On Some Topological Properties of Generalized Difference Sequence Spaces Defined by A Sequence of Moduli

¹Gülcan Atici and ²Çigdem A. Bektas

¹Department of Mathematics, Mus Alparslan University, Mus, 49100, Turkey ²Department of Mathematics, First University, Elazig, 23119, Turkey

Abstract: In this paper, we define the generalized difference sequence spaces $\ell_{\infty}(\Delta_{\nu}^{m},F,p,q,u)$, $c(\Delta_{\nu}^{m},F,p,q,u)$ and $c_{0}(\Delta_{\nu}^{m},F,p,q,u)$. We give various properties and some inclusions on this spaces. Furthermore we study some of their properties, such as solidity, symmetricity, convergence free etc.

AMS subject classification: 40C05.40H05

Key words: Difference sequence spaces . sequence of Moduli . seminorm

INTRODUCTION

Let w be the set of all sequences of real or complex numbers and l_{∞} , c and c_0 be the linear spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by

$$\|\mathbf{x}\|_{\infty} = \sup_{k} \mathbf{x}_{k}$$

where $k \in IN = \{1,2,...\}$, the set of positive integers. The difference sequence spaces

$$X(\Delta) = \{x = (x_k) : \Delta x \in X\}$$

first defined by Kizmaz [5], where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$ and X is any of the sets $X = c_0$, c and l_{∞} . The notion of difference sequence spaces was generalized by Et and Çolak [6] as follows:

$$X(\Delta^{m}) = \{ x = (x_{k}) : \Delta^{m} x \in X \}$$

for $X=c_0$, c and 1_∞ , where $m\in \mathbb{N}$, $\Delta^0x=(x_k)$, $\Delta^m x_k=(\Delta^{m\text{-}1}x_k-\Delta^{m\text{-}1}x_{k+1})$.

The sequence spaces $X(\Delta^m)$ were further generalized by Et and Esi [7] to following sequence spaces. Let $\nu = (\nu_k)$ be any fixed sequence of nonzero complex numbers. Then

$$X(\Delta_{v}^{m}) = \{ x = (x_{v}) : (\Delta_{v}^{m} x_{k}) \in X \}$$

for $X = 1_{\infty}$, c and c_0 , where

$$\Delta_{\mathbf{y}}^{0}\mathbf{x} = (\mathbf{y} \mathbf{x})$$

$$\Delta_{\mathbf{v}} \mathbf{X}_{\mathbf{k}} = (\mathbf{v}_{\mathbf{k}} \mathbf{X}_{\mathbf{k}} - \mathbf{v}_{\mathbf{k}+1} \mathbf{X}_{\mathbf{k}+1})$$

and

$$\Delta_{\mathbf{v}}^{\mathbf{m}}\mathbf{X}_{\mathbf{k}} \equiv (\Delta_{\mathbf{v}}^{\mathbf{m}-1}\mathbf{X}_{\mathbf{k}} - \Delta_{\mathbf{v}}^{\mathbf{m}-1}\mathbf{X}_{\mathbf{k}+1})$$

and so that

$$\Delta_{\mathtt{v}}^{\mathtt{m}}\mathbf{x}_{\mathtt{k}} = \sum_{\mathtt{i}=\mathtt{0}}^{\mathtt{m}} \bigl(-1\bigr)^{\mathtt{i}} \binom{m}{\mathtt{i}} v_{\mathtt{k}+\mathtt{i}} x_{\mathtt{k}-\mathtt{i}}$$

A function $f:[0,\infty) \to [0,\infty)$ is called a modulus function if

- (i) f(t) = 0 iff t = 0,
- (ii) $f(t+u) \le f(t) + f(u), \forall t, u \ge 0$
- (iii) f is increasing,
- (iv) f is continuous from the right at 0.

Since $f(x)-f(y)| \le f(|x-y|)$, it follows from condition (iv) that f is continuous on $[0,\infty)$. A modulus may be unbounded or bounded.

Ruckle [8] used the idea of a modulus function to construct some spaces of complex sequences. Maddox [9] and Et [4] investigated and discussed some properties of some sequence spaces defined using a modulus function f. Recently Bektas and Çolak [2, 3] used a sequence of moduli $F = (f_k)$ to define some sequence spaces and introduced some new sequence spaces by using a sequence of moduli $F = (f_k)$

Definition 1.1: [10] Let X be a sequence space. Then X is called:

- (i) Solid (or normal), if $(\alpha_k x_k) \in X$ whenever $(x_k) \in X$ for all sequences (α_k) of scalars with $|\alpha_k| \le 1$.
- (ii) Symmetric if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$, where $\pi(k)$ is a permutation of IN.
- (iii) A sequence algebra if (x_k) , $(y_k) \in X$ implies $(x_k y_x) \in X$.
- (iv) Convergence free if $(y_k) \in X$ whenever $(x_k) \in X$ and $y_k = \theta$ whenever $x_k = \theta$.

Let U be the set of all real sequences $u = (u_k)$ such that $u_k > 0$ for all $k \in IN$.

We use the following inequality throughout this paper

$$|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^{p_k}\}$$
 (1)

where \mathbf{a}_k and \mathbf{b}_k are complex numbers, $D = \max(1, 2^{G \cdot 1})$ and $H = \sup_k \mathbf{p}_k < \infty$ [11].

MAIN RESULTS

Definition 2.1: Let $F = (f_k)$ be a sequence of moduli, X be a seminormed space over the field C of complex numbers with the seminorm q, $p = (p_k)$ be a sequence of strictly positive real numbers and $u \in U$. By w(X) we shall denote the space of all sequences defined over X. Let $v = (v_k)$ be any fixed sequence of nonzero complex numbers. Now we define the following sequence spaces:

$$\begin{split} \ell_{\omega}(\Delta_{v}^{m},F,p,q,u) &= \left\{ x \in w(X) \colon \underset{k}{\sup} u_{k} [f_{k}(q(\Delta_{v}^{m}x_{k}))]^{p_{k}} < \infty \right\} \\ c\left(\Delta_{v}^{m},F,p,q,u\right) &= \left\{ x \in w(X) \colon \underset{k \to \infty}{\lim} u_{k} [f_{k}(q(\Delta_{v}^{m}x_{k} - \ell))]^{p_{k}} = 0, \\ \text{for some } \ell \right\} \\ c_{0}(\Delta_{v}^{m},F,p,q,u) &= \left\{ x \in w(X) \colon \underset{k \to \infty}{\lim} u_{k} [f_{k}(q(\Delta_{v}^{m}x_{k}))]^{p_{k}} = 0 \right\} \end{split}$$

For p_k = 1 for all k∈IN, we write these spaces as $\ell_{\omega}(\Delta_v^m, F, p, q)$, $c(\Delta_v^m, F, q, u)$ and $c_0(\Delta_v^m, F, q, u)$.

For $\mathbf{u}_{\mathbf{k}} = 1$ for all $\mathbf{k} \in \mathbb{IN}$, we write these spaces as $\ell_{\infty}(\Delta_{\mathbf{v}}^{\mathbf{m}}, F, \mathbf{p}, \mathbf{q})$, $c(\Delta_{\mathbf{v}}^{\mathbf{m}}, F, \mathbf{p}, \mathbf{q})$ and $c_{0}(\Delta_{\mathbf{v}}^{\mathbf{m}}, F, \mathbf{p}, \mathbf{q})$.

Theorem 2.1: Let $F = (f_k)$ be a sequence of moduli. Then $c_0(\Delta_v^m, F, p, q, u) \subset c(\Delta_v^m, F, p, q, u) \subset \ell_{\infty}(\Delta_v^m, F, p, q, u)$ and the inclusions are strict.

Proof: The first inclusion is obvious. We establish the second inclusion. Let $x \in c(\Delta_v^m, F, p, q, u)$. By definition of modulus function and inequality (1), we have

$$\begin{split} u_k \left[f_k \! \left(\left. q \left(\Delta_v^m x_k \right) \right) \right]^{p_k} & \leq D u_k \! \left[f_k \left(q \! \left(\Delta_v^m x_k - \ell \right) \right) \right]^{p_k} \\ & + D u_k \! \left[f_k \! \left(q \! \left(\ell \right) \right) \right]^{p_k} \end{split}$$

Now we may choose an integer K_l such that $q(1) \le K_l$. Hence, we have

$$\begin{aligned} u_k \big[f_k \big(q (\Delta_v^m X_k) \big) \big]^{p_k} &\leq D u_k \big[f_k \left(q (\Delta_v^m X_k - \ell) \right) \big]^{p_k} \\ &+ max \big[1, ((K_\ell) f_{\nu}(1))^H \big] \end{aligned}$$

Therefore, $x \in \ell_{\infty}(\Delta_{v}^{m}, F, p, q, u)$.

To show the inclusions are strict consider the following example.

Example 1: Let $f_k(x) = x$, $p_k = 1$, $\nu_k = 1$, $u_k = 1$ for all $k{\in}IN$ and q(x) = |x|. Then, the sequence $x = (k^m)$ belongs to $c(\Delta_v^m, F, p, q, u)$ but does not belong to $c_0(\Delta_v^m, F, p, q, u)$ and the sequence $x = ((-1)^k)$ belongs to $\ell_{\infty}(\Delta_v^m, F, p, q, u)$ but does not belong to $c(\Delta_v^m, F, p, q, u)$. Therefore the inclusions are strict.

Theorem 2.2: Let the sequence (p_k) be bounded. Then $\ell_{\omega}(\Delta_{v}^{m},F,p,q,u)$, $c(\Delta_{v}^{m},F,p,q,u)$ and $c_{0}(\Delta_{v}^{m},F,p,q,u)$ are linear spaces over the complex field C.

The proof is easy and thus omitted.

Theorem 2.3: The space $c_0(\Delta_v^m, F, p, q, u)$ is a paranormed space, paranormed by

$$g\left(x\right) \! = \! \sum_{i=1}^{m} f_k(q(\gamma x_{\!\scriptscriptstyle k})) + \underset{k}{supu}_k [f_k(q(\Delta_v^m x_k))]^{p_k \! / \! M}$$

 $\label{eq:where M} \begin{array}{ll} \text{where } M = \text{max } (1, \ \sup_k, \ p_k); \ c(\Delta_v^m, F, p, q, u) \ \text{and} \\ \ell_{\omega}(\Delta_v^m, F, p, q, u) \ \text{are paranormed by g if inf } p_k \!\!>\!\! 0. \end{array}$

The proof is routine verification by using standard arguments and therefore omitted.

Theorem 2.4: Let $F = (f_k)$ and $G = (g_k)$ be two sequences of moduli. For any two sequences $p = (p_k)$ and $t = (t_k)$ of strictly positive real numbers and seminorms q, q_1 and q_2 we have

- (i) $Z(\Delta_v^m, G, p, q, u) \subset Z(\Delta_v^m, F \circ G, p, q, u)$
- $(ii) \quad Z(\Delta_{\mathtt{v}}^{\mathtt{m}}, F, p, q, \mathfrak{u}) \cap Z(\Delta_{\mathtt{v}}^{\mathtt{m}}, G, p, q, \mathfrak{u}) \subseteq Z(\Delta_{\mathtt{v}}^{\mathtt{m}}, F + G, p, q, \mathfrak{u})$
- $(iii) \quad Z(\Delta_v^m,F,p,q,u) \cap Z(\Delta_v^m,F,p,q_2,u) \subset Z(\Delta_v^m,F,p,q_1+q_2u)$
- (iv) If q_1 is stronger than q_2 then $Z(\Delta_v^m, F, p, q, u) \subset Z(\Delta_v^m, F, p, q, u)$
- (v) If q_1 is equivalent to q_2 then $Z(\Delta_v^m, F, p, q, u) = Z(\Delta_v^m, F, p, q, u)$
- (vi) $Z(\Delta_{v}^{m}, F, p, q, u) \cap Z(\Delta_{v}^{m}, F, t, q, u) \neq \emptyset$

where
$$Z = 1_{\infty}$$
, c or c_0 .

Proof: (i) We prove for $Z = c_0$ and the rest cases follows similarly. Let $x \in c_0(\Delta_y^m, G, p, q, u)$ so that

$$\mu_k = u[g(q(\Delta_v^m x_k))]^{p_k} \rightarrow 0, (k \rightarrow \infty)$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that f_k (t) $< \varepsilon$ for $0 \le t \le \delta$. We write

$$s_1 = \{k \in IN : g_k (q(\Delta_v^m X_k)) \le \delta\}$$

$$s_{\gamma} = \{k \in I : g(q(\Delta_{\nu}^{m} X_{\nu})) > \delta\}$$

If $x \in c_n(\Delta_v^m, G, p, q, u)$, then for $g_k(q(\Delta_v^m x_k)) > \delta$

$$g_{_{k}}(q(\Delta_{_{\mathtt{w}}}^{m}x_{_{k}}))\!<\!g_{_{k}}(q(\Delta_{_{\mathtt{w}}}^{m}x_{_{k}}))\delta^{-1}\!<\!1\!+\![g_{_{k}}(q(\Delta_{_{\mathtt{w}}}^{m}x_{_{k}}))\delta^{-1}]$$

where $k \in s_2$ and [n] denotes the integer part of n. Given $\varepsilon > 0$, by definition of modulus function, we have, for $g_k(q(\Delta_v^m x_k)) > \delta$,

$$\begin{split} f_k(g_k(q(\Delta_v^m x_k))) &\leq \left(1 + \left[g_k(q(\Delta_v^m x_k))\right] \delta^{-1}\right) f_k(1) \\ &\leq 2 f_{\nu}(1) (g_{\nu}(q(\Delta_v^m x_{\nu}))) \delta^{-1} \end{split}$$

and hence,

$$\begin{split} u_{_{k}}[f_{_{k}}(g_{_{k}}(q(\Delta_{_{v}}^{m}x_{_{k}})))]^{g_{_{k}}} \leq & [2f_{_{k}}(1)\delta^{-1}]^{H}\mu_{_{k}} \\ < & \epsilon, (k \in s_{_{2}} \ k > k_{_{2}}), \end{split} \tag{2}$$

If $x \in c_0(\Delta_v^m, G, p, q, u)$, for $g_k(q(\Delta_v^m x_k)) \le \delta$,

$$f_k(g_k(q(\Delta_v^m X_k))) \le \varepsilon$$

where $k \in s_1$. Given $\varepsilon > 0$ if $k \in s_2$, we have

$$\begin{split} u_{k} [f_{\underline{k}}(g_{\underline{k}}(q(\Delta_{v}^{m}x_{k})))]^{p_{k}} &\leq u_{k} \max(\epsilon^{\inf_{k}p_{k}}, \epsilon^{\sup_{k}p_{k}}) \\ &\leq \epsilon_{k}(k \in s_{l}, \, k \geq k_{l}) \end{split} \tag{3}$$

$$\begin{split} &\text{from}\quad (2)\quad \text{and}\quad (3)\quad \text{for}\quad \text{every}\quad k> \text{max}\{k_{\text{l}},k_{\text{2}}\},\\ &u_{k}[f_{\underline{k}}(g_{\underline{k}}(q(\Delta_{\nu}^{m}x_{k})))]^{p_{k}}<\epsilon.\ \ \, \text{Hence},\quad x\in c_{_{0}}(\Delta_{\nu}^{m},F\circ G,p,q,u).\\ &\text{Thus},\ c_{_{0}}(\Delta_{\nu}^{m},G,p,q,u)\subset c_{_{0}}(\Delta_{\nu}^{m},F\circ G,p,q,u). \end{split}$$

(ii) It follows from the following inequality

$$\begin{split} u_{_k} \big[(f_{_k} + g_{_k}) (q(\Delta_{_v}^m x_{_k})) \big]^{\rho_k} &\leq D u_{_k} \big[f_{_k} (q(\Delta_{_v}^m x_{_k})) \big]^{\rho_k} \\ &+ D u_{_k} \big[g_{_k} (q(\Delta_{_v}^m x_{_k})) \big]^{\rho_k} \end{split}$$

(iii) It follows from the following inequality

$$\begin{split} u_k \big[f_k(q_i + q_2) \left(\Delta_v^m x_k \right) \big]^{p_k} &\leq D u_k \big[f_k \big(\left. q \left(\Delta_v^m x_k \right) \right) \big]^{p_k} \\ &+ D u_k \big[g_k \left(q_i \left(\Delta_v^m x_k \right) \right) \big]^{p_k} \end{split}$$

(iv), (v) and (vi) follow obviously.

Theorem 2.5: Let (X, q) be a complete seminormed space. Then, the spaces $\ell_{\infty}(\Delta_v^m, F, p, q)$, $c(\Delta_v^m, F, p, q)$ and $c_0(\Delta_v^m, F, p, q)$ are complete with the paranorm

$$g(x) = \sum_{i=1}^{m} f_{k}(q(v_{i}x_{i})) + \sup_{k} [f_{k}(q(\Delta_{v}^{m}x_{k}))]^{p_{k}^{m}}$$

Proof: We give the proof for $\ell_{\infty}(\Delta_{\nu}^{m}, F, p, q)$ only. The other cases can be proved in a similar way. Let (x^{s}) be a Cauchy sequence in $\ell_{\infty}(\Delta_{\nu}^{m}, F, p, q)$ Then,

$$g(x^s - x^t) \rightarrow 0 ass, t \rightarrow \infty$$

Then for each $\varepsilon > 0$, there exists $n_0 \in IN$ such that $g(x^s-x^t)<\varepsilon$, for all $s,t>n_0$.

Hence,
$$\begin{split} &f_k(q(v_ix_i^s-v_ix_i^t))\!<\!\epsilon\quad (i\!\leq\! m)\quad \text{and} \\ &[f_k(q(\Delta_v^m(x_k^s-x_k^t))]^{p_k^t\!\!M}\!<\!\epsilon, \text{ for all } s,\!\!t\!\!>\!\!n_0 \text{ and for each } k\\ &\text{Since each } f_k \text{ is a modulus then } &q(x_i^s-x_i^t)\!<\!\epsilon\,(i\!\leq\! m)\\ &\text{and } &(q(\Delta_v^m(x_k^s-x_k^t)))\!<\!\epsilon, \text{ for all } s,\!\!t\!\!>\!\!n_0. \end{split}$$

Hence (x_k^s) (i $\leq m$) and $(\Delta_v^m(x_k^s))$, for all $k\in IN$, are Cauchy sequences in X. Since X is complete, they are convergent in X. Suppose that $x_i^s \to x_i$ (i $\leq m$) and $\Delta_v^m(x_k^s) \to y_k$, for all $k\in IN$, as $s\to\infty$.

Then, we can find a sequence (x_k) such that $y_k=\Delta_v^m x_k$ for all $k{\in}\mathrm{IN}.$ These x_k 's can be written as

$$\begin{split} x_k &= v_k^{-1} \sum_{j=1}^{k-m} (-1)^m \binom{k-j-1}{m-1} y_j \\ &= v_k^{-1} \sum_{j=1}^k (-1)^m \binom{k+m-j-1}{m-1} y_{j-m} \end{split}$$

where $y_{1-m} = y_{2-m} = ... = y_0 = 0$ for sufficiently large k, for instance, k>2m. Now using the continuity of f_k , we have for all s>n₀,

$$\sum_{i=1}^m f_k(q(\gamma x_i^s - \underset{t \to \infty}{lim} \gamma x_i^t)) + \sup_k [f_k(q(\Delta_v^m(x_k^s - \underset{t \to \infty}{lim} x_k^t))]^{p_k M} \leq 2\epsilon$$

Hence, $g(x^s-x)\to 0$ as $r\to \infty$. Since (x^s-x) and $(x^s)\in \ell_\infty(\Delta_v^m,F,p,q)$ and the sequence space $\ell_\infty(\Delta_v^m,F,p,q)$ is linear, we have

$$x = x^s - (x^s - x) \in \ell_{\infty}(\Delta_v^m, F, p, q).$$

Therefore $\ell_{\infty}(\Delta_{v}^{m}, F, p, q)$ is complete.

Theorem 2.6: Let $m\ge 1$ then for all $0\le i\le m$, $Z(\Delta_v^i,F,q,u)\subset Z(\Delta_v^m,F,q,u)$ where $Z=1_\infty$, c or Q_0 . The inclusions are strict.

Proof: We show that $\ell_{\infty}(\Delta_{v}^{i-1}, F, q, u) \subset \ell_{\infty}(\Delta_{v}^{i}, F, q, u)$ for any $0 \le i \le m$. It follows from the following inequality

$$u_{k}[f_{k}(q(\Delta_{v}^{i}x_{k}))] \le u_{k}[f_{k}(q(\Delta_{v}^{i-1}x_{k}))] + u_{k}[f_{k}(q(\Delta_{v}^{i-1}x_{k+1}))]$$

that $(x_k) \in \ell_{\infty}(\Delta_v^{i-1}, F, q, u)$ implies $(x_k) \in \ell_{\infty}(\Delta_v^{i}, F, q, u)$.

On applying the principle of induction, it follows that

$$\ell_{\infty}(\Delta_{\nu}^{i-1}, F, q, u) \subset \ell_{\infty}(\Delta_{\nu}^{m}, F, q, u), \text{for } i=0,1,2,...,m-1.$$

The proof for the rest cases are similar.

To show that the inclusions are strict consider the following example.

Example 2: Let X=C, $f_k(x)=x$, $p_k=1$, $\nu_k=1$, $u_k=1$ for all $k{\in}IN$ and q(x)=|x|. Then, the sequence $x{=}(k^m){\in}Z(\Delta_v^m,F,q,u)$ but $x{\notin}Z(\Delta_v^{m{-}1},F,q,u)$ for $Z=1_{\infty}$ and c. Under the above restrictions, consider the sequence $(x_k)=(k^{m{-}1})$. Then $(x_k){\in}Z(\Delta_v^m,F,q,u)$, but $(x_k){\notin}Z(\Delta_v^{m{-}1},F,q,u)$ for $Z=c_0$. Therefore the inclusions are strict.

Theorem 2.7: Let $0 \le p_k \le t_k$ and (t_k/p_k) be bounded. Then $Z(\Delta_v^m, F, t, q) \subset Z(\Delta_v^m, F, p, q)$ where $Z = 1_\infty$ c or c_0 .

$$\begin{split} & \textbf{Proof:} \ \, \text{We shall prove only} \ \, c_0(\Delta_v^m,F,t,q) \subset c_0(\Delta_v^m,F,p,q) \; . \end{split}$$
 The other inclusions can be proved similary. Let $& x \in c_0(\Delta_v^m,F,t,q). \quad \text{Write} \quad w_k = & [f_k(q(\Delta_v^m x_k))]^{t_k} \quad \text{ and } \\ & \lambda_k = \frac{p_k}{t_*} \text{, so that } 0 < \lambda < \lambda_k \leq 1 \text{ for each } k. \end{split}$

We define the sequences (r_k) and (s_k) as follows:

Let $r_k = w_k$ and $s_k = 0$ if $w_k \ge 1$ and let $r_k = 0$ and $s_k = w_k$ if $w_k < 1$. Then it is clear that for all $k \in IN$, we have $w_k = r_k + s_k$, $w_k^{\lambda_k} = r_k^{\lambda_k} + s_k^{\lambda_k}$. Now it follows that $r_k^{\lambda_k} \le r_k \le w_k$ and $s_k^{\lambda_k} \le s_k^{\lambda_k}$. Now we have

$$\underset{k}{lim}w_{k}^{\lambda_{k}} \leq \underset{k}{lim}w_{k} + (\underset{k}{lim}s_{k})^{\lambda}$$

This implies that $x\in c_0(\Delta_v^m,F,p,q)\quad \text{ and this }$ completes the proof.

Theorem 2.8: For any two sequences $p=(p_k)$ and $t=(t_k)$, we have $c_0(\Delta_v^m,F,t,q)\subset c_0(\Delta_v^m,F,p,q)$ if and only if $\liminf \frac{p_k}{t_k}>0$.

Proof: If we take $y_k = f_k(q(\Delta_v^m x_k))$ for all $k \in IN$, then by using the same technique of Lemma 1 of Maddox [12], it is easy to prove the theorem.

The following result is a consequence of the above theorem.

Theorem 2.9: For any two sequences $p = (p_k)$ and $t = (t_k)$, we have $c_0(\Delta_v^m, F, t, q) = c_0(\Delta_v^m, F, p, q)$ if and only if

$$liminf \frac{p_k}{t_k} \ge 0 \ \ and \ liminf \frac{t_k}{p_k} \ge 0 \ .$$

Theorem 2.10: The sequence spaces $c(\Delta_v^m, F, q, u)$ and $c_0(\Delta_v^m, F, q, u)$ are nowhere dense subsets of $\ell_m(\Delta_v^m, F, q, u)$.

Proof: It follows from Theorem 2.1.

Theorem 2.11: The sequence spaces $Z(\Delta_v^m, F, p, q, u)$ for $Z = 1_{sp}$ c or c_0 are not solid for m > 0.

Proof: Let X=C, $f_k(x)=x$, $p_k=1$, $u_k=1$, $v_k=1$, for all $k{\in}IN$ and q(x)=|x|. Then $(x_k)=(\ {\it I\!\!P})\in \ell_{\omega}(\Delta_v^m,F,p,q,u)$ but $(\alpha_k x_k)\not\in \ell_{\omega}(\Delta_v^m,F,p,q,u)$ when $\alpha_k=(-1)^k$ for all $k{\in}IN$. Hence $\ell_{\omega}(\Delta_v^m,F,p,q,u)$ is not solid. The other cases can be proved on considering similar examples.

Theorem 2.12: The sequence spaces $Z(\Delta_v^m, F, p, q, u)$ for $Z = 1_{\infty}$, c or c_0 are not symmetric for m>0.

Proof: Under the restrictions on X, p, f_k , q, u and v as given in the proof of Theorem 2.11, consider the sequence $(x_k) = (k^m)$, then $x \in Z(\Delta_v^m, F, p, q, u)$ for $Z = 1_\infty$, c or q_0 . Let (y_k) be a rearrangement of (x_k) , which is defined as follows:

$$(y_k) = \{ x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, x_{36}, x_8, x_{49}, x_{10}, ... \}$$

Then $(y_k) \notin Z(\Delta_y^m, F, p, q, u)$ for $Z = 1_\infty$, c or c_0 .

Theorem 2.13: The sequence space $c_0(\Delta_v^m, F, p, q, u)$ is not sequence algebra.

Proof: Under the restrictions on X, p, f_k , q, u and v as given in the proof of Theorem 2.11, consider the sequence $x = (k^{m \cdot 2})$ and $y = (k^{m \cdot 2})$, then $x,y \in c_0(\Delta_v^m,F,p,q,u)$ but $x,y \notin c_0(\Delta_v^m,F,p,q,u)$.

Theorem 2.14: The sequence spaces $Z(\Delta_v^m, F, p, q, u)$ for $Z = 1_{\infty}$, c or c_0 are not convergence free.

Proof: Let X = C, $f_k(x) = x$, for all $x \in [0,\infty)$, m = 1, $p_k = 1$, $u_k = 1$, $v_k = 1$, for all $k \in IN$ and q(x) = |x|. Consider the sequence $x_k = 1$, for all $k \in IN$. Then $(x_k) \in Z(\Delta)$ for $Z = 1_{\infty}$, c or c_0 . Consider the sequence (y_k) defined as $y_k = k^2$ for all $k \in IN$. Then the sequence (y_k) neither belongs to $c_0(\Delta)$ nor to $c(\Delta)$ nor to $c(\Delta)$. Hence the sequence spaces are not convergence free.

The authors wish to express their thanks to Professor Rifat ÇOLAK for their suggestions and guidance in the preparation of this paper.

REFERENCES

- Altin, Y., 2009. Properties of some sets of sequences defined by a modulus function. Acta Mathematica Scientia, 29 (2): 427-434.
- Bektas, Ç.A. and R. Çolak, 2003. Generalized difference sequences defined by a sequence of moduli. Soochow J. Math., 29 (2): 215-220.
- Bektas, Ç.A. and R. Çolak, 2007. Generalized strongly almost summable difference sequences of order m defined by a sequence of moduli. Demonstratio Mathematica, 40 (3): 581-591.

- Et, M., 2006. Spaces of Cesáro difference sequences of order r defined by a Modulus function in a locally convex space. Taiwanese Journal of Mathematics, 10 (4): 865-879.
- Kizmaz, H., 1981. On certain sequence spaces. Canad. Math. Bull., 24: 169-176.
- Et, M. and R. Çolak, 1995. On some generalized difference sequence spaces. Soochow J. Math., 21: 377-386.
- Et, M. and A. Esi, 2000. On Köthe-Toeplitz duals of generalized difference sequence spaces. Bull Malaysian Math. Sc. Soc., 23 (2): 25-32.
- Ruckle, W.H., 1973. FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math., 25: 973-978.
- Maddox, I.J., 1986. Sequence spaces defined by a modulus. Math. Proc. Cambridge Philos. Soc., 100: 161-166.
- Kamthan, P.K. and M. Gupta, 1981. Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics, 65, Marcel Dekker Incorporated, New York.
- Maddox, I.J., 1970. Elements of Functional Analysis, Cambridge University Press, Cambridge, London and New York.
- 12. Maddox, I.J., 1967. Spaces of strongly summable sequences, Quart J. Math Oxford, 2 (18): 345-355.