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Abstract: In this paper, we define the generalized difference sequence spaces

£, (AT F.p.qu),

c¢fAZF.p,q.u) and ¢ (AT F.p,q.u). We give various properties and some inclusions on this spaces.

Furthermore we study some of their properties, such as solidity, symmetricity, convergence free etc.

AMS subject classification: 40C05 . 40H05

Key words: Difference sequence spaces . sequence of Moduli . seminorm

INTRODUCTION

Let w be the set of all sequences of real or complex

mumbers and 1, ¢ and cp be the linear spaces of
bounded, convergent and null sequences x = (x) with
complex terms, respectively, normed by

L, =sui

where ke IN = {1,2,...}, the set of positive integers.
The difference sequence spaces

XA)={x=(x) :AxeX}

first defined by Kizmaz [5], where Ax = (Ax) =
(311 ) and X is any of the sets X = ¢y, ¢ and 1. The
notion of difference sequence spaces was generalized
by Et and Colak [6] as follows:

X(AM)={x=(x ) A"xe X}

for X =q. ¢ and 1. where m cIN, A’x = (34,
Aka — (Am-lxk_Am-lka )

The sequence spaces X(A™ were further
generalized by Et and Esi [7] to following sequence
spaces. Let v = (v) be any fixed sequence of nonzero
complex numbers. Then

X(AT)I={x=(x) (A7x,)e X}

for X =1, ¢ and ¢y, where

Ax=(yx)

AR = (K VY L Kid)
and
ATX, = (Avmilxk - Awmilxku)
and so that

A function f[O0)— [Oe0) is called a modulus
function if

1) f=01ifft=0,

(1) ft+ruwy < fO)+ flu), vt, uz0

(u1) f1is increasing,

(iv) fis continuous from the right at 0.

Since o)-fy)|Efxy]), it follows from condition
(iv) that f is continuous on [0,c0). A modulus may be
unbounded or bounded.

Ruckle [8] used the idea of a modulus function to
construct some spaces of complex sequences. Maddox
[9] and Et [4] investigated and discussed some
properties of some sequence spaces defined using a
modulus function f Recently Bektas and Colak [2, 3]
used a sequence of moduli F = () to define some
sequence spaces and introduced some new sequence
spaces by using a sequence of moduli F = ()

Definition 1.1: [10] Let X be a sequence space. Then X
15 called:
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(1) Solid (or normal), if (o4 )eX whenever (x)eX
for all sequences (oy) of scalars with oy |<1.

(i) Symmetric if (x)eX implies (X)X, where (k)
is a permutation of TN.

() A sequence
(ypeX.

(iv) Convergence free if (vi)eX whenever (x)e¥ and

algebra 1f (x), (yp)eX mmplies

v=60 whenever x,=0.

Let U be the set of all real sequences u = (ug) such

that w0 for all keIN.
We use the following mequality throughout this paper

i + b [ <Dfa,f* +[b.] ") 1)
where a and by are complex numbers, D = max (1,2G'1)
and H = supypy <o [11].

MAIN RESULTS

Definition 2.1: Let F = (f) be a sequence of moduli, X
be a seminormed space over the field C of complex
numbers with the seminorm ¢, p = (px) be a sequence of

strictly positive real numbers and ueU. By w(X) we
shall denote the space of all sequences defined over X.

Let v = (vg) be any fixed sequence of nonzero complex
mumbers. Now we define the following sequence
spaces:

£ (A Fp.qu)= {x IS W(X):stpuk[i’"k (q(Af}(k))]pk < oo}

x e w(X):limu, [f, (a(Ax, — O)f* = 0,

}

For py =1 for all keIN, we write these spaces as
£LATFp.a), oA7.F.qu and ¢,(A7.F.q.u).

For w =1 for all keIN, we write these spaces as
£ (A7.F.p.g), o(AT.F.p.q) and ¢ (A7.F,p.q).

¢ (A7 F.p.q.u)=
for some £

(A7 F.p.q.u)={ x& w0 Limu,If, (a(a7x, )T =0}

Theorem 2.1: Let F = (i) be a sequence of moduli.
Then ¢,(A7.F.p.q.wc oA F.p.q.u) < £,(A7.F.p.q.u)

and the inclusions are strict.

Proof: The first inclusion 1s obvious. We establish the
second inclusion. Let xec(A™F,p,qu). By definition

of modulus function and inequality (1), we have

u [f{ q(ATx, )™ < Dy [f, (q(a7x, — O)]*
+ Duy [£ (q(e)]™

891

Now we may choose an integer K; such that
q(1 =K. Hence, we have

u, [£{q AT D™ < Du,[f, (q(ATx, — O)]*
+max[1{(K ), (1)"]

Therefore, xe¢_(A".F.p.q.u).

To show the inclusions are strict consider the
followimng example.

Example 1: Tet filx) =x p =1, v = 1, . =1 for all
keIN and q(x) = [x|. Then, the sequence x K™
belongs to c¢(A¥.F,p,q,u) but does not belong to

¢, (AT, F.p,q.u) and the sequence x = ((-1 )k) belongs to
£ (A" F.p.q.u) but does not belong to c¢(AT.F,p.q.u).

Therefore the inclusions are strict.

Theorem 2.2: Let the sequence (pg) be bounded. Then
£ (A™ Fpqu), cA”F.p,qu) and ¢, (A", F,p,qu) are

linear spaces over the complex field C.
The proof 1s easy and thus omitted.

Theorem 2.3: The ¢, (A™,F.p,q.u) is

paranormed space, paranormed by

space a

800= T E,(a(y0) +supty (oA, )

i=1

where M
£ (A" F.p.qu) are paranormed by g if inf pp=0.

max (1, supe, po); o(A%.F.p.q.uw and

The proof is routine verification by using standard
arguments and therefore omitted.

Theorem 2.4: Let F = (fy) and G = (gx) be two
sequences of moduli. For any two sequences p = (pi)
and t = (t) of strictly positive real numbers and
seminorms g, q; and q; we have

(1) Z(ATGp.qu) © ZATF =G,p,q.u)
(1)  Z(AT.F.p.qu) M ZA.G.p,q.u) € ZIATF+G.p.q.u)
(1) Z(A7F.p.q.u) MZ(ALF,p.q,,m) = Z(AT.F.p.q, +q,1)
(1v) If q; 1s stronger than q; then

Z(AYLF.p,q.u) < Z(AT.F.p.q,u)
(v) Tf q; is equivalent to g, then

Z(A}.F.p.qu) =Z{A7.F.p.q,u)
(vi) Z(AD.F.p.q,u) Z{AZ F.t,q,u)# &

where Z =1, c orc,.
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Proof: (1) We prove for Z = ¢y and the rest cases
follows siumilarly. Let x € ¢ (A} .G,p,q,u) sothat

w=ufgf{ qAr, )% — 0,0k —0)

Let €20 and choose & with 0<8<1 such that f (O<e
for 0=t<8. We write

s, ={kelN:g {qlATx, <8}
s, = (ke IN: g q(A7%,))> B)
If x € ¢,(A®,G,p,q.u) , then for g, (q(A®x,)) >3
2:(q(ATx,)) <g (q(ATX )8 <1+[g, (qATX,)T]

where kes, and [n] denotes the integer part of n. Given
€>0, by defimtion of modulus function, we have, for
g (qlATx ))> 5,

f, (g, (a(ATx N < (1 +[g, QAT D ), (1)

< 2f, (1)(g, (q(AZx, )3
and hence,

u, [ (@ a(ATx DT <[2£, (13 Ty,

<e(kes, k>k), @
If x ¢ (AT.G,p.q.u), for g, (q(ATx, ) <8,
f (g (@ATx,)))<e
where kes,. Givene>0ifkes,, we have
wlf{ef QATX Y < umax(E™ ™ £ )

<glkes,k>k)

from and for

@ (3) every
u [ 8 aAPXD* <5 Hence, xe(A%FoG,p,qu).

Thus, ¢,(AT,G,p,q,u) Co,(AT, Fo G,p,q.u).

krmax{k,k,}.

(ii) Tt follows from the following inequality

u,[(f, +g,)(@Aix, DI < Du,[f, (q(ATx, )]*
+Du,[g (qayx, )™

(iii) It follows from the following inequality

892

u [f,(q, + q) (ATx,)]™ < Du, [f, (q (A, DT
+Du, [g, (g, (A%, NT*

(iv), (v) and (vi) follow obviously.

Theorem 2.5: Let (X, q) be a complete seminormed
space. Then, the spaces £_(A™.F.p.q), ¢{A™,F,p.q) and

¢, (AT F,p.q) are complete with the paranorm

800= S0y sl (a(arx

Proof: We give the proof for £, (A" .F,p.q) only. The

other cases can be proved in a similar way. Let (x) be a
Cauchy sequence in £_{A”,F.p,q) Then,

g(x’—x')—> 0ass,t > o

Then for each £-0, there exists mpeIN such that g
(e, for all s,t>11q.

Hence, flqlyx; —vx))<sg (1=m) and
[£.(qlAD (x] — xf{))]pkm <g, for all s,t>ng and for each k
Since each fi is a modulus then q(x/-x)<e(i=m)
and (q(A™ (%} —x})))<e, forall s,t>n,.

Hence () (i<m) and (AT(x;)), for all le=TN, are
Cauchy sequences in X. Since X is complete, they are
convergent in X. Suppose that x’ —x, (<m) and

AT(x,) — ¥, forallkeIN, as s —»oo,

Then, we can find a sequence (x;) such that
v, = ATx, forallkeIN. These x"s can be written as

ko k—j—1
— _ 1y
s Sy

LD

where Vi.m = V2.m =...=YVo = 0 for sufficiently large k, for

k+m—j -1

lk
=V -1®
« 1) 1

=1

instance, k>2m. Now using the continuity of f, we
have for all s>ng,

a0 Tim )+ suplf, (q(AT(x; ~Tmx )+ < 2s

i=]

Hence, g(xX’x) >0 as 1>, Since (¥-x) and
(xyei, (A?,F,p,q) and  the
£.(A" F.p.q) 1s linear, we have

sequence space

X=X~ (X'~ X) £, (ALF.p.q).
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Therefore £_(AT.F,p.q) is complete.

Theorem 2.6: Let m=1 then for all O<i=m,
Z{NF,q.u) c Z({A" F,q,u) where 7 = 1, ¢ or . The

inclusions are strict.

i-1 F

L]

Proof: We show that £_(A qu) c £ (AL F.q.u) for

any O<i<m. Tt follows from the following inequality

u [ a (A, x D] < u £ (AT D1+ v [E (A %, )]

i
v

that (x,)€£,(A, F,qu) implies (x,)€ £, (A, . F.qu).

On applying the principle of induction, it follows that

£ (AL

R

q.u) < £, (AT, F.q.u),fori=0,1,2,...,m—1.

The proof for the rest cases are similar.
To show that the inclusions are strict consider the
following example.

Example 2: Let X=C, A =x =1, ve=1Luy=1
for all keIN and q(x) = [x|. Then, the sequence
x=(k™)e Z{A® F,q,u) but xe Z{(A®™" F.qu) for Z=1,
and ¢. Under the above restrictions, consider the
sequence (x) = (k™). Then (x,)e Z(AT.F,q.u), but
(x)e Z{A™ F,q,u) for 7 = g. Therefore the inclusions

are strict.

Theorem 2.7: Let 0<pi<t, and (tx/px) be bounded. Then
ZIAR Pty © Z(A™,F,p,q) where Z =1, ¢ or ¢p.

Proof: We shall prove only ¢ (A" F,t.q) < ¢,(A™,F.p.q) .

The other inclusions can be proved similary. Let
xeq(AnFtq). Write  w, =[f(q(A"x,))]*

A= It)—k , so that 0<2=2.<1 for eachk.

k

and

We define the sequences (1) and (sy) as follows:
Let 1 wi and s = 0 1if wi=1 and let g, = 0 and
s = Wi if wi<<l. Then it is clear that for all k=IN, we

have w = ftsg, Wik :rtk +stk. Now it follows that

A
ik <1, <w, and s;* <s* Now we have
. lk . . %
hkmwk ghkmwk + (hkmsk)

This

completes the proof.

umplies  that xec(AT,F,p.q) and ths

893

Theorem 2.8:For any two sequences p = (py) and

t = (), we have ¢, (AT.F.tayc ¢ (A7LF,p.q) if and

only if liminf 22> 0.

3

Proof: If we take y, =f{ q{AZx,)) for all keIN, then by

using the same techmique of Lemma 1 of Maddox [12],
it is easy to prove the theorem.

The following result 1s a consequence of the above
theorem.

Theorem 2.9: For any two sequences p = (pi) and t =
(ty), we have ¢, (AT.F.t,q)= ¢, (A7, F,p,q) if and only if

liminf2< > 0 and liminfae> 0.
" Px

Theorem 2.10: The sequence spaces ¢(A”,F,q.u) and

¢, (AY,F.q.m) of
£,(A7,F.q.u).

w

are nowhere dense subsets

Proof: It follows from Theorem 2.1.

Theorem 2.11: The sequence spaces Z(A™,F,p,q,u) for

Z =14, ¢ or ¢y are not solid for m=0.

Proof: Tet X =C, X =x. =1, u =1, w =1, for
all keIN and q(x) = [x|. Then (x)=(¥)eZ (A" F.p.q.u)
but {(o.x,)e ¢ (A F.p,qu) when oy = (-1 for all
keIN. Hence £_(AT.F p,q.u) is not solid. The other

cases can be proved on considering similar examples.

Theorem 2.12: The sequence spaces Z(A™,F.p,q,u) for

Z =14, ¢ or ¢y are not symmetric for m=>0.

Proof: Under the restrictions on X, p, fi, ¢, uand v as
given i the proof of Theorem 2.11, consider the

sequence () = (k™), then x e Z(A™F,p.q,u) for Z = 1,
¢ or G. Let (yi) be a rearrangement of (x), which is
defined as follows:

(yk): {X1:~X23X-4>X-3>Xg »Xe X Xe»

R55¥5 Xyg Rgy Kags Xigoere}

Then (y, )¢ Z(A™ F,p,qu) for Z =1, ¢ or ¢.

m
v

Theorem 2.13: The sequence space ¢ (AT,F,p,q,u) 1s

not sequence algebra.
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Proof: Under the restrictions on X, p, fx. q, uand v as
given i the proof of Theorem 2.11, consider the
sequence X &™) and vy (k™%),  then

X,y € ¢, (AR F.p,qu) but xyec,(AF,F,p.q.u).

Theorem 2.14: The sequence spaces Z(AT,F.p.q,u) for

7. =14, ¢ or ¢y are not convergence free.

Proof: LetX =C, fix) = %, br all x=[0«)m =1,
Pk = 1, w=1, w 1, for all leIN and qx) = x|
Consider the sequence % = 1, for all keIN. Then ()

eZ(A) for Z = 1., ¢ or g. Consider the sequence ()
defined as yy = K for all keIN. Then the sequence (y)
neither belongs to cp(Anor to c(A) nor to 1.4A). Hence
the sequence spaces are not convergence free.

The authors wish to express their thanks to
Professor Rifat COLAK for their suggestions and
guidance in the preparation of this paper.
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