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Abstract: Tn this paper we propose two iterative methods for solving large Sylvester equations. These methods

reduce the given Sylvester equation to a Sylvester equation of smaller size by applying the weighted Arnold:
and block Amoldi process. The numerical tests report the effectiveness of these methods.

MSCQ010)NO: 65F30 - 65F50
Key words: Phrases - Krylov subspace -

- Refinement

Sylvester Equation -

Schur - Hessenberg - Weighted Arnoldi

INTRODUCTION

The Sylvester equation arise 1 a wide variety of
applications, for example in many areas of control
theory; see [1-4]. The existing numerical methods for
solving the Sylvester equation, such as Hessenberg
method is of theoretical interest only and solving the
Sylvester equation cammot be recommended for use in
practice. Also another group of these methods such as
Schur-Hessenberg method are not suitable for large
equation; see[3]. Like most large practical problem, their
matrices are very sparse. The standard methods, are well
known to destroy the sparsity of the problems and are
attractive if the matrices are of small size; see [6-8]. A
class of classical methods known as the Krylov subspace
methods, that include the block Arnoldi and weighted
Arnoldi, ete. have been found to be suitable for sparse
matrix computations.

The Existence and Uniqueness of Solutions: In most
numerical methods for solving matrix equation, it is
mmplicity assumed that the equation to be solved has a
unique solution and the methods then construct the
unique solution. Thus the results on the existence and
uniqueness of solutions of the Sylvester equations are of
importance. We present some of these results in this
seclion.

Theorem 2.1: Let A, A, .4, be the eigenvalues of 4 and
Yoo phn, be the eigenvalues of B. Then the Sylvester
equation X4 + BX = C has a unique solution X if and only

i A+up#0foralli=1, . mandj=1,.m Inother words,
the Sylvester equation has a unique solution if and only
1f 4 and — B do not have a common eigenvalue.

Proof: The Sylvester equation X4 + BY = C 15 equivalent
to the mm x mm linear system

Px=c¢ 2.1

Where P=([, o B)+ (4" o)),

_ _ T
X = veclX) = (X)X 15X 1 X000 Xz XX g i) 5

_ _ T
€= vec(C) = (X11,.C01:C12:Cotm o rContoe - -Cl o o)

Thus the Sylvester equation has a unique solution if
and only if P is nonsingular.

Here Wg Z 1s the Kronecker product of % and Z. We
known that if W = (w,) and Z = (z,) are two matrices of
orders p x p and » x r, respectively, then their Kronecker
product # @ Z 1s defined by

w L owppl o . WlpZ

Wy Wyl ... WZPZ
W&®z-= : :

Wl Wyl o Wy 2

Thus, the Sylvester equation X4+ BY = C has a
unique solution if and only if the matrix F of the system
(2.1) is nonsingular.
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Now, the eigenvalue of the matrix P are the mmn
numbers A, + u, where i = 1,..,nandj = 1,...,m. Since the
determinant of a matrix 1s equal to the products of its
eigenvalues, this means that P 1s nonsingular if and only
A, +u +0foralli=1,. .randj=1,.m

Weighted Krylov Method for Sylvester Equations:
As we already mentioned, so far many numerical
methods have been developed by different authors.
For example the Hessenberg-Schur method is now
widely used as an effective computational method
for the Sylvester equation DBut numerical stability
of this method has not been investigated As the
iterative methods are very efficient for the solution
thought
it will be good idea to create an iterative method for
solving the Sylvester equation X4 + BX = C where 4, B,
C € R The following methoed 1s based on reduction of
A and B to Hessenberg matrix with use of Weighted
Arnoldi method.

The basis U, = [u,...1,] and V, = [v,,...v,]
constructed by the Weighted Arnocldi process
respectively D-orthonormal and 5 - orthonormal, thus it
holds

of computational problems, therefore we

are

UlpU, =1, vipv, -1, Gl

Where U, V, e R™" (m < n) and p jcpvn are two

diagonal matrices.
The square Hessenberg matrices I, and #, whose

nenzeroe entries are the scalars &, and 4;, constructed by
the Weighted Amoldi process can be expressed under the

form

H, =U,DAU,, H, =V,DBV, (32)
Let X} be an imtial approximate solution of the Sylvester
equation and mtroduce the residual matrix

By = C-h A4+ BY),

We wish to determine a correction F, and obtain a
new approximate X, = X; + F,. The correction F; can be
written as

=PV Y, UTD

RO M

F

Where ¥,, € R™" 1s the solution of the Sylvester equation
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Tl + Hov =vIR . (3.3)

Thus, the new residual matrix becomes
R =CAXA+BX)
=C— (X, + Fpd + BXG + Fy))

=R, —(Fid + BFy)

=Ry - (DV, ¥, U D4+ BOV, ¥, UTD)

Multiplying above relation on the left by I, and on the
right by U/, we have

VaRL], = Voo, =W, DV, F L DA, +V, BDV, T 1, DU,)

Now by using (3.1), (3.2) and (3.3) we get

VIRU, =VIRU, — (¥, H, +HY, 1=0

In order to get ¥, € R™™", we need to solve the smaller
Sylvester equation (3.3). According to the results we can
develop an iterative method for the solving of the
Sylvester equation. The algorithm is as follows:

Algorithm 1(Weighted Krylov method):
(1) Start:choose an initial solution X, new dimension m
lesser than # and a tolerance €.

Compute R, = C (X4 + BX)).

Construct the D—orthonormal basis U, € R and
D orthonormal basis ¥, € B*" by the Weighted
Arnoldi process, such that

(2)
3)

H, =UlDAU H, =VDBV,
(4) Solve the  reduced Sylvester  equation
VB + E Yoy = Vit Rl -
(5) Set i =xg+Db%,7,,UhD -
(6) Compute residual matrix R, = C (X4 + BX)).
(7) Restart: if |[R)|| < £ Stop

else set.X; =X, R, = R, and goto 2.

Example 1: Consider the Sylvester equation X4 + BX =
C with n = 100. We apply Weighted Krylov method for
solving this matrix equation and take € = 107° In the
Table 1, we report the results for different value of m.



World Appl. Sci. J., 12 (6): 830-834, 2011

10 12 42 8 23 8 0 .. 0 In Table 1, the results show that by increasing the
18 10 12 42 8 23 & 0 0 values of m and I, the number of iterations decreases. The
16 18 . . . 0 last column of Table 1 also shows the decreasing of time
164 16 8 0 consumption. Note that the forth and fifth columns of this
13 164 23 8 table are the errors of the orthogonalization method.
The desired accuracy has been chosen as 107", but the
A=1161 13 8 23 . . _
model works well with any choice of 107
0 161 42 8
. 0 : : : - 12 42 Block Krylov Method for Large Sylvester Equations:
0 161 13 164 16 18 10 12 In this section we propose to show that the obtained
o 0 0 16l 13 164 16 18 10 approximate sclution of the Sylvester equation by any
- method can be improved, in other words the accuracy can
be increased. Tf this idea is applicable then we have found
0 21 38 7 15 4 0 .. an iterative method for solving of the Sylvester equation.
121 10 21 38 7 15 4 0O Therefore let the basis Vi = [v,,...,v,] and Wm =[w....,w,]
19 121 " - ..ot . constructed by the Block Amoldi process, thus we have
64 1.9 . 0
19 64 15 4 ViV = L W Wy = Ly
B=| 87 19 1.5
9 87 38 The square block Hessenberg matrices H,, and &, (m
(.) oo e -2l 38 = y*] where r and / are the dimensions of blocks) whose
0 87 1% .64 19 121 10 21 nonzero entries are the scalars /4, and EU , constructed by
0 0 0 87 1% 64 19 121 10 .
the Block Amoldi process can be expressed as
¥R
7T 5 T
1 221 14 15 13 262 0 0 Hn =V AV Hon =W BV
13 .1 221 14 15 I3 26 0 0 Let X, be an imitial approximate solution of the
26 13 . | | | | 0 . Sylvester equation X4 + BX = C where 4, B, C, X, ¢ R"™.
17 26 262 0 Also introduce the residual matrix
23 17 A3 262
C=|26 23 15 13 Ry = CHX4 + BXy)
0 26 14 15
Co R _ 291 14 And let ¥, € R™" be the solution of the Sylvester
0 26 23 17 26 13 .1 221 equation:
0 0 0 26 23 17 26 13 1 YmH£ N ﬁmym _ er:ROVm 1)
FDAFL
Tablel: Implementation of Iterative Weighted Krylov method to solve the Sylvester equation with different values of m
m r 1 L DA, - HMH HVW{ DEV,, - ;}mH Treretion Time
4 2 5.33E-015 4.1E-016 397 8.91
8 2 2.51E-014 6.61E-016 321 7.35
10 2 2.98E-014 3.09E-015 261 5.89
20 2 10 3.33E-014 7.29E-015 183 4.11
30 2 15 4.11E-014 9.22E-015 138 2.86
40 2 20 7.009E-014 9.94E-015 68 1.25
50 2 25 1.21E-013 3.45E-014 18 0.2284
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Table 2: Implementation of Tterative Block Krylov method to solve the Sy lvester equation with different values of m

m r 1 HU;DA Uy — HmH HV”{ i")BVm _ }}mH Tteration Time

2 2 8.63E-014 4.05E-014 278 5.83

2 4 1.57E-0.13 5.49E-014 156 4.68
10 2 5 2.81E-0.13 1.98E-014 95 3.56
20 2 10 2.84E-0.13 1.77E-013 58 2.68
30 2 15 3.05E-0.13 4.46E-014 36 1.74
40 2 20 9.77E-0.13 8.36E-014 21 0.7811
50 2 25 3.17E-0.12 4.68E-013 2 0.0918
Table 3: Implementation of new Iterative methods and Hessenberg-Schur method for solving the Sylvester equation

Hessenberg-Schur method Weighted Krylov method Block Krylov method

n Error Time Error Time Error Time Cond(B)
200 1.16E-010 0.6881 2.50E-012 0.4753 2.38E-014 0.2612 8.53E+033
400 3.89E-007 6.312 4.22E-008 4.642 6.15E-014 3.134 3.1TEH00
600 0.0011 28.89 0.0033 65.76 6.95E-014 21.39 T.63E+005
800 8.931 85.75 13.01 174.32 8.37E-014 58.26 2.13E+007
1000 27.35 201.14 48.19 322.11 1.84E-015 121.53 1.50E+008
If set X, =X, + WmYmV}f; (4.2) (2) Select two numbers r and [ for dimensions of block

then the corresponding residual R, = CHX4 + BX))
satisfies:

Ry =C—((Xo+ W, 1,V ) A+ BOX o+ W, 1,10
-W Y VIA-BW. ¥ 17

meomom e R M

—w ¥ HvI w g yvT

METmTTm oM MR M

=Ry-W,_ (¥, H. +H ¥, W.

Since ¥, is the solution of (4.1) we have:

Ry =Ry -W, WIry, vl =0

According to the above results we can develop an
iterative method for the solving of the Sylvester equation
when the matrices 4,8 and C are large and sparse. For
doing this idea if we choose m < n, then instead of solving
XB + BX = C we can solve (4.1). In other words in this
method, first we transform the 1mtial Sylvester equation to
another Sylvester equation with less dimensions, then in
each iteration step solve this matrix equation and extend
the obtained solution to the solution of initial equation by
(4.2). The algorithm 1s as follows:

Algorithm 2 (Block Krylov Method):

(1) Start:choose an imtial solution X}, and a tolerance &.
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and setm = r* I (m < n).

(3) Compute R, = C—{X;4 + BX}).
(4) Construct the orthonormal basis V,, and 7, € R by
the Block Armoldi process, such that
H, =VIav, H, =W.BW,
(5) Solve  the reduced  Sylvester  equation
VoHE + B ¥ = WA RY
(6) Set x)=xq+w,7,Vi -

(7
(8)

Compute R, = C—{X 4 + BX)).
Restart: if ||R|| < £ Stop
else setX; =X, R, =R, and goto 3.

Example 2: Consider the matrices A and B and C of
Example 1 with n = 100. We apply the Iterative Block
Kryvlov method for solving the XA + BX = C and take
£= 107" Inthe Table 2, we report the results for different
values of m.

Example 3: According to the results in Table 1 and
Table 2, we see that the Block Krylov method in
comparison with Weighted Krylov method works better.
Now consider A and B and C are the same matrices that
used in Example 3.1. We apply our two Iterative methods
and Hessenberg-Schur method to solve the Sylvester
equation when the dimension of the matrices are large.
Results are shown in Table 3.
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COMMENTS AND CONCLUSION

Two new iterative methods presented in this paper
can solve the Sylvester equations with any desired
accuracy. Mean wlule, other methods like the
Hessenberg-Schur method deo not have this
capability.

Results in Table 3 show that:

(i) Weighted Krylov method works better than the
Hessenberg-Schur method when the dimensions
are not very large. In the case of large
dimensions both methods are not working well.
Block Krylov method works very well, when the
dimension 1s large. Note also that in spite of
having large condition mumbers our new method
works with high accuracy.

The Refinement methods presented in section 3 and
4 has the capability of improving the results obtamed
by any other method. Therefore we suggest using
the Refinement method whenever a higher accuracy

(i)

is required.

As we already mentioned in the Tterative method, the
original Sylvester equation is first transformed to an
equivalent equation with less dimension. Therefore
solving the Sylvester equation with a large

dimension would work very well.

834

REFERENCES

Datta, BN., 2004. Numerical Methods for Linear
Control Systems: Design and Analysis, Elsevier
Academic Press, Amsterdam.

Datta, BN. and K. Datta, 1986. Theoretical and
computational aspects of some linear algebra
problems in control theory, in: C.I. Bymes, A.
Lindquist (Eds.), Computational and Combinatorial
Methods in Systems Theory, Elsevier, Amsterdam,

pp: 201-212.
Higham, N.J., 2002. Accuracy and Stability of
Numerical — Algorithms, second ed, SIAM,

Philadelphia, PA.

Hyland, C. and D. Bemstein, 1984. The optimal
projection  equations dynamic
compensation, IEEE Trans. Centrol.,
29, 1034-1037.

Bartels, R.H. and G.W. Stewart, 1972. Sclution of the
matrix equation AX + XB = C, Comm. ACMIS,
820-826.

Golub, G.H., S. Nash and CF. Van Loan, 1979. A
Hessenberg—Shur method for the problem AX + XB
=, IEEE Trans. Automat. Control, 24: 909-913.
Golub, G.H. and CF. Van Loan, 1996. Matrix
Computations, third ed, Johns Hopls UP,
Baltinore.

Guennouni, A. El, K. Jbilou and A.J. Riquet, 2002.
Block Krylov subspace methods for solving large
Sylvester equations, Numer. Alg., 29: 75-96.

for fixed-order

Automat.



