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Abstract: We consider the problem of selecting the best simulated system from a finite and huge set of
alternatives. Almoman and Abdul Rahman [1] presented a new selection approach to solve this problem. The
approach was a combination between cardinal and ordinal optimizations to solve the size problem of
alternatives set. Since the cardinal optimization (Ranking and Selection) procedures cannot be used with a huge
number of alternatives, therefore the Ordinal Optimization procedure is used to reduce the number of elements
in the alternatives set to be appropriate for Ranking and Selection procedures. In this paper, we study the
efficiency of Almomani and Abdul Rahman [1] selection approach with different sets of the stopping rule
changes. In particular, there are three different stopping rules; sequential, probability of good selection and
expected opportumity cost. Almomani and Abdul Rahman [1] used the sequential stopping rule mn their work.
In our study, we change the stoppmng rule in their algorithm from sequential to expected opporturnity cost and
probability of good selection. Then we apply the selection approach with these different stopping rules on the
M/ queuing systems to see the efficiency of the approach by identifying the most effective stoppmg rule.
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INTRODUCTION

In many real life applications, we need to select the
best system (set of systems) from the alternatives set,
based on some performance measures (mean). When the
number of altematives small, Ranking and Selection
(R&S) procedures are used to select the best systems, see
Kim and Nelson [2]. Meanwhile, when the number of
alternatives large the idea of Ordinal Optimization (OO)
procedure that proposed by Ho et al. [3] is used to select
a good system with high probability. However, the
problem arises for the large scale problems (i.e. problems
with a huge set of alternatives) because it needs a huge
computational time. In fact, for each sample of the
performance values will require one simulation rum.
Therefore, for the large scale problems will need a large
number of samples, which 13 very time-consuming and
may be unpossible, especially when we are dealing with a
huge number of alternatives in the feasible solution set. In
this situation, we would change our objective to finding
good systems rather than estimating accurately the
performance value for these systems.

Before year 2000, most works in selecting the
best system for the large scale problems are involved
with either a two stage, or three stage procedures

with common known or unknown variances. See,
Tamhane [4], Tamhane and Bechhofer [5], Hochberg and
Marcus [6] and Santner and Behaxeteguy [7]. Later,
Nelson et al. [8] proposed a combination approach
between Subset Selection (SS) and Indifference-Zone (IZ)
procedures to obtain a computationally and statistically
efficient procedure for selecting the best system
when the number of alternatives is large with the
unknown variances. In fact, this procedure consists of
two stages; in the first stage, alternatives that are not
competitive are screened out and eliminated by SS
procedure. Then from the competitive alternative systems,
the best system is selected in the second stage by I7
procedure. Kim and Nelson [9] proposed a fully sequential
procedure, to select the best system when the number of
alternative systems 1s large. They showed that their
procedure works well for up to 500 system and required
unequal variances for all systems. The goal of this
procedure 1s to eliminate, at an early stage, those
simulation systems that are apparently inferior, in order to
reduce the overall computational effort that required in
selecting the best system. Recently, Alrefaei and
Almomani [10] proposed two sequential algorithms for
selecting a subset of &k systems that contained in the set
of the top s systems.
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In this paper, we consider the following optimization
problem

min _£(8) (1.1)

ge
Where ® and finite. Let f be the expected performance
measure of some complex simulation system and 1s written
as fllh = E[L(B, ¥)], where @ 1s a vector representing the
system design parameters, ¥ represents all the random
effect of the system and 7. is a deterministic function that
depends on @ and Y. In this paper, without loss of
generality we assume that the best system is the system
with the smallest mean, which is unknown and to be
mferred from simulation. Therefore, our goal 1s selecting
the system that has the smallest sample mean. Suppose
that there are 7 systems and let ¥, represents the ;* output
from the system 7, where{ =12, .n. Let ¥, = {¥, j=12,.}
denotes the output sequence from the system i We

assume Y, are independent and identically normal

distributed with unknownmeans 4 =£(Y) and varianoes o= Var(Fij)

and ¥,,Y,.....F,, are also mutually independent. Tn practice,
the 2 are unknown, so we need to estimate it using the
z

sample variances s; for ¥, However, since we assume that
the smallest mean is better, therefore if the ordered u,-
values are denoted by ) < gy <...< gy, then the system
having mean u;; 1s referred to as the best system.
Actually, the Comrect Selection (CS) occurs when the
system selected by the selection approach 1s the same as
the actual best system.

In real world applications, the normality and
mdependent rarely exists. Thus, we need to approximate
the raw data are to be normal and independent. Tn fact, the
non-normality and dependence usually are not major
concerns in simulation experiments, because multiple
independent replications are used as the basic summary
measure within average replication of a large number of
raw simulation outputs. Therefore, if we take the output of
mterest as the average data, then by Central Limit
Theorem (CLT) we found that the replication average will
be approximately normally distributed. Moreover, if each
replication 1s mdependent then the replication averages
will be also independent. However, there are two methods
to solve the normality and independent problems. First,
by making multiple replications for each alternative and
secondly, by using the batch mean of many raw outputs
from a single long replication as the basic observations.
Unfortunately, these two methods have disadvantages.
We tend to loss out the raw output that collected during
the warm-up (start-up) period for each replication, where
the warm-up period is the period from the beginming of the
simulation until the system has reached a steady-state.

Also, if we defined the stage by batch means rather raw
output then the simulation effort consumed by any stage
1s a multiple of the batch size.

Smee the simulation methods are used to indicate the
performance measure for each alternative, then there 1s a
potential for incorrect selection. Thus, we need measures
to determine the quality of selection. There are two
measures of selection quality; the Probability of Correct
Selection (P (CS)) and the Expected Opportunity Cost
(E (OC)) of a potentially incorrect selection, see He ef al.
[11]. These two measures are also can be used to decide
when to stop the sampling process. In particular, Branlk et
al. [12] proposed the following stopping rules:

s Sequential (S): Repeat sampling while ZM“T: .5, for
i=1
some specified total budget B and 7} 1s the number of
samples allocated to system 7, where i = 1,2,...n.

*  Expected opportunity cost (F (OC)): Repeat sampling
while (E(OC)), for a specified expected opportunity
cost target E(OC) > &

¢  Probability of good selection (P(GS);.): Repeat
sampling while P(GS); < 1 — ¢, for a specified
prebability target 1 — @ € [1/n, 1] and given 8 = 0.

Almomeani and Abdul Rahman [1] proposed a new
selection approach to select a good system by using the
00 and R&S procedures. In particular, the selection
approach 1s a combination between four procedures; /2,
S5, OO and Optimal Computing Budget allocation
(OCBA). Their goal 1s to select a good system from a huge
number of alternatives with high probability. The first step
ivolved with the OO to select a subset that overlaps with
the set of the actual best »2% system. Then, OCBA4
procedure is used to allocate the available simulation
samples m a way that maximize the probability of correct
selection. This is followed by SS procedure to get a
smaller subset that contains the best system among the
subset that is selected before. Finally, the IZ procedure is
used to select the best system among the survivor
systems m the previous stage. In their algorithm, they
used the sequential S as a stopping rule. Nevertheless,
there are other stopping rules that can provide the
flexibility to stop earlier if there is evidence that the CS is
sufficiently lngh and to allow for additional sampling if the
CS 1s not sufficiently igh

In this paper, we change the stopping rule in
Almomam and Abdul Rahman [1] approach from a
sequential S to the expected opportunity cost E (OC) and
probability of good selection P(GS);., to see the efficiency
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of the approach with different stopping rules. We apply
a numerical illustration on this approach to display the
advantages and the disadvantages for each stopping
rules and to determine the most effective stopping rule
that works better with Almomani and Abdul Rahman [1]
selection approach.

The rest of this paper is orgamzed as follows; In
Section 2, we review the [7, S5, OO0 and OCBA
procedures. In Section 3, we present the algorithm of
Almomani and Abdul Rahman [1] with three different
stopping rules. The performances of the selection
approach under different stopping rules are illustrated
with a series of numerical examples in Section 4 and
Section 5 concludes the paper.

Background: In this section, we briefly review the
procedures of Ranking and Selection (R&S), Ordinal
Optimization (OO) and Optimal Computing Budget
Allocation (OCBA).

Ranking and Selection Procedures: Selecting the system
with the smallest or largest expected performance (best
system) 1s one of the major problems that arise in
simulation. When the number of alternatives » is small
then we can use R&S procedures to select the best
system or a subset that contain the best systems. Here,
we review two different R&S procedures; Indifference-
Zone (IZ) and Subset Selection (SS) procedures.

Indifference-Zone Procedure: The goal of IZ procedure 1s
selecting the best system among » systems when the
number of alternatives less than or equal 20. Suppose we
have » alternative systems that are normally distributed
with unknown means p,i.....i4,, and suppose that these
means are ordered as jy;, € My <...< jt,;. We want to select
the system that has the best minimum mean g;;. The IZ is
defined to be the interval [s.py + &%), where 8% is a
predetermined small positive called
indifference zone. We are interested in selecting an
alternative i such that p. € [z + 1. Let CS be
selecting an alternative whose mean belongs to the

real number,

mdifference zone. We prefer the CS to take place with
high probability, say with a probability not smaller than P’
where 1/in < P" < 1.

The IZ procedure consists of two stages. In the first
stage, all systems are sampled using initial simulation runs
to get an mitial estimate of the expected performance
measure with their variances. Next, depending on the
information obtained in the first stage, how many more
samples are needed in the second stage for each system

in order to guarantee that P(CS) = P’ is computed. Rinott
[13] has presented a procedure that 1s applicable when the
data are normally distributed with all systems are
simulated mdependently of each others. This procedure
consists of two stages for the case when variances are
completely unknown. On the other hand, Tamhane and
Bechhofer [14] have presented a simple procedure that 1s
valid when variances may not be equal.

Subset Selection Procedure: SS procedure screens out
the feasible solution set, eliminates non-competitive
systems and then constructs a subset that contains the
best system with high probability. This procedure is
suitable when the number of alternatives 1s relatively large
and it is used to select a random size subset that contains
the actual best system. The SS procedure required that
P(CS) » P', where the CS is selecting a subset that
contains the actual best system and P is a predetermined
probability.

The SS procedure dating back to Gupta [15], who
presented a single stage procedure in producing a subset
of the best system with a specified probability. Extensions
of this work which 1s relevant to the sinulation setting
includes Sullivan and Wilson [16] who derived a two
stage SS procedure to determine a subset of maximum size
m that, with a specified probability will contain systems
that are all within a pre-specified amount of the optimum.

Another comprehensive review of R&S procedures
can be found in Bechhofer et al [17], Goldsman and
Nelson [18] and Kim and Nelson [2, 19, 20].

Ordinal Optimization Procedure: The OO focuses on
isolating a subset of good systems with high probability
and reducing a required simulation time for discrete event
simulation. The goal of OC procedure 1s to find a good
enough system, rather than to estimate accurately the
performance value of these systems. This procedure has
been proposed by Ho et af. [3].

Consider the optimization problem given in equation
(1.1). If we simulate the system to estimate E[7.(8, ¥)], then
the confidence interval of this estimator cannot be
improved faster than /7 where £ is the number of

replications that been used to get estimates of i), see
Chen et al. [21]. This 153 good when the number of
alternatives is small; however it is not good enough for a
complex simulation problem with a large number of
alternatives. Actually, for each sample of L(0, ¥) will
require one sunulation run. So we will need a large number
of samples, when we are dealing with a huge number of
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alternative systems in the feasible solution set, which is
very hard and maybe impossible. In this situation, one
could relax the objective to get a good enough selution to
avold domg the extensive sumulation

Let the CS here is to select a subset G of g systems
from the feasible solution set & that contains at least one
of the top m %6 best systems. Since ® is very huge then
the probability of CS 1s given by p(cs)%(l,(l,%)g) .

Furthermore, suppose that the CS is to select a subset G
of g systems that contains at least » of the best 5 systems.
If we assume S be the subset that contains the actual best
s systems, then the probability of CS can be obtained
using the hyper geometric distribution as.

g 5 H—S8 n
Ples)=pr(anszr)- Z{J{g—z}/{g]

However, since the number of alternatives is very
large, the P (CS) can be approximated by the binomial
random variable, as:

£ e " i " E-i
G o G
“ E[Ij 100 1 100

Another comprehensive review of OO procedure can

be found in Deng et al. [22], Dai [23], Xiaolan [24], Deng
and Ho [25], Lee et al. [26], Liet al. [27], Zhao et al 28]
and Ho et al. [29].
Optimal Computing Budget allocation Procedure:
The OCBA is used to determine the best simulation
lengths from all simulation systems in order to reduce the
total computation time. In fact, this procedure is proposed
to improve the performance of OO by determining the
optimal numbers of simulation samples for each system,
instead of simulating equally all systems. The goal of
OCBA 15 to allocate the total sinulation samples from all
systems m a way that maximizes the probability of
selecting the best system within a given computing
budget, see Chen ef al. [21], Chen [30], Chen et al. [31],
Chen et al. [32], Banks [33] and Chen [34].

Let B be the total sample that available for solving the
optimization problem given in (1.1). Our target is to
allocate these computing simulated samples such that to
maximize the P (CS). In mathematical notation.

max P(CS)
T

| R ]

n
stZTI =5
i=1

T,eN  i=12...n

Where N is the set of non-negative integers, 7, is the

i

number of samples allocated to system 7 and ig} denotes
i=1

the total computational samples and assume that the

simulation times for different systems are roughly the

same. To solve this problem, Chen ef al. [21] proposed the

following theorem.

Theorem 2.1: Given a total number of simulated samples
B to be allocated to n competing systems whose
performance is depicted by random variables with means

ABHYAB),.  f8), and finite variances 2 .2 2

01.05,...0p

respectively, as B - o, the approximate probability of
correct selection can be asymptotically maximized when

2
I 5 [ oi/dh swherel, je {12, .n} andi=+j# b
Ty 0']/65”,-

n r2
Z 5
i=Li=b %
where 6, the between the
performance of the two systems I and Eim!m?! for

Ta =0

estimated  difference

)

all i. Here;!:iz% , where ¥, is a sample from ¥, forj =
H

=1

Proof: See Chenetal [21].

Algorithms of Selection Approach: In this section, we
present the algorithm of Almomani and Abdul Rahmean [1]
selection approach with different stopping rules. In fact,
the Stopping Rule is the only step that changes whereas
the remainder steps are the same.

Algorithm with a Sequential Stopping Rule: Almomani
and Abdul Rahman [1] proposed a selection approach
that used the sequential S as a stopping rule. This
approach consists four stages. In the first stage, using the
OO procedure, a subset G 13 selected randomly from the
feasible solution set that intersects with the set m%6 of
actual best systems with high probability (1 —a). In the
second stage, OCBA procedure is used to allocate the
available computing budget. Tt is followed by the SS§
procedure to get a smaller subset I that contains the best
system among the subset that is selected before with high
probability (1-«), where |{|< 20. Finally, using the 7
procedure to select the best system from set / with high
probability (1—a).
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In this approach, Almomani and Abdul Rahman [1]
used the sequential S as the stopping rule step in their
algorithm. The sequential condition was stated as if

S o 2z » then the algorithm stop. In fact, most tradition

i=1
selection approach used the same stopping rule. Since the
target was selectng the best system with mmimum
elapsed time, this was controlled by increasing or
decreasing the total budget B.

The algorithm of Almomani and Abdul Rahman [1] is

given as follows:

Algorithm
Setup: Specify g where |G| = g, k where |G = k, the
number of mitial simulation samples £, > 2, the mdifference

zone A and =¢ S from the #-distribution. Let

(e 12 E 1

__ _;_, and determine the total computing budget

B. Here, (G is the selected subset from ©, that satisfies P
(G contains at least one of the best #24 systems) = 1 — ¢,
whereas G’ 1s the selected subset from G, where g > &
The 1iteration number 1s represented by /.

Select a subset G of size g randomly from ® and also
take a random samples #, observatiens v, (f = 1.....5;) for
each system i in G, where i = 1,....g.

Tnitialization: Calculate the sample mean and variances

5

T."
: o .
512=§ [J’U‘J’f(l)j /rf—w foralli=1,..,g

J=1

)
5
Y and 2, where W ; and
Yy Foo= i /5
J=1

Order the systems m G according to thewr sample

averages, U _—l) ~l) . Then select the best k

I <21 5 e

systems from the set G and represent this subset as G".

Stopping Rule: If Zg:r!i . » » then stop. Otherwise, randomly
i=1

select a subset G of the g-k alternatives from & — G’ let

(G=G'uG".

Simulation Budget Allocation: Increase the computing
budget by A and compute the new budget allocation,
gt g+t s by using Theorem 2.1.

Perform additional maX{O,?foi}”i} simulations for

each system 7, i = 1,....g let I Go to Initialization.

Screening: Set I={i:1<i Sand;'i(l) 2;‘](1) *[WU - 5*]_=Vi # 7}

112
where Wg{f S} foralli # jand [x] =xifx<0and
I

~ea

S

[x] =0 otherwise.
Tf I contain a single index, then this system is the best
system. Otherwise, for all 7 € I compute the second

sample size { M,ﬁj Ji —‘} .where h = h(1 —a, / 2, 1,1

i *

L

be the Rinott [13] constant and can be obtained from
tables of [35].

Take additional N, — 7, random samples of y, for each
system 7 € I and compute the overall sample means for i €

1\]!.
@
las , =ZJ,U o, -
J=1

Select system i € [ with the smallest ;(1) as the best.

i

Algorithm with Expected Opportunity Cost as a Stopping
Rule: In this new algorithm, we change the stopping rule
from sequential S to expected opportunity cost £ (OC).
Actually, this stopping rule (£ (OC)) 13 effective when the
goal 13 selecting the best system with the
minimum £ (OC), like in business applications.
Using the same algorithm from Almomani and Abdul
Rahman [1], we change the Stopping Rule as:

Stopping Rule: If E(OC) < g, for a specified expected
opportunity cost target £ > 0, then the algorithm is stop.
Otherwise, select randomly a subset G” of the gk
alternatives from © — G', where we let G = G"'u G

Algorithm with Probability of Good Selection as a
Stopping Rule: A selected system within & from the best
system 1s called the “good” system. However, m tlus
paper our focus is not on the difference between the
concepts of “good” or “best” system but to select a
system from a very large alternatives set. Therefore, 1f we
can get a good system, we can call it a best system.
Anyway, the P {CS) can be equal to the P(GS);- when 8*
= 0. Clearly, the IZ procedure requires that 8 = 0 and the
OCBA permits & = 0, see Brank et al. [12]. Again, using
the same algorithm from Almomam and Abdul Rahman [1],
we use the probability of good selection P(GS)8 as a
stopping rule as follows:

Stopping Rule: If P(GS)& = 1 — ¢, for a specified
prebability target 1 — ¢ € [1/n,1] and given & > 0, then
the algorithm is stop. Otherwise, select randomly a subset
G" of the g-k alternatives from @ - G, let (G =G"u G").
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Empirical Tustration: Empirical illustrations for both
stopping rtules (the E (OC) and the P(GS).), are
presented using example of M/AM/I queuing systems,
where the inter arrival times and the service times are
exponentially distributed and the system has one server,
see Ross [36]. Our goal 13 selecting one of the best »%4
systems that have the mimmum average waiting time per
customer from n M/AL/] queuing systems. We use the
Probability of Correct Selection (P (CS)) and the Expected
Opportunity Cost (E (OC)) of a potentially incorrect
selection as a measwre of selection quality, where the
Opportunity Cost (OC) is defined as the difference
between unknown means of the selected best system and
the actual best system.

We apply the algorithm of Almomani and Abdul
Rahman [1] selection approach in this example with
different stopping rules under some assumptions. We
assume that the arrival rate A 1s a fix number, A = 1 and the
service rate g 1s belong to the interval [a, 8], such that u
€ [7, 8]. Suppose that we have 3000 of MAL/T queuing
systems and we discretize the problem by assuming that
4 € 8 =74+1i/3000, where i = 0,1,...,3000. Therefore, the
best queuing system that has a minimum average waiting
time would be the 3000” queuing system with g3y, = 8.0.

In the first experiment, we consider a sequential S
stopping rule. Assume that, #=3000, g =200, @, = «, =
0.005, 8" = 0.05, k=20,A =50, ¢, = 20 and total budget
B=10000 (these settings are chosen arbitrarily). Suppose
we want to select one of the best (1%) systems, then our
target 1s the systems from 2971 to 3000. The CS would be,
selecting the system that belongs to {2971, 2972, ..., 3000}
and the analytical probability of the correct selection here

200
1
can be calculated as P(C‘i‘)zl—[(l——) +DDD5+DDD5}M.
100

Furthermore, to achieve the normality assumption in this
experiment we use multiple replications method, where the
mumber of multiple replications A/ for each alternative
equal 1000.

In the second experiment, we consider the expected
opportunity cost as a stopping rule with the same
parameter settings as in the first experiment. The total
budget condition is removed and replaced with the
expected opportumty cost condition such that Z(OC) <
0.01 (i.e. £=0.01).

In order to improve the efficiency of Almomam and
Abdul Rahman [1] selection approach (with expected
opportunity cost as a stopping rule), m the next
experiment, the value of £ is reduced from 0.01 to 0.001.
Thus, the expected opportunity cost condition will be
E(OC) < 0001.. Unfortunately, with this condition

Table 1:  The performance of the selection approach under different
stopping rules for #=3000, g=200, k=20, A =50, ¢, = 20,
m%=1% over 100 replications

M 1000 10000 1000 10000

P 16160.54 15364538 16474.99  163473.01

g

ZT’ 20793 21592 21865 23882

i=1

ZM 4372 5050 5354 7124

il

Our approach

PCS) 83% 81% 82% 84%

Anatytical

PCS) 85% 85% 85% 85%

Our approach 0.00181892 0.00048408 0.00181381 0.00057008

E{0C)

Analytical 0.00180099 0.0014456 0.00192674 0.00120067

E(OC)

the algorithm does not work, unless we increase the
number of multiple replications A for each system from
1000 to 10000. Since we want to make a comparison with
the Almomam and Abdul Rahman [1], we also rerun their
algorithm (used sequential S as a stopping rule) with
M=10000.

Table 1 contamns the results of all the above
experiments, over 100 replications for selecting one of the
best (1%) systems. From the table, - 1s the average of the

. . g .
elapsed (execution) time, ZTI 1s the average number of
=1

the total sample sizes that are computed in Simulation

Budget allocation step in the algorithm and ZN;' is the
il

average number of the total sample size in Sereening step

1n the algorithm and o0 1s the average number of the

Expected Opportunity Cost. We calculate the “Our
approach of ——” by taking the absolute value of the

E(cc)

difference sample means between the best system that
selected by Almomani and Abdul Rahman [1] approach
and the actual best system.

We discuss the results in Table 1 from two points.
Firstly, we are comparing between two stopping rules; the
sequential S and the expected opportunity cost E (OC),
with the same number of multiple replications M for each
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system. Secondly, we want to find answer to the question
of what would happen when we increase the number of
multiple replications M?

We find that the performance of Almomani and
Abdul Rahman [I] selection approach under the two
stopping rules; sequential S and the expected opportunity
cost E (OC), are almost the same. Clearly, the two
stopping rules with the same number of multiple
replications M have almost the same elapsed time, sample
size, P (CS) and E (OC). Thus, this implies that the
Almomani and Abdul Rahman [1] selection approach is
effective with both stopping rules. Nevertheless, if we
want to improve the efficiency of Almomani and Abdul
Rahman [1] selection approach in context of £ (OC) as a
measure of selection quality, we should increase the
number of multiple replications M for each system. In
particular, in order to reduce the value of € from 0.01 to
0.001 in the expected opportunity cost condition, we need
to increase the number of multiple replications M from
1000 to 10000. In fact, with this changes it just will
increase the elapsed time and of course decrease the E
(0C).

We suggest that, if the experiment’s target is
selecting the best system with high P (CS) and minimum
elapsed time then the Almomani and Abdul Rahman [1]
selection approach with the sequential S as a stopping
rule is the best way to achieve that. On the other hand, if
the experiment’s target is selecting the best system with
minimum E (OC), then we suggest using the Almomani
and Abdul Rahman [1] selection approach but with

the expected opportunity cost £ (OC) as a stopping rule,
provided that the number of multiple replications M is
increased, such that it will increase the elapsed time.
However, it is clear that when the value of € is decreasing
then the E (OC) will decrease but the optimal value for the
E (OC) will be zero when the £ = 0. In this case the mean
of the selected system will be equal to the mean of the
actual best system. Nevertheless, we cannot take too
small value of ¢ since this will require that the number of
multiple replications M to increase and of course this will
lead to a huge elapsed time.

Now, we consider the probability of good selection
P(GS);- as a stopping rule. Using the same example of
M/M/I queuing systems, we apply the Almomani and
Abdul Rahman [1] selection approach with P(GS);. as a
stopping rule. We assume that »=3000, g =200, ¢, = o, =
0.005, k=20, A = 50, t, = 20 and the number of
multiple replications M=1000 for each system.
The CS is selecting one of the best (1%) systems,
which is the system that belongs to {2971, 2972,..., 3000}.

In this experiment, we also consider different values
of 6% 6"=0.001,0.01,0.05,0.5 and for each 6" we test with
different values of ¢"; ¢"=0.01,0.05,0.1,0.15,0.2. Figure 1

g

E Tinp

i=1

and Abdul Rahman [1] selection approach with P(GS)6"

shows the efficiency curves in plane for Almomani

as a stopping rule, for all values of &', where i,; is defined

i=1

as the average of the total simulation samples size 7.
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Fig. 1: The efficiency curves between the average of total simulation samples size i’) and ¢ for different values of ¢'.
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Fig. 2: The efficiency curves between the average of total simulation samples size 3 v and ¢ for different values of &".

Figure 1 shows clearly that the average of the total

simulation samples size i‘]} that are computed in
i=1
Simulation Budget Allocation step in the algorithm of
Almomani and Abdul Rahman [1], are decreasing when
the values of ¢ are increase for each of §". In fact, this is
expected since, when the @ increases then 1 — &' will
decrease and will imply that the P(GS)6" is decreasing.
When the probability of good selection becomes small, it
means that we can get this probability with a small number
of simulation samples. Moreover, we also note that the

>

8
largest simulation samples size Zn for this experiment
i=1

occurs when the value of 6" = 0.05.

Figure 2 show the efficiency curves in [z NM;] plane

iel

for P(GS)6" with all values of &, where ZNi is the
iel
average of the total simulation samples size N..
From Figure 2 we note that the average of the total

simulation samples size ZN, that are used in Screening
iel

step in Almomani and Abdul Rahman [1] algorithm, are

also decreasing when the value of ¢" increases for all

values of 6'. However, the decreasing here is not very fast

compared to Figure 1. Obviously, note that the average

of the total simulation samples size ZN,- when the
iel

6= 0.001 is very large compared to the other values of 6",
CONCLUSION

This paper discusses the effect of different stopping
rules on the performance of selection approach that has
been proposed by Almomani and Abdul Rahman [1]. The
selection approach consists four stages. Initially, using
OO procedure, a subset G is randomly selected form a
feasible solution set that intersects with the set that
contains the actual best m% systems with high
probability. Then OCBA procedure is used to allocate the
available computing budget. This is follows with SS
procedure to get a smaller subset / with high probability,
that contains the best system among the previous
selected subset. Finally, IZ procedure is applied to select
the best system from that set /. We apply Almomani and
Abdul Rahman [1] algorithm on example of M/M/I
queuing system under some parameter settings, with
different stopping rules; sequential S, expected
opportunity cost £ (OC) and probability of good
selection P(GS)s. In the first two experiments, using
the sequential S and the expected opportunity cost
E (OC), we found that the performance of the selection
approach are almost the same. However, for the £ (OC) in
order to improve the efficiency of the Almomani and
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Abdul Rahman [1] approach, we need to increase the
number of multiple replications A or to mcrease the batch
size for each system. Unfortunately, this will cause an
mcrease m the elapsed time. Thus our suggestion 1s, if the
goal of experiment is selecting the best system with high
P (CS) and mimimum elapsed tune then the algorithm
should use the sequential S as a stopping rule instead. On
the other hand, if the goal is selecting the best system
with mmimum £ (OC), the algorithm should be used
together with £ (OC) as a stopping rule. In final
experiment, we consider the probability of good selection
P(GS)s as a stopping rule. Numerical results clearly show
that the average of the total simulation samples are
decreasing when the value of ¢ increase for all 8°. Finally,
we conclude that the selection approach as proposed in
Almomam and Abdul Rahman [1] 18 effective if applied
with these three stopping rules. However, we should be
careful in choosing the right stoppmg rule to comply with
the target of the experiument.
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