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Abstract: This paper deals with testing the mean of a log-normal population. We apply a newly developed
Computational Approach Test (CAT), which is essentially a parametric bootstrap method. An advantage of the
CAT is that it does not require the explicit knowledge of the sampling distribution of the test statistic. The CAT
is then compared with three accepted tests- Cox method, modified Cox method and generalized p-value method
with Monte Carlo simulations. Our detailed studies indicate some interesting results including the facts that
the size and power of CAT is better than other methods. Using real data, we have illustrated our method. 
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INTRODUCTION For example, income data can often be considered to be

Accessibility computational resources has transform the original variable X and to base the inference
contributed  to  the  fundamental  researches  to be on the transformed variable Y = In(X). This means the
carried out in many areas of mathematical sciences. distribution from which our data emerges can be
Complex  theoretical  results   can   now   be  better approximated with a log-normal distribution. In this paper,
realized   through   numerical   computations   and/or we have discussed the hypothesis tests of the arithmetic
Monte Carlo  simulations  well  before  they  can be mean value of X in a log-normal distribution. It is true that
verified analytically. Recently, [1] developed a simple the median is often used to describe the average of
computational  technique,  called Computational skewed distributions like income distributions. However,
Approach  Test  (CAT),  for  hypothesis  testing there are situations when the arithmetic mean is a
problems.  The  CAT  looks  similar  to  parametric parameter of interest.
bootstrap,  but  has  some  great  differences-especially Let X denote the random variable that follows a log-
the  way  it  exploits the nuisance parameter(s). Among normal distribution with probability density function 
the noteworthy aspects of this method it is observed that:
(i) the CAT is a parametric method which does not require
the knowledge of the exact sampling distributions of the
parameter estimators; and as a result, (ii) the CAT can be
used even for a very complicated parametric model which
often relies heavily on the asymptotic results only. [2]
applied the CAT for Behrens-Fisher problem and
campared it with four test methods and [3] showed that
for the one-way ANOVA the CAT can provide almost as
much power as the classical F-test under the
homoscedastic normal model.

In applied statistics classes, we sometimes come
across data that need to be transformed prior to analysis.

log-normal. One way of analyzing such data is to log-

then . We let Y denote the log-

transformed, normally distributed variable Y = In(X), that
has mean value µ and variance .2

This article is organized as follows. In Section 2 we
propose a CAT for testing hypothesis for log-normal
mean. In Section 3, we illustrate our approach using a real
example. The size of our method is compared with other
existing methods in Section 4.
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Methods for Testing Mean: Assume that X , i = 1, ...n is a An approximate distribution for this statistics isi

independent random sample from log-normal population,
i.e. X  ~ log-normal (µ, ), where µ and  arei

2 2

unknown.Based on the above independent samples, the
our interested test is 

H  : M = M  vs. H  : M  (< or >) M0 0 A 0

where  . Note that the above test is

equivalent to the following test: 

(1)

where . Now, set Y  = In(X ),i i

i = 1,.....n. Then Y  ~ N(µ, ). Let  be a parameter ofi
2 (1)

interest and let the nuisance parameter  = (2) 2

There are several methods for testing (1). The
methods include a nave method based on transformation;
a method proposed by Cox; a modified version of the Cox
method; a method motivated by large-sample theory; and
a method based on generalized p-value. According to
simulation results the Cox method, modified Cox method
and generalized p-value are better than other methods.
Therefore, we consider these three methods and compare
them with our proposed CAT.

Cox Method and Modified Cox Method:Denote the sample
mean and sample variance of Y with   and ,

respectively, where 

An estimation for  is  and an(1)

estimation for the variance of  is given by 

 Cox has suggested that a test statistic for

hypothesis test (1) can be derive as[4, 5]

standard normal distribution. Therefore, we can reject

if |Z| > z  where z  is the upper -level cut-off pointa/2 a/2

standard normal distribution. Also, we can use t-student,
with  n-1 degrees  of freedom. Therefore, we reject  if

|Z| > t , where t , is the upper -level cut-off pointa/2,n-1 a/2,n-1

t -distribution.n-1

Generalized   P-value:   Generalized   p-value   can  be
used for inference about parameters when there is
nuisance  parameter. [6] suggested the following
procedure  for  computing   a   generalized   p-value   for
the  log-normal  mean; For  a  given  dataset x ,....x  set yi n i

= In (x ) i = 1,...n and calculate  and  from the data.i

For j = 1 to m,
Generate Z ~ N(0,1) and  Set 

Let I  = 1 if  otherwise I  = 1 Setj j

 then 2 {p ,1-p } is a Monte Carlomin m m

estimate of the generalized p-value for testing (1).

The Cat for Mean: Let X ,X ,....X ,  is a random sample1 2 n

from density f(x, ), where the functional form of f is
assumed to be known. The parameter  is partitioned as

 = ( , ) where  if available, is the nuisance(1) (2) (2)

parameter and  is the parameter of interest. The
methodology of the CAT for testing  at a
desired level a,  is given through the following steps, (for
more detail see [2].

Step 1: Obtain  the MLE of 

Step 2:

Assume that H  is true, i.e. set  Then0

find the MLE of  from the data again. Call this as(2)

the `restricted MLE of ' under H  denoted by(2)
0
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Generate artificial sample X ,X ,....X , i.i.d. from Step 1: Get the MLEs of the parameters as1 2 n

density  a large number of times (say,

M times). For each of these replicated samples,
recalculated the MLE of  = (  , ) (pretending(1) (2)

that  were unknown). Retain only the component
that is relevant for  Let these recalculated MLE(1)

values of   be  .(1)

Let be the ordered values of

1 I M.

Step 3:
For testing  against

(if  such an alternative is meaningful) at level a define
 Reject H  if  Alternatively,0

calculate the p-value as:

For testing  against   at

level a define  Reject H  if0

 Alternatively, calculate the p-value as: 

For testing H  :  =  against H  :0 0 0 0
(1) (1) (1) (2)

define the cut-off points as  and

Reject H   if0

Alternatively, the p-value is computed as: p =
2min(p , p ), where 1 2

The following steps give the implementation of our
proposed CAT for hypothesis testing of log-normal
problem.

, where 

Step 2:
Assume that  is true, i.e.  =  Then(1) (1)

0

, where  is unknown. The(2)

MLEs of the parameter  =  which are called the(2) (2)

restricted MLE' is 

Generate artificial sample Y ,.....Y  i.i.d. from1 n

 a large number of times (say,

M times). For each of these replicated samples,
recalculated the MLE of . Let these recalculated(1)

MLE values of . be(1)

( ).

Let  be the ordered values of 

1  1 M.

Step 3: The same as Step 3 above, with the exception that
's are used instead of  and  is used in place

of

The size and power computation for log-normal is done
through the following stages.

For fixed n,  and  , generate iid observations of(1) (2)

size from , where

Get  and

Set  =   (  value) and get the restricted MLE(1) (1)
0

of  as .0
(2)
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Table 1: Carbon monoxide levels at an oil refinery in California. Table 3: the power of tests when the nominal level is with.
Date 9/11/1990 10/4/1990 12/3/1991 12/3/1991 12/1/1991
CO level 12.5 20 4 20 25
Date 8/6/1992 9/10/1992 9/22/1992 3/30/1993
CO level 170 15 20 15

Table 2: The actual size of tests when the nominal level is
         n

----------------------------------------------------
µ Test 5 7 10 15
0  Cox 0.173 0.132 0.113 0.09

 Modified Cox 0.116 0.095 0.088 0.076
generalized 56 0.051 0.052 0.048
 CAT 0.025 0.033 0.041 0.042

0.5  Cox 0.169 0.129 0.107 0.089
 Modified Cox 0.112 0.091 0.083 0.074
generalized 0.058 0.054 0.054 0.054
 CAT 0.025 0.033 0.041 0.047

1  Cox 161 122 0.103 86
 Modified Cox 0.104 0.087 0.079 0.071
 generalized 0.058 0.053 0.051 0.047
 CAT 0.025 0.031 0.038 0.04

2  Cox 131 108 0.094 0.08
 Modified Cox 0.074 0.071 0.067 0.066
generalized 0.057 0.052 0.052 0.05
 CAT 0.019 0.029 0.039 0.041

µ Test 20 25 30 50
0  Cox 79 77 0.067 0.06

 Modified Cox 0.067 0.066 0.059 0.054
generalized 0.05 0.052 0.049 0.045
 CAT 0.045 0.049 0.046 0.044

0.5  Cox 79 0.078 0.069 0.06
 Modified Cox 0.069 0.067 0.061 0.055
generalized 0.051 0.053 0.053 0.049
 CAT 0.045 0.05 0.05 0.047

1  Cox 0.076 0.072 65 0.059
 Modified Cox 0.063 0.062 0.058 0.053
generalized 0.052 0.053 0.048 0.048
 CAT 0.047 0.049 0.046 0.045

2  Cox 66 0.065 65 0.053
 Modified Cox 0.055 0.055 0.056 0.049
 generalized 0.054 0.051 0.051 0.052
 CAT 0.048 0.045 0.047 0.05

Now generate Y  = (Y ,....Y ) i.i.d. from(1) (1) (1)
1 1

, I = 1,....M. Retain only the

MLE values of  be . Order these(1)

MLE values of  as   Get(1)

 and  (these are the

lower and upper a % cut-off points).
Now bring the  from the above Step-2 and

get

Repeat the above Step-1 through Step-5 a large
number of times (say, N times) and get the I values as
I ,I ,...I ,. Finally, the power is approximated by1 2 N

        n
---------------------------------------------------

µ Test 5 7 10 15
0  Cox 0.141 0.098 74 0.052

 Modified Cox 0.093 0.07 0.057 0.043
generalized 0.076 0.072 0.074 0.077
 CAT 0.049 0.055 0.063 0.069

0.5  Cox 0.1 0.09 0.069 0.052
 Modified Cox 0.075 0.062 0.053 0.042
generalized 0.079 0.077 0.079 0.085
 CAT 0.05 0.058 0.064 0.075

1  Cox 0.112 0.084 61 44
 Modified Cox 0.071 0.06 0.046 0.035
 generalized 0.089 0.089 0.094 0.103
 CAT 0.057 0.065 0.078 0.09

2  Cox 94 0.067 0.046 0.043
 Modified Cox 0.05 0.04 0.028 0.025
generalized 0.124 0.13 0.137 0.161
 CAT 0.075 0.095 0.111 0.143

µ Test 20 25 30 50
0  Cox 0.045 0.041 0.04 0.048

 Modified Cox 0.037 0.034 0.032 0.04
generalized 0.087 0.096 0.098 0.123
 CAT 0.08 0.089 0.09 0.118

0.5  Cox 0.039 0.038 0.041 0.059
 Modified Cox 0.032 0.03 0.033 0.051
generalized 0.097 0.104 0.107 0.142
 CAT 0.089 0.096 0.1 0.137

1  Cox 0.038 0.039 0.047 0.076
 Modified Cox 0.029 0.03 0.035 0.066
generalized 0.111 0.123 0.135 0.175
 CAT 0.1 0.114 0.126 0.168

2  Cox 0.058 0.082 101 0.196
 Modified Cox 0.038 0.062 0.079 0.176
 generalized 0.19 0.218 0.233 0.337
 CAT 0.168 0.201 0.216 0.32

Real Example: The data in Table 1 are nine measurements
of carbon monoxide levels in the air. The measurements
were made close to a California oil refinery in 1990 - 1993.
We  will  use these data to tests the mean carbon
monoxide  level.  Initial   investigations   of   these  data
and of other similar datasets, indicate that a log-normal
model may be appropriate. The data are posted at
lib.stat.cmu.edu/DASL/.

The p-values for Cox method, Modified Cox
method, generalized p-value method and CAT, for testing
H  :  = 3 vs H  :  3  are 0.2762, 0.3079, 0.1685 and0 1

(1) (1)

0.1878, respectively. Therefore, The four methods do not
reject H .0

Simulation Study: A simulation study is performed to
compare   size  and   power   test   of   four  methods; i)
the   Cox   method,   ii)   the   modified   Cox   method,  iii)
the    generalized   p-value   method   and   iv)    the   CAT.



(1) (1)
0 : = 3 . : 3AH vs H∗ ∗ ≠
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Table 4: The power of tests when the nominal level is with
         n

-----------------------------------------------------
µ Test 5 7 10 15
0  Cox 0.118 0.075 0.052 0.034

 Modified Cox 0.076 0.055 0.039 0.024
generalized 0.104 0.107 0.116 0.133
 CAT 0.073 0.086 0.101 0.122

0.5  Cox 0.108 0.069 0.045 0.03
 Modified Cox 0.068 0.048 0.034 0.02
generalized 0.116 0.125 0.134 0.154
 CAT 0.084 0.099 0.116 0.142

1  Cox 0.097 0.06 0.039 0.031
 Modified Cox 0.058 0.042 0.027 0.018
 generalized 0.133 0.145 0.158 0.189
 CAT 0.098 0.119 0.139 0.172

2  Cox 0.07 0.049 0.047 0.085
 Modified Cox 0.036 0.028 0.021 0.044
generalized 0.188 0.215 0.258 0.332
 CAT 0.139 0.176 0.224 0.304

µ Test 20 25 30 50
0  Cox 0.035 0.045 0.053 0.122

 Modified Cox 0.026 0.031 0.039 0.107
generalized 0.154 0.179 0.195 0.27
 CAT 0.145 0.168 0.185 0.263

0.5  Cox 0.039 0.056 0.07 0.163
 Modified Cox 0.025 0.039 0.051 0.145
generalized 0.183 0.217 0.233 0.327
 CAT 0.171 0.203 0.223 0.317

1  Cox 0.048 0.077 0.1 0.231
 Modified Cox 0.029 0.053 0.078 0.208
generalized 0.226 0.266 0.29 0.413
 CAT 0.209 0.251 0.276 0.401

2  Cox 0.139 0.216 0.283 0.521
 Modified Cox 0.094 0.166 0.242 0.494
 generalized 0.386 0.456 0.508 0.692
 CAT 0.358 0.433 0.488 0.679

For this propose we generated samples with sizes n=5, 7,
10, 15, 20, 25, 30, 50 from a log-normal distribution with
parameters µ = 0, 0.5, 1, 2 and  = 2(  - µ) 5,0002 (1)

replication were used.

We consider the test . The

actual size of tests are given in Table 2 and the power of
tests for  = 3.5,4 are given in Tables 3 and 4,(1)

respectively.

It can be observed from the below tables that the
actual size of test of CAT method is always less than the
nominal level, however, this can not be happen in the
other methods. In the generalized p-value method the
actual size is as good as the CAT method, but its actual
size is often more than the nominal level. The other two
methods are very liberal. Moreover, in all methods, the
actual size will be close to the nominal level, as the sample
size increases, (Table 2).
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