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Abstract: The aim of this paper is to study the subclasses of Janowski functions with bounded boundary
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applications are also discussed here.
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INTRODUCTION

Let 4 be the class of functions of the form

z) =z+ i az"
n=2
analytic in the open unit disk E = {z: |z]<1} If f (z) and
g (z) are analytic in E, we say that f (z) is subordinate

to g (z), written f<g or f(z)< g(z) if there exists a

Schwarz function w (z) in E such that f (z) = g (w (2)).
For any two analytic functions

0

f(z)= Z az"

and

the convolution (Hadamard product) of f (z) and g (z)
is defined by

zeE

(f+g)( Zan )

We denote by S* (), C(av), (0<a<1), the classes of

starlike and convex functions of order a respectively
and are defined as:

f,
S'(a)= feA:Rel (Z)>(x,zeE
f

C(a):{fe A:zf'(z)eS*(oc),ze E}

For o = 0, we have the well known classes of
starlike and convex univalent functions denoted by S’
and C respectively.

Let P[A,B] be the class of functions /4, analytic in £
with h (0) =1 and

1+ Az

h(z)<——, -1<B<A<I.
1+ Bz

This class was introduced by Janowski [2]. The
class P[A, B] is connected with the class P of functions
with positive real parts by the relation

heP[A,B] & (Bj Dep (L.1)

Later on, Sokdl [13] studied this class of Janowski
functions with AeC and Be[-1,0], for detail, see
[3,11].

Let P[A,B,a] be the class of functions p;, analytic in £
withp;(0)=1and

1+[ (I-a A+aB]z
1+ Bz

p(z) <

Ae(C,Be[—l,O] (12)

,0<a<l,zeE.

It is noted that for each class P[A,B,a], one can
find A and B such that P[A,B,a]= P[A,B]. Moreover,
for given class P[A,B] there are infinite many A,B,a
such that P[A,B,a]= P[A,B]. Therefore, in (1.2) we can
write

1+Cz

pl(z)-<1+

,CeC, Be[ 10] 0<a<lzeE,
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where C = (1- a)A+aB. It can also be noted that

(1-a)p, +aeP[A,B,a] < p, €P[A,H. (1.3)
Now we generalize this concept of Janowski
functions and define the class Px[A,B,a] as follows.
A function p is said to be in the class P[A,B,a], if
and only if]

p(2)- (243 o2 E- 2o, (o)

3 25 (1.4)

where p,p,€P[AB,a], AeC, Be[-1,0], k>2 and

0<o<l1. It is clear that

P,[A,B,a]=P[A,B,q]

and R[1,-1,0] = Py, the well-known class given and
studied by Pinchuk [12].

The important fact about the class Py [A,B,a] is that
this class is convex set. That is, for p;ePy[A,B,a] and
;>0 with ) o, =1, we have

i=l

iotipi eP,[AB,a]. (L.5)

i=l

This can be easily seen from (1.3), (1.4) and with
the fact that the set P[A,B] is convex [7]. By using all
these concepts, we consider the following classes.

zf’(z)

f(z)

Rk[A,B,oc]={feA:Re eP[AB,a],ze E}

Vi[A.B,a] ={f €A:zf'(z)e R,[A,B,a], z€ E},

where AeC, Be[-1,0], k>2 and (Ko<I. For a =0

and - 1<B<A<I, the classes {[A,B,a] and RJA,B,a]
reduce to the classes Vi[A,B] and R [A,B] respectively,
studied by Noor [4,5,8].

Throughout this article we assume that C =

(1I- )A+aB unless otherwise mentioned. In order to
derive our main results, we need the following lemmas.

PRELIMINARY LEMMAS

Lemma 2.1: Let
Be[-1,0] satisfy either

B,v,AeC with Re[B+y[>0 and

Re[B[I+CB]+y(1+B2)J2|CB+EB+B(y+§)|, @.1)
when Be(1,0], or
Rep[1+C]>0 and Re[B(1-C)+2y |20, 2.2)

when B=-1.1If h(z)=1+c,z" +c¢,_,z*" +... satisfies

1+Cz
1+ Bz

2.3)

zh'(z)
{h(z) + Bh(z)+ y} <
then
1+Cz
1+ Bz

h()< Q(2) < 24

and

also

G(z):

or equivalently, in hypergeometric form, we can write it
as

B(B-C) . B+y+n Bz =
F 1, ; + ,B=#0,
2 l[ nB n 1+ Bz (B Y)

G(z)z
B [L—B iRaL ;—EAZJ(B +7) ",
n n

B=0.

The proof of this lemma can easily be obtained by
using the similar argument used in [3, pp.109].

Lemma 2.2: [3] Let u = u; + iu,, v = vy+iv, and y(u,v)
be a complex valued function satisfying the conditions:

@) w(u,v) is continuous in a domain D < C?,
(i) (1,0)eD and Rewy(1,0)>0,
(i) Rewy(iu,, v1)<0, whenever (iu,, vi)eD and

v, < —15(1+u§ )

If h(z) = 1+c,z+... is a function analytic in E such
that (h(z), zh'(z))eD and Rewy(h(z), zh'(z))>0 for =E,
then Reh(z)>0 in E.

Lemma 2.3: [14]. Let p be a positive measure on [0,1]
and let h(z,t) be acomplexvalued function defined
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on Ex[0,1] such that h(.,t) is analytic in E for each
te[0,1] and that h(z,) is p-integrable on [0,1] for all
zeE. In addition, suppose that Re {h(z,t)}>0, h(-r,t) is
real and

1 1
R > — A <r <l 0,1].
e{h(z,t)}> h(fr,t) 0r|z|<r < andte[ X ]

If H(z)= j h(z.t)dp(t). then Re[ﬁz)] > ({r).

Lemma 2.4: [3]. For real or complex numbers a, b, ¢
(c#0,-1,-2,...) and Rec>Reb>0, we have

;Itbl (1-0)"" (1-t) "dt _% E(ab.ciz),
(2.5)

E(ab,c;z)=(1-2)" ,E (a,c —b,c;ilj, (2.6)

,E(a,b,c;2) =, F (b,a,c;z). 2.7

MAIN RESULTS

Theorem 3.1: Let feVi[AB,a] with &2, Ko<l and
AeC,Be[-1,0] satisfying (2.1) and (2.2). Then,
fERA,B,B1], where

B(1+a)

ReA <- R
—a

Be[-1,0)

and

B= Bl(a,l,O):+. 3.1)
(1-B 7 -(1-B)

Proof: Let

2f(2) :p(z):(k . 1)p

f(z) 4 2"

Logarithmic differentiation of (3.2) yields

(@-(5-1)p0. 62

4 2

p(z)+ p(zz) € PR [AB,a]. (3.3)

Now consider a function @, (z) defined by Noor [6]

12 (6): 895-902, 2011
> b+1 N
(Pa,b(z)_ z+ émz

with a = 1, b = 0 and then by using the same
convolution technique as used by Noor [6], we have

(Pa,b(z) " p(Z)

=n(z ) 34
. p(z)+ (7] (34)
From (3.2), (3.3) and (3.4), we obtain
(k lj[ Zp{(Z)J
i) 2
4 2 pi(2) 55)

_(%_%)[pz (2)+ Z}i;((zz))]e P, [A,B,a].

From this, we have

7p}(2)

pi(2)

We use Lemma 2.1 forn =1, y=0, B = 1>0,
ae[0,1) and h=p; in (2.3) to have

p,(z)+ eP[AB,a] i=12.

1+Cz

pi(z)<Q(z)<1+BZ.

(3.6)

This estimate is best possible, extremal function
Q(z) is given by

Cz

5, 1fB#0,

Q(2)= I _ (1+Bz) —(1+Bz) B 3.7)
G(z) | (1-a)Az o
m, if B=0.
From (3.6), we have

ll\/lliinRepi (z) > l\lflljnReQ(z).

Now we show that min Re Q(z) = Q(-1). Setting

a=—B_C,b=1,c=b +1
B

such that Rec>Reb>0 and using (2.5), (2.6) and (2.7),
we have
1
G(z)=(1+Bz)' [t (1+Btz) " dt
0

I'(b
:L 2F1(1,a,c;£j, B =0.
I'(c) 1+Bz

(3.8)

897
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Now we have
Re{l/G(z)} >1/G(-1), z E . For

to show that

-B(l1+a)

ReA <

with - 1<B<0 (Rec>Rea>0) and using (2.5) in (3.8), we
have

1

G(z)=[g(z.t)dp(1).

0

where
1+Bz
and
dp(t) :%t*‘(l—t)“‘1 dt

is a positive measure on [0,1]. Now for - 1<B<0, we
have Reg(z,t)>0 and g(-r,t) is real for 0<r<1<, te[0,1].
Also for |z|<r<1 and t €[0,1]

Re{ 1 }:Re{1+(l—t)Bz}Z1—(1—t)Br
g(z,t) 1+Bz 1-Br

1

g(_rat).
Now wusing the lemma 2.3, we obtain

Re{1/G(z)}>1/G(-r), (|z|<r<1). Letting #>1", we obtain
Re{1/G(z)}>1/G(-1). Taking

ReA—)(
1-a

and using (3.6), we have consequently from (3.7),

C
B-C >

(1-B)® —(1-B)

Bi= BI(OL,I,O) :Q(_l)

B(1+a)
1

ReA <-

,B e[—l,O).

This shows that peP[A,B,B;] where B, is given by

(3.1) and consequently peP¢[A,B,B;] which gives the
required result.

If A=1, B= -1 in Theorem 3.1, we obtain the
following result, proved in [10].

Corollary 3.2: Let fe V(o). Then feRy(B;), where

898

20—1 i 1
= Bl(aslao): | (3.9)
. ifa=—
2m2’ ¢

Ifk=2,A=1,B = -1in Theorem 3.1, we obtain
the following result, proved in [1].

Corollary 3.3: Let feC(ct). Then feS"(B), where

20.—1

2w’
B,= B, (c1,0)=12 12 (3.10)

21n2’

Theorem 3.4: Let feVi[AB,a]. Then feRy[l, -1, B,],
where (3, is one of the root of

4(1-20)(B" 1)
—8(1-a)(AB-1)

3

]M

2

4B -1)p; +[

(40” —4a—3)(B*—1)+4(1-0)’(A’-1) 2 G1)
~4(1-a)(1-2a)(AB-1) P
4(1-a)(AB-1) 2
+[—2(1—2(1)(132—1)]’3”(]3 -1)=0
with 0<p,<l.
Proof: Let
%(ZZ)):(I—BJP(Z)JF& (3.12)
=(1—ﬁz)[(%%}pl(z)—(E—%jpz(z)}wz, G13)

p(z) is analytic in E with p(0) = 1. Then

((2) . (1-B,)7p'(z)
f,(Z) _(1 Bz)p(2)+ﬁz+(l_ﬁz)p(z)+ﬁz5
that is,
T G0 S U N (b L I )
E{ T(z) 1‘ 1—a[(1 B.)p(z)+ (I—BZ)P(Z)H}j
—(2)
e b)) TR
1-a I-a (z)+ B,
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Since fe Vk[A,B,a], it implies that

1—
(B =) (=B)l ) eP[A.H.zcE. (3.14)
l-a 1-a B,
p(Z)+(1_Bz)
Now consider a function @,(z) defined by Noor [6]
& b+1 S
vuale) =24 Yo (3.15)
with
a= ! b= B,
I_Bz I_Bz

By using (3.7) with the same convolution technique as used by Noor [6], we have

%,;(Z)*p(z)_[lzi]{"’d;( 2), pl(z)}—(%—%][%%(z)*pz@)}

il bo il bl o

Thus, from (3.14) and (3.16), we have

which implies that

(B.—a) (1-B.) azp; () ,
Tt {pi(z)+pi(z)+b}eP[A,B],1=1,2. (3.17)

Using the fact illustrated in (1.1), we have

where

We now form the functional y(u, v) by choosing u = pi(z), v = zp;'(z) and note that the first two conditions of
Lemma 2.2 are clearly satisfied. We check condition (iii) as follows.

(B-1)[( + pu)(u+b)+apv]-(A-D(u+b) » +ap(B 1) v+[(A+p(u+b))B -1) (A -1)]u
(B+1)[(k+uu)(u+b)+auv]—(A+1)(u+b) kz+au(B+1)v+[(k+u(u+b (i

w(uy)=

~—~—
53]
+
—_
|
—_
>
+
=
| —
[

where A, =b[MB -1) «A -1)] and &, =b[AB +1) (A +1)] . Now

A+ u(av1 - 2) +[7» +ub)(B (A—l)]iu2
k2+u(avl—u ) +[k+ub (A+1)Jiu .

wlin, v)=

Taking real part of y (iu,, v{), we have
899
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—[—7»1+ u(avl —uﬁ)(l— B)J[Xz +u(avl —ui)( +B)J

B oo BT L0 (A

[0+ pb)(B—1)—(A-1)][ (A +pb)(B+1)—(A +1)]u; .
[, +n(av, +u, ) +B)] +[ (A +ub)(B+1)—(A+ )]

As a>0, p>0, so applying v, < —12(1 + u§) and after a little simplification, we have

A, +Bu2+Cu

Rey (iu,,v,)< #, (3.18)
where
A =%[2x1 —ap(B- ) ][22, —au(B +1)],
B, =—%p(a+2)[xl(3+ )—an(B' 1)+, (B= 1) |+ (1 +1b)* (B? ~1) = 2(%+ ub)(AB—1) +(A > ~1),
C, =—%u2(1—32)(a +2)
and

D, =[ %, +n(av, +u,)( +B) ] +[(r + ub)(B+1)~(A+1)] ul.
The right hand side of (3.18) is negative if A <0 and B;<0. From A <0, we have [, to be one of the root of

4(B”~1)B3+[4(1-20) (B ~1) -8(1 -0 )(AB-1) B} +
(407 ~40-3)(B* ~1)+4(1-01)'(A* ~1) - 4(1- &) (1-20) (AB 1) | B}
+[4(1-a)(AB-1)-2(1-2a)(B* ~1)]B, +(B* ~1)=0

with 0<[3,<1 and also for 0<3,<1, we have

B, =4(B’ — 1B +[ 4(1+a)(B’ ~1)+(1-a)(AB-1) B} -
[(207 +2a+5)(B*~1)+ 2(1 +2a)(1- ) (AB -1)+2(A* = 1)(1-a)’ |B, +
[(3+207)(B” ~1) +4a(1- o) (AB-1)+2(A* = 1)(1-a)' | <0.
Since all the conditions of Lemma 2.2 are satisfied, it Ifk=2,A=1,B = -1in Theorem 3.4, we obtain

follows that peP in E for i = 1, 2 and consequently the following result, proved in [1].
pePi[1,-1] and hence feR([l, -1, B,], where B, is one .
of the root of (3.11) with 0<p,<I. Corollary 3.6: Let feC(a). Then feS (B,) where B, is
By setting A = 1, B = -1 in Theorem 3.4, we one of the root of
obtain the following result, proved in [10].
282 —(2a.—1)B, —1=0 with 0<p, <1
Corollary 3.5: Let feVi(a). Then feRy(B,), where 3,
is one of the root of

which is
2B3 - (2a.-1)B, —1=0 with 0<pB, <1
which is 1
|— — 27
.2 (2~ ) i 079 | gl (20 ) 40?49 |

900
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Application of Theorem 3.1

Theorem 3.7: Let f and g belong to [A,B,a] with
k>2, (Ko<l and AeC,Be[-1,0] satisfying (2.1) and
(2.2). Then the function F(z) defined by

,L%Jl't(c—sf\n (f(t)f (g(t))o dtoc.5050(3.19)

0

is in the class Ry [A,B,9;], where

8, = c % (320
& 2F1(La1(1_a)(1_%jac+1;%J “
and
“1<B<0,ReA< [(Cﬂ)fa‘(l*a)]B,(6+u):a1.
o, (1-a)
Proof: Let
(#F'(2))
=plz 3.21
70 p(z) (3:21)
k 1 k 1
(o5t 62

Then, p is analytic in E and p(0) = 1 with

zf'(z)

f(z) :pl(z)’

we have from (3.19) and by using (3.21)

7p'(2)

p(z) +——————

(2) o,p(z)+(c—a,)

Since f, geVi[AB,a] and this means that f,

geR[A,B,B1], so pi, poeP[A,B.B;]. It is known that

Py [A,B,B1] is convex set. Therefore, HyePy[A,B.B;] and
B1 =Bi(a) is given by (3.1). This implies that

zp'(z
pla) o
1

WE Pk [A,B,ﬁl].

(3.23)

Now consider a function @, (z) defined by Noor [6]

9u(z)=7 T,

n=2

with

901

and using (3.22) with the same convolution technique
as used by Noor [6], we have

5+1){m*p

4 2 z

E_l){m*p

4 2 z

(Pa,b(z)

0(2)=(
{

which implies that

7p’(2)
o,ps(z)+(c—ay)

L=

Thus, from (3.23) and (3.24), we have

} (3.24)

zp)(z)

pi(z)+ m € P[A,B’Bl]’ i=3,4.
Therefore,
p(2)+ zp|(z) . 1+{(1—B1)A+BIB}Z.

ap(z)+(c-a,) 1+Bz

Using Lemma 2.1 forn =1, = a; and y = ¢- a4, we
have

1+{(1-B,)A+BB}z

P (2) < Qlz) 1+ Bz ’
where
1 c—a,
Q(Z)_alG(z) a,
and
ZFI(l,al[B;C],c+l; Bz ](c)_l,ifB;tO,
B 1+ Bz
G(z)=
E(Le+L-0,A2) (o), ifB=0.

Now using the Lemma 2.3, we have pePy[A,B,§]
where & is given by (3.20). This shows that
FeR([AB.8:].

Theorem 3.8: Let f and g belong to [A,B,a] with
k>2, 0<o<1 and AeC, Be[-1,0] satisfying (2.1) and
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(2.2). Then, the function F with a; = ¢ = 1 defined by
(3.19) is in the class Vi[A,B,n], where 0<6<v<l,

n =1 o=(1-6+v)(1+p,)) (3.25)
and B(a) is given by (3.1).
Proof: From (3.19), we can easily write
(F(2) _ #'()  7(2)
) (2) +v 2(2) +1-(8+v). (3.26)

Since f and g belong to W[A,B,a] then by Theorem
zf (Z) and zg (Z)
f(2) g(2)

B1 (o) is given by (3.1). Using

3.1, belong to P [A,B,B;] where 3, =

zf'(z)

:(1_B1)p1(2) +Bi py EPk[A’B]

and

(1 _Bl)pz(z) +Bi, P, EPk[AaB]

1 |(zF'(2)) 5

—6+Up1(2)+mpz (Z) (327)

Now by using the well known fact that the class
Py[A,B] is a convex set together with (3.27), we obtain
the required result.
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