are not equal and have the differences in 1. Therefore, the
desire results follow easily.

Lemma 2-5: For each two vertices x and y, we have:

Proof: By using the similar procedure to above lemmas for this lemma and considering the definitions of subdivisions
graphs, S(G) and Q(G) and their figures, we can obtain the results.

Lemma 2-6: For each two edge e and f, we have:

Proof: The results can be concluded only by considering the definitions of subdivision graphs.

Lemma 2-7: For each vertex x and edge e, we have:

Proof: Due to the definitions of subdivisions graphs, S(G) and Q(G) and their figures, the distances between a vertex
x and an edge e in S(G) and Q(G) are equal if x is not end vertex of edge e. Also, if x is the end vertex of edge e, then the
distances between a vertex x and an edge e in S(G) and Q(G) are not equal and have the differences in 1. Therefore, the
desire results follow easily.

Now, we find the relation between detour indices of subdivision graphs.

Theorem 2-8: Let G be a graph and S(G), L(G), R(G) and Q(G) be the subdivision graphs of G. Therefore with the
preceding notation, we have:
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Proof: Due to the Lemmas (2-1, 2-3, 2-4, 2-5, 2-6 and 2-7) and Definition (2-2), the detour indices of R(G) and Q(G) are

and

Therefore, the quantity of D(R(G)) – D(Q(G)) is

In the next section, we obtain the detour index polynomial for subdivision graphs. 

Detour Index Polynomial of Subdivision Graphs: By using the lemmas which concluded in past section, we state the
detour index polynomial of subdivision graphs.

Theorem 3-1: Let G, be a graph and S(G), L(G) and R(G) be the subdivision graphs of G. Therefore the detour index
polynomial of R(G) are:
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(3)

Proof: Let G be a graph and S(G), L(G) and R(G) be the subdivision graphs of G. By using the definition of R(G) and
Lemmas (2-1, 2-3 and 2-4), we have:

Theorem 3-2: Let G be a graph and S(G), L(G) and Q(G) be the subdivision graphs of G. Therefore the detour index
polynomial of Q(G) are:

(4)

Proof: Let G be a graph and S(G), L(G) and Q(G) be the subdivision graphs of G. By using the definition of Q(G) and
Lemmas (2-5, 2-6 and 2-7), we have:
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Fig. 3(a): A zigzag polyhex nanotube, (b) Its 2-dimentional lattice, p = 10 and q = 9

Now, we find the relations between of detour index polynomial of subdivision graphs of molecular graph of zigzag
polyhex nanotubes. We use the notationa p and q for the number of hexagons between two rows and number of rows,
respectively. In Figure 3, you can see the molecular graph of zigzag polyhex nanotubes.

Theorem 3-3: Let G be the molecular graph of zigzag polyhex nanotube. Then the relations between detour index
polynomials of subdivision graphs R(G0 and Q(G) are

and
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Fig. 4: The 2-dimentional lattice graph of zigzag polyhex nanotube

Fig. 5: The 2-dimentional lattice of line graph of zigzag polyhex nanotube

Proof: Let G be the molecular graph of zigzag polyhex nanotube. The number of edges of L(G) is 6pq – 4p and the
number of vertices of L(G ) which is equal to the number of edges of G is 3pq –p and the number of vertices of G is 2pq.

Due to Theorems (3-1 and 3-2), it is enough to compute the summations

If we consider the graph G, we see that the  is equal to 2pq – 3 (Figure 4). ThereforeG
(x, y)

And according to Lemma (2-1), we have:

If we consider the graph L(G), we see that L(G) is Hamiltonian and (x, y) which x, y are vertices of L(G) is equalL(G)

to 3pq – p – 1 (Figure 5). Therefore
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Also, due to the fact that G has not any vertices with degree one, therefore

Now, we can conclude the desire results only with replacing the quantity of summations in relations 3 and 4. ¢
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