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An Explicit Analytical Solution of a Slider Bearing
with a Third Grade Non-Newtonian Fluid as Lubricant

Abdullah Shah and Shams ul Islam

Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan

Abstract: This paper presents an analytical solution of an inclined slider bearing consisting of connected
surfaces lubricated with a third grade (non-Newtonian) fluid. Dimension analysis and by order of magnitude
comparison with the full Navier-Stokes equations give rise to a nonlinear lubrication equation in the film region.
The homotopy analysis method (HAM) for strongly nonlinear problems is used to give explicit analytic solution
of the problem. Both the velocity profile and pressure distribution are calculated approximately using this
method and plotted graphically using different parameter values. The load carrying capacity of the bearing is
discussed for a range of bearing parameters. The boundary layer effect developed near the lower wall is also
presented.
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INTRODUCTION the strong nonlinearity exist. The method was

Lubrication flows are most applicable to processing solving different nonlinear problems of fluid mechanics.
of materials in liquid form, such as polymers, metals, Recent studies of non-Newtonian fluids have attracted
composites and others. It plays an extremely important many researchers due to its practical importance and rapid
role in many current scientific and engineering development of modern industrial materials. Many solid
applications. Since, the presence of fluid film greatly such as polymer solution, molten plastics, ceramics,
reduces the sliding friction between the solid objects. The mammalian, and synovial are the common examples of
enormous practical importance of this effect has non-Newtonian fluids. The non-Newtonian fluids are
stimulated a great deal of research both theoretically and different from Newtonian fluids in terms of the existing
experimentally. However, the problem of a slider bearing complexities of the relationship between shear stress and
with non-Newtonian lubricants is difficult to analyze the flow field. For this reason, several models have been
mathematically because of the nonlinear character of the proposed to predict the behaviors of various types of
governing equations of motion. Although, several non-Newtonian fluids. Third grade fluid is one of the non-
numerical methods are available, but are somewhat more Newtonian models, derived with third order truncation,
costly as the underlying mechanism in lubrication flows and which describe a special subclass of fluids. The study
is more complex. In the recent years, there has been great of such fluids is of wide interest and significance in
advancement in iterative techniques for solving nonlinear lubrication theory and applied sciences [9-12].
problems. Some of them are Homotopy Perturbation The problem of Non-Newtonian lubrication in bearing
Method (HPM) [1], Variational Iteration Method (VIM) [2] has been studied for many years. For example, Harnoy
and Homotopy Analysis Method (HAM) [3, 4]. In this and Hanin [13] have studied elastic-viscous lubricants in
paper, we proposed a new solution method to the dynamically loaded bearing. Bourgin [14] applied the
lubrication problem with non Newtonian third grade fluid constitutive relation of second order fluid to study of
as  lubricant.  We  have  used homotopy analysis method non-Newtonian lubrication using the perturbation
(HAM), which was originally developed by S. Liao [5, 6] approach. Among others Rajagopal [15] carried out a
for solving nonlinear problems. HAM is simple, powerful study of the creeping flow in a bearing. Kacou, Rajagopal
and efficient analytical method that remain valid even if and  Szeri  [16] studied the flow of second and third grade

successfully applied by many authors including [7, 8] in
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Fig. 1: Geometrical configuration of a slider bearing full Navier-Stokes equation. It is followed from eq. (2.3)

fluid model in a journal bearing. Tichy [17] studied the
non-Newtonian lubrication using convected Maxwell p = p (x) (2.4)
model. Yürüsoy [18] has studied the pressure distribution
in a slider bearing with Powell-Eyring model and Which shows that the pressure does not vary across the
constructed a perturbation solution while the same results film thickness. Also in eq. (2.3) is the material constant.
are recovered by Siddiqui [19] using homotopy analysis Thus, the governing equation that describe the flow
method. Buckholz  [20]  used  a power law model as a simplifies as.
non-Newtonian lubricant in a slider bearing. Agrawal [21]
studied the magnetic fluid based porous inclined slider (2.5)
bearing. Rajesh [22] analyzed exponential form a slider
bearing using a Ferro-fluid as lubricant.

The remaining of the paper is organized as follows. In A lubrication layer will generate a positive pressure,
the next section, the governing equations of the problem and hence, load capacity normal to the layer only when
accompanied with appropriate boundary conditions are the layer is arranged so that the relative motion of the two
given. Section 3 describes basic idea of homotopy surfaces tends to drag fluid by viscous stresses from the
analysis method for finding velocity and pressure wider to the narrower end of the layer. The appropriate
distribution in a slider bearing. In section 4 the rise in dimensionless boundary conditions of the problem are
pressure and appearance of boundary layer effect for given by
different parameter values are presented and discussed.
Section 5 concludes this paper. (2.6)

Geometry and Governing Equation: Consider the two It is to be noted that eq. (2.1) serves only to
dimensional inclined slider bearing as shown in figure 1, determine the vanishing small velocity component v,
in which the plane y = 0 moves with constant velocity in given the dominant component u in eq. (2.2).
the x-direction while the top of the bearing (the slider) is The aim of the present study is to find an analytical
fixed. Through the action of viscous shear forces, the solution of the nonlinear eq. (2.5) subjected the boundary
moving wall sweeps fluid into a narrowing passage b . condition given by eq. (2.6).2

This gives rise to a local velocity profile of Couette-type.
Since b(x) is decreasing, the flow then sets up a pressure Homotopy Analysis Method
gradient, in order to supply a Poiseuille-type flow Basic Idea: To explain the basic idea of homotopy
component that redistributes the fluid and maintains a analysis method, let us consider the nonlinear differential
constant flow rate. It is assumed that the fluid inertia is equation of the form.
small, the side leakage is negligible, and the flow is
incompressible and laminar. The non-dimensional basic (3.1)
lubrication equations for third grade fluid flow in the film
region are [23, 24]. Where  is a nonlinear operator and u(y) is an unknown

(2.1) initial approximation of u(y) and L denotes an auxiliary

(2.2)

(2.3)

Which   is   obtained   by   dimensionless   analysis, and
by   order    of     magnitude     comparisons     with    the

that.

function of the independent variable. Let u (y) denote an0

linear operator with the property
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Lu = 0    when u = 0. (3.2) Further more, we construct the zero-order

We then construct a family of equations, the so-called
homotopy (3.11)

subject to the boundary conditions

(3.3)

Where q [0, 1] is an embedding parameter and (y; q) is
a function of y and q. When q = 0, we have Where u (y) is an initial guess approximation and q is an

auxiliary linear operator L, (which is the linear part of eq.

and for q = 1

(3.4)

From eq. (3.3), it follows that

(y; 0) = u (y) (3.5) (3.14)0

is the solution of the equation

(3.6) subject to the boundary conditions given in eq. (2.6).

and
(y; 1) = u(y) (3.7) (3.15)

is therefore the solution of the equation and

(3.8)

Thus when the embedding parameter q increases (3.16) the variation of q from 0 to 1 is just the continuous
from 0 to 1, the solution (y; q) of the equation variation u(y,q) from the initial guess approximation u (y)

(3.9) Furthermore, Assume that the deformation u(y,q)

depends upon the embedding parameter q and varies from
initial approximation u (y) to the solution u(y) of eq. (3.1).0

This kind of continuous variation is called deformation (3.17)
[1].

Velocity Profile: The velocity profile of the flow can be namely the k-th order deformation derivative exists. Then,
found by solving eq. (2.2). For this purpose, we define the in view of eq. (3.16) and Taylor’s  formula,  we  expand
nonlinear operator  as, u(y, q) in the power series

(3.10)

deformation equation as

(3.12)

0

embedding parameter such that q  [0, 1]. We choose the

(2.5)).

(3.13)

and an initial guess approximation

Which can be obtained by solving eq. (2.5) with  = 0

Obviously, when q = 0 and q = 1, we have

(3.16)

respectively. Therefore, according to eq. (3.15) and eq.

0

to the unknown solution u(y) of the original eq. (2.5).

governed by eqs. (3.10 – 3.16) is smooth enough so that

(3.18)
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We note that the convergence region of the above infinite and
series is dependent upon h( 0). We define

(3.19) By putting k = 1 in eqs. (3.21-3.23), we obtained the

Using eqs. (3.16), (3.18) and (3.19), we get at q = 1, the with respect to q, we obtain
important relationship of the form

(3.20)

between the initial guess approximation u (y) and the0

unknown solution u(y). Now differentiating the zero-order
deformation eq. (3.10) and eq. (3.11) k-times with respect
to q and then setting q = 0, we obtained for k  1, the k-th
order deformation equation

(3.21)

with the following boundary conditions

u (0) = u (b) = 0 (3.22) (3.26)k k

in which

(3.23) making use of eq. (3.13), we have

(3.24)

first order solution. In particular, differentiating eq. (3.10)

(3.25)

making use of eq. (3.17) and setting q = 0, we have

(3.27)

Now integrating eq. (3.27) twice with respect to y, and using the boundary conditions eq. (3.22), we have

(3.28)

Summing up the results, we write

(3.29)

Finally, eq. (3.29) is the analytical solution of the problem of order .

Pressure Distribution: Using the continuity equation (2.1) together with the derived velocity profile, one may find the
ordinary differential equation for the pressure distribution. Integrating the continuity equation along the y-coordinate
with the boundary condition v(0) = v(b) = 0
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(3.30)

one has

(3.31)

Substituting equation eq. (3.29) into equation eq. (2.3) and integrating, we get

(3.32)

An approximate solution will be searched for the above equation since it is variable coefficient and highly nonlinear
differential in p. The associated boundary conditions are

P(0) = p(1) = 0 (3.33)

Integrating (3.32) with respect to x

(3.34)

Where C is a constant of integration.
After some simplification, we can write eq. (3.34) as

(3.35)

Again we wish to solve (3.35) for p by using HAM. We construct the zero-order deformation equation as in we did in
eq. (3.10),

(3.36)

subject to the boundary conditions

(3.37)

taking the initial gauss approximation as

(3.38)

Where

(3.39)
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is the inclined slider in which b  is the maximum and b  is the minimum value of b.1 2

Defining the linear operator as

(3.40)

and an embedding parameter q such that q  [0, 1] .
Setting q = 0 and q = 1 in eq. (3.36) respectively, we get

(3.41)
and

(3.42)

Therefore, according to eq. (3.41) and eq. (3.42), the variation of q from 0 to 1 is just the continuous variation 

from the initial guess approximation p (x) to the unknown solution p(x) of eq. (3.36). Assume that the deformation 0

governed by eq. (3.36) and eq. (3.42) is smooth enough so that

(3.43)

namely the k-th order deformation derivative exists. Then, according to eq. (3.41) and Taylor’s formula, we have

(3.44)
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(3.45)

Using eq. (3.42), eq. (3.44) and eq. (3.45), we get at q = 1, the important relationship
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between the initial guess approximation p (x) and the unknown solution p(x).0

Setting p(x) in eq. (3.36), gives

(3.47)

In particular, differentiating (3.36) with respect to q, making use of (3.43) and setting q = 0, we have

(3.48)

making use of (3.38)
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Integrating eq. (3.38) with respect to x, gives

(3.50)

Where D is a constant of integration. Now using the boundary condition (3.37), yields

(3.51)

Therefore, the final pressure distribution is of the form

(3.52)

DISCUSSION decreasing from left to right, the flow then set up a

In this section, the pressure distribution and velocity maintains a constant flow rate. Figure 2 indicates the
profile  in  the  bearing  is  determined for various values variation of the pressure with respect to x when r is held
of the parameter  and clearance ratio r. Since b(x) is fixed  and  is varied. It is seen that the pressure increases

pressure gradient that redistributes the fluid and
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Fig. 2: r = 0.5,  (ß  =  0-line,  ß  =  0.1-dots,  ß  =  0.2-cicle, Fig. 5: r = 0.5, x = 0.5 (ß = 0-line, 0.1-dot, 0.2-circle,
ß = 0.3-cross) 0.3-cross, 0.4-box)

Fig. 3: ß = 0.1, (r = 0.3-line, r = 0.5-circle, r = 0.7-box) Fig. 6: r = 0.5, x = 1.0 (ß = 0-line, 0.05-circle, 0.1-cross,

Fig. 4: r = 0.5, x = 0.0 (ß = 0-line, 0.1-circle, 0.2-cross, observed in Figure 5 (x = 0.5, b = .75) and Figure 6 (x = 1.0,
0.3-box) b = 0.5).

0.2-box)

with increasing , which mean higher load capacity for the
bearing due to non-Newtonian effects. In figure 3,  = 0.1
is held fixed and the dimensionless length versus
dimensionless  pressure  is  plotted  for  different
clearance ratios r. It is seen that pressure build up for
lower  clearance ratios.  In  Figure  4 ,  at  the  left corner
(x  = 0.0,  b  =  1.0)  of  the bearing, the Newtonian and
non-Newtonian velocity profile is plotted for the clearance
ratio (r = 0.5).

Through the action of viscous shear forces, flow
component are distributed into Couette and Poiseuille-
type flow. It is also observed that, as the non-Newtonian
effects increases, boundary layer develop near the lower
boundary of the bearing. Similar flow behavior is also
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CONCLUSION 10. Rajagopal, K.R.  and  T.Y.  Na,  1983.   On Stoke

In this paper, the homotopy analysis method is 48: 233-239.
successfully  applied  in  finding  an  explicit analytical 11. Molloica, F. and K.R. Rajagopal, 1999. Secondary
solution  of  the  inclined  shape   slider   bearing  with flow due to axial shearing of third grade fluid between
non-Newtonian third grade fluid as lubricant. The velocity two eccentrically places cylinders. Int. J. of Engg.
profile and pressure distribution in the bearing are Sci., 37: 411-429.
calculated and are analyzed graphically. The success of 12. Harris, J., 1977. Rheology and non-Newtonian flow,
HAM for solving this problem verifies that it is indeed a London, New York; Longman.
useful iterative method to solve nonlinear problems. It is 13. Harnoy, A. and M. Hanin, 1974. Second order
to be noted that our results are in a very good agreement elastico-viscous lubricants in dynamically loaded
in comparison with the perturbation solution provided by bearing, ASLE Trans., 166-171.
Yürüsoy  [23, 24]. The proposed solution may be useful 14. Bourgin, P., 1982. Second order Effects in non-
for engineers in designing bearing systems with maximum Newtonian lubrication theory; A general perturbation
load carrying capacity using non-Newtonian fluid. approach. ASME, J.tribol., 104: 234-241.
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