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Abstract: In this paper we consider the elliptic system 4, = pgx U1 4 py = px e on R(n23) which
satisfies 1m | >ou(x)=limy seov(x)== . The parameters oz and [§ are positive, A p —giq v’ 2 Vi) 722 and p,q are

continuous functions and min{p(r),¢(r)} does not have compact support. We show that if ¢, 8 < 1, then such

a solution exist if and only if the fimetions p, g satisfy

2-n n—3
@ = 2
J' (A2 1L J' sT1O(s)ds ) g = oo,
0 0

N mo s
jo (eI | o I1p(s)dsyPID gy = oo,

Where P(,):jgfp(f)m, Q(r):jorTQ(T)dt For e B> 1, we show that a solution exists if either of the above

conditions faills to hold; one of the integrals is finite.
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INTRODUCTION
We consider the elliptic systems
Agu = pllx [,

A= pilx PV, xeR"(n=3) (1)

Where « and [ are positive constants, the nonnegative
functions p and ¢ are continuous on R" and m(#) = min
{p(r), g(»)} does not have compact support. We give
condition on the functions p,q,er and 8 which ensure the
existence of a positive entire large radial solution of (1);
ie., a positive spherically symmetric solution (u,v) of (1)
on K" that satisfies

Hirmy,_, u(x) = Timy,_ v(x) = oo, (2)

This problem appears in the study of non-newtonian
fhuids [1] and non-newtoran filtration [2]. Such problems

also arise in the study of the subsonic motion of a gas,
the electric potential in some bodies [3] and Riemannian

geometry [4].

Preliminary Notes: Theorem 1. If ¢3(1 — 1) > 1, then the
system (1) has a positive entire large solution if the p,g
satisfy either the.

2-n -3
[ e j;SHQ(s)ds)““‘D dt <, 3
o T A
J' PO f—ljsf—lp(s)ds)ﬁ(f*l)dmoo. )
0 0

Where P(I") — J‘(:Tp(f)d'f, Q(}") _ J‘Orfq(f)d'r-

Proof: Let », be any increasing sequence of positive
mumbers diverging to infinity for which m(#) > 0, which
exists since the function m 1s nonnegative and does not
have compact support. Now suppose, without loss of
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generality, that (3) holds. (If, instead, inequality (4) holds,
the proof is quit similar so we omit 1t.) Let (u,, 7,.) be a large
solution to (1), established [3], on |x> », for each k e N
and given as solution to the system (e, > 0)

1-n n-1

P—— ot —
wp(#) = ap + jorf_l J.Osf_lp(s)vf(l_l) {s)dsdtz,

1-n n—-1

— t‘ —
v(#)=a, + jﬂrr -1 J.Ds -1 q(s)vf(ffl)(s)dsdz.

We show first that tlus sequence i1z monotomically
decreasing on [0,7.];

(3)

i (F) > (), v (7) < v (7) (6)
forall ¥ € [0, #.].

We will then show that the limit (z,v) is large. To this
end, we show that (a,,%) < (#,,v,) on [0,#]; it will then be
clear that a very similar proof works to show that (#,.,,v..,)
< (u,vy) on [0,7]. We note that it is obvious that &, # «,
for otherwise (u,, v,) = (22,,v,) on [0,#,]. which 1s impossible
since (#,,v,) blows up at », and (u,v,) does not. Thus
suppose &, < ¢, Let R = sup(S) where S = {pe[0,1]: (u,(7),
vi(#) < (), v, (r)); re [O,0)3.

The set § is nonempty since 0 € § and thus by
continuity R > 0. If R = r,, then we have a contradiction
since that would mean that %y 5 v2()== which cannot

occur since (u,, v,) 18 continuous on [0, ;). So, suppose
R. <r,. Then

1-n n-1

Rt —
wR)=a + jo 111 josfflp(s)ufﬁ(lfl)dsdt

1-n n-1

R— pt —
<+ j szl"‘ Sf’lp(s)uf([_l)dsdz
0 0

1-n n-1

j L
<ayt J'0,1—1 josl—lp(s)uf(l‘l)dsdz = vy (R).

Thus v, < v, on [0, R]. Sunilarly, we can get #;, < u, on
[0, R]. Thus there exists £ > 0 so that (#,v)) < (1, ¥,)
on [0, R+ g] which contradicts the definition of R.
Hence we must have (u,,v,) < (u,.v,)on [0, #]. A similar
proof produces (4, Vi) < (1, v on [O,] forallk e N Tt
15 possible that « = 0. We need to show that this
cannot has a limit (#,v) on R*. We need to show that
this the case and m fact, that (u.v) 15 a
positive large solution. To this end, let z be a nonnegative
entire large solution of Az = p(#){(1+ H(r)* dr < . it is
easy to see

cammot  be

732

1-n n-1

e =
vp(r)=a, + j(:_z - J.()S [_19(3)“5(]_1)(3)613‘{3’

1-n n-1

P I R
< ()4 (j;rf -1 J'Osf Lgts)dsdtufd Vi,
=, + Hewf U0,

Using this in the equation Afuk(,,):p(,,)vg(ffl)’ we get

Aﬂﬂﬂ:P@W?FUSMﬂ@Aﬂ+H&w5FmﬂWG35

Since u, 18 a positive large solution on [0, 7], 1t 18
easy to show, using a maximum principle argument, that
z < u, on [0, r], which yields z < #. Since u 1s large, there
exist #, > 0 such that 2(#,) > 0 and

1-n n-1

— t‘ [E—
v(r) 2 J‘rrfflj‘ sl q(s)uﬁ(ffl)(s)dsdr = uﬁ(‘rfl)(rl)
gl gl

1-n n-1

r—pt —
J. rf*11. s lg(s)dsdt — o
q 1

as r ~ o This completes the proof of theorem 1.

Theorem 2: If @f} < 1, then the system (1) has a positive
entire large solution if and only if the functions p and ¢
satisfy both

) 2 + =3 o )
_fo tp(¥ 1 J‘OSI*IQ(S)dS)I*I di = co,
2-n n—3 B (9)

j:zq(z)(zﬁ J‘;sﬁp(s)ds)ﬁ dt = oo,

Proof: Since ¢t < 1, we must have either <1 or B < 1.
We consider only the case f§ < 1 since the proof for ¢ <
1 would be very similar. We generate a positive
monotonically increasing sequence (i, v,). To do this,
we fix R > 0 and show that this sequence is bounded
above on [0, R]. Note that &« < v, so that the
e felds
uk(r)=a+j0.tl'—1 -“OS —lp(s)v’,?_(‘lr D(s)dmft, yie
RS
up(r)=a+ jorf_l J.Osf_lp(s)vf_({_l) (s)dsdt,
1-n =1

[E— t‘ [E—
<v (ri+ J.Drrf‘l jﬂs f‘lp(s)vg([fl)(s)dsdr,
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v )+ GOEUD (),

Which, when substituted mto the

1-n n-1

Py el .
vk(r):mj';zf—l jOSI*W(S)Mf(‘LI)(s)dsa?, and  applying

elementary estimates, gives

1-n n1

v <a+ j;zﬁj;sﬁq(s)[vk )+ G D (P9I o,

1-n n-1

<a+ J‘(:tﬁ J‘;s:q(s)[vf(f’l)(s) + GJB (S)V?B(jil)(s)]dsdt,
= a+ [ g1+ PV

Thus the sequence v, 13 bounded on [0,K] and hence
convergence to a function v. Since R was arbitrary, we get
the convergence of v, to v for all # = 0. We now assume
that p, ¢ satisfy (8) and(9) and show that the solution
(u, v) 13 large. Simce #(#) » o then

JLn
w(r)=za+ aa([_l)j zf’l"‘sf’lp(s)dsdt — .
0 0

To prove that lim, oy - . we use the
w(r)=a+ ijsH iU s, © 8
0 0

1-n n-1

[ . .
W)z at J‘rﬁf—l I S]_IP(S)Va([il)(S)del and substitute this
0 0

i1to the

l-n , nl 1-n n-1

g e
WE as I;:I -1 .“oﬂ -1 q(s)(jggl -1 I:TI = p(ew® D ggrz)BU D) g,

1-n , n-1 1-n -1

sata®Pd *”J'rrﬁ J‘tsiq(s)("‘séﬁffa oo VgD o
0 0 0 0

Integration by parts and elementary estimates yield

ep(-1) o g Zmn onol
viryza+ ¢ r—tf‘l sf‘lq(s)Gﬁ(ffl)(s)dsdr
C—mlhodar d
aaﬁ(f—l)

a BRI PNy
T 2n_2)j023g(z)G .

From (9) and the definition of G, w(#) » = as # - e,
Now to prove the converse, suppose (w,v) is a positive
entire solution of (1) and at least one of the inequalities (R)

or (9) does not hold. We assume (8) does not hold; i.e.,
p.q is a positive entire of (1), we know they satisty a

system.
1-n -1
Syl ) I
wl(r) = 1(0) + J' zf—lJ' s 71 p(s WD ) dsdt,
0 0
1-n n-1

V() = w0+ J‘;:Ej;siq(s)uﬁ(f Disydsar, 10

The first of these gives

u(r) < u(0) + Gy,

Which, when substituted into the second equation yields
pir ol
v(r) < v(0)+ J' :Hj ST L gl ufau(0) + G(s WD (U gy,
0 0
1-n -1

<v(0y+ 287 J‘;}H J‘;sﬁq(s)[uﬁl (0)+ BT (5w BUD) ) dsclr.

We mtegration by parts in the last expression to get

1-n -1

() <3(0)+ 257 J‘(}E J}Eq(s)[uﬁf (0)+ B (B () doetr.

< v(0)+ 28 J‘(:Iq(t)[u'ﬁ[ )+ P (n]ar.

Since v 15 increasing and ¢f(J — 1) < 1, we know w(0)
< v(r) and hence won@PU=1) 5 @1y Using this m the

previous inequality provides
v <v(0)+ 277 jrlq(l)[uﬁj 0+ G2 (PN (0],
0
< v(0)+ 2P BT (O)J'rxq(x)dx 4 2P B *1)(0)"”:(;(1)(?“ (i)l
0 0

<y(of BT (O)Imrq(r)dr ol eft _1)(0)jrfq(1)Gﬁ[ (Hw(b)d1.
0 0

Hence we get v bounded and therefore (#,v) cannot
be large. This completes the proof of Theorem 2.
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