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Abstract: In this paper, we give a seting for constructing a Weierstrass representation formula for simply
comnected minimal surfaces in the Sol space. We derive the Weierstrass representation for surfaces m the
three-dimensional Lie group Sol space and establish the generating equations for minimal surfaces in the group

Sol space.
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INTRODUCTION

In the last decade the study of the geometry of
surfaces in the 3-dimensional Thurston geometries has
grown considerably. One reason is that these spaces can
be endowed with a complete metric with a large isometry
group; another, more recent, is the announced proof of
Thurston geometric conjecture, which ensures the
dominant role of this spaces among the 3-dimensional
geometries.

Analytic methods to study surfaces and their
properties are of great interest both in mathematics and in
physics. A classical example of such an approach 1s given
by the Welerstrass representation for minimal surfaces [1].
This representation allows us to construct any mimmal
surface in the three-dimensional Euclidean space R* via
two helomorphic functions. Tt is the most powerful tool
for the analysis of minimal surfaces.

Weierstrass representations are very useful and
suitable tools for the systematic study of minimal surfaces
immersed in n-dimensional spaces [2]. This subject has a
long and rich history. It has been extensively investigated
since the mmitial works of Weilerstrass [3]. In the literature
there exists a great mumber of applications of the
Weierstrass representation to various domams of
Mathematics, Physics, Chemistty and Biology. In
particular in such areas as quantum field theory [4],
physics  [5], physics, fluid
dynamics and membranes [6, 7], minimal surfaces play an
essential role.

In this paper, we give a setting for constructing
a Weierstrass representation formula for simply
connected minimal in the Sol space.

statistical chemical

surfaces

We derive the Woeierstrass representation for
surfaces m the three-dimensional Lie group Sol space
and establish the generating equations for minimal
surfaces in the group Sol space. As a consequence,
we shall give a Weierstrass-type representation
formula for minimal surfaces in the 3-dimensional

Lie group Sol.

Riemannian Structure of Sol Space: Sol space, one of
Thurston's eight 3-dimensional geometries, can be viewed
as R’ provided with Riemannian metric

G = A = 7 dx + e d’, + di 2.1

Where (x,,x,,x,) are the standard coordinates in R’. Note
that the Sol metric can also be written as:

3

dsz=2?i ®72°, (2.2)
=1
where
21= ex3dx1, 2%= e_x3dx2,s 23 = dxsy,
(2.3)
and the orthonermal basis dual to the 1-forms 1s
e e*xsi e :exsi e, = 4
1 axl ’ 2 6.?(72 3 a?C3 (24)

Proposition 2.1. For the covariant derivatives of the
Levi-Civita connection of the left-invariant metric g,
defined above the following is true:
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—€3 0 €
V= 0 e -—e| (2.5)
0o 0 0

where the (i, j)-element in the fable above equals Ve,

for our basis

e, k=123, {e,eze:}
Lie brackets can be easily computed as:

[ee,] =0, [es85] = (2.6)

e, [e.e;] = e,
Then, we write the Kozul formula for the Levi--Civita
connection is:

2g(V, e e.e) =L

From (2.4), we get

3 _n gl 1
3y =20p =213 =205 =2y =—2 (24

Weierstrass Representation Formula on Sol Space:
T c (R’ g.) be W;ZQ(R{gM) a surface and a smooth

map. The pull-back bundle @*(T(R3, 850!)) has a metric and

compatible comnection, the pull-back connection, induced
by he Riemannian metric and the Levi--Civita
connection of (R’ g,.;). Consider the complexified bundle

E =g 0 (R g p@C

Let (1, v) be local coordinates on X, and z = # + iv the
(local) complex parameter and set, as usual,

g 1{e @& g 18 @
— = ——i— |, === —+i—|
&z 2(&; Gv] & 2(61; 6\)} (3.1)
Let
dg o &}
ELU @*p[_pja |p @*p{a p]: (32)
and
_, 98 100 %}
0= & (Gu By (3.3)

Letnow ,.y_, (R3=§mf ) be a conformal immersion and

z =u + iva local conformal parameter. Then, the induced
metric is
ds* = At

~ ) = A |dd, (3.4)
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and the Beltrami--Laplace operator on (R, g.,), with
respect to the induced metric, 1s given by

(__

Ju Ou __)

Bv dv (3.5)
We recall that a map @:ZA(R{&O[) 1s harmonic 1if its
tension field

T($) = traceVdgp = 0. (3.6)

Let {x,xx.} be a system of local coordinates in a
neighborhood U of M such that ¥mgZ)# @ Then, in an
openset G X

3
3
¢ 72%5, (3.7)
! J
for some complex-valued functions ¢, defined on G. With
respect to the local decomposition of ¢, the tension field
can be written as

Ag, + 4472 Zrl,(ﬁaﬁ}— (3.8)

by &

()= Z{

Where rlj , are the Christoffel symbols of (R%, g.,).

From (3.3), we have

T(p) = 4472y

i

a9, 8
{§+J Z rlkgbjﬁbk}az

The section ¢ is holomorphic if and only 1f

3

d of, o d
Va [Z@z} =Z{ i7+¢1v6§ }

g =1 dxz i te:3 le gaxl

Using (3.3), we get

[ 30 a6 2
Va Z@*:Z*i* Voo 2 oI

oz =l axi i oz ax qu 6_axl

J

Making necessary calculations, we obtain

i)zl sl
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Thus, ¢ is holomorphic if and only if

agbi 1 - =
§+ %:ijgbjgbk =0,i=1,2,3. (3.9)
Theorem 3.1: (Weierstrass representation) Let (R, g,,)
be the group of rigid motions of Euclidean 2-space and
{2,200, } local coordinates. Let ¢, j = 1,23 be complex-
valued functions in an open simply connected domain G
= Cwhich are solutions of (3.9). Then, the map

—2re| | 9,4
§,(.v) @(LD% ZJ (3.10)
is well defined and defines a wminimal conformal
immersion if and only if the following conditions are
satisfied:

3 . 3
D gy, = 0and D" g0 .6, =0.

JA=1 JE=1

Let us expand T with respect to this basis to obtain

3
Y=Dye. (3.11)
=1
Setting

(3.12)

¢_Zi:¢iai_zi:%e“

for some complex functions ¢, ¥ : G < C. Moreover, there
exists an invertible matrix 4 = (4,), with function entries
A @G U >R, 4, 7 =123 such that

§?5i=2141j‘lfj-
F (3.13)
Using the expression of ¢, the section ¢ 1s
holomerphic if and only if

1 i
foj W, =0,i=123.
Ladiids > 2
E AT

(3.14)

Theorem 3.2: Let @, j =
Jfunctions defined in a open simply connected set G c C,

1,2,3, be complex-valued

such that the following conditions are satisfied:

i gl + [ + s # 0,
fi. y2vydryd=o,

iii. iy, are solutions of (3.21).
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Then, the map 4,.q —>(R3,8m£) defined by

©,(u,v) = 2Re[J'Z Sy jdz} (3.15)
20 J,

is a conformal minimal immersion.

Proof: By Theorem 3.1 we see that § is a harmomc map
if and only if & satisfy (3.15). Then, the map & is a
conformal minimal immersion.

Since the parameter z 1s conformal, we have

(r.r)=o, (3.16)
which is rewritten as
Y+ vg s = 0. 317
Case I: From (3.17), we have
dy,  — (3.18)
= Va3,

Which suggests the defimition of two new complex
functions

1 1
B::JE(%*EWz): H:ZJ*E(WI*'Wz)' (319)

The functions G and H are single-valued complex
functions which, for suitably chosen square roots, satisfy

g =B, +H,
¥, =B, —H,) (3.20)
iy, = 2BH.

Lemma 3.3: The section ¢ = e, + Urne, + yne, is

holomorphic if and only if

e (i =/
oz 2
Mo 2igf - [#*JoH o,
3z 2 (3.21)
Ns gt =g,
Oz
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Proof: Using (3.14) and (3.18), we have (3.21).

Theorem 3.4: Let B and H be complex-valued functions
defined in a simply connected domain G < C such that:

*  Band H are not identically zero,
*  Band H are solutions of (3.21).

Then the map SﬂiG—>(R3,8mi) , defined by

1 (u,v) = 2R@[Lz (Bz Hz)e_ﬁdz}
0

z

o (3.22)

§y (1, v) = 2Re(J. (32 —Hz)exs dz}

}.

Corollary 3.5: If the section ¢ = Yre, + e, + yne; is
holomorphic and B = €°, then

§o, (1, v) = 4Re[jz BHdz
“

val” = v :i(%@ +1;71w2)and%2 —y2 (323

Proof: Substituting B = ¢"? into (3.21), we get

B
oz

OB
B—+H
Oz

o
0z

oH

dz

0

E

=0.

The first and adding the second we get

Multiplying the first B and the second H adding, we get

9 2BH) -0,
a2 (3.24)
From (3.18), we have
oy _ 0 (3.25
dz .

Substituting (3.25) into (3.21), we get ;22 _, From
(3.18), we obtamn (3.23). This proves the claim.
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Corollary 3.6: If the section ¢ = e, + e, + e, is
holomorphic and B = &°, then

8_1;11 518 61{ (3.26)
Oz oz
Proof: From (3.18), we obtain
v
d 2 2
oz _|B +|H] (3.27)
oy, GH
dz
—3a 2 2.8 3.28
sl e O
Oz Oz
Substituting B = ¢ into (3.28), we get (3.26).
Case II: From (3.17), we have
g, = Reos, P, =Rsin &, Y, = R (3.29)

Which suggests the definition of two new complex
functions

¥ (3.30)

in

2

3 = arctan —=andR = Vrlz +V3.

Lemma 3.7: If T satisfies the equation (3.14), then

Rz cosI - TzHsinT =7‘ER‘COSS, (3.31)

R sinI+ I, ReosTI = [Rsin3, (3.32)

R, (3.33)

—|EH|(|0053|—|31113|).
Proof: Using (2.5) and (3.14), we have

oy _
&
oyry

—V_fﬂlfB >

— 334
L ED ( )

&

Byry

‘ 2
&z

= ‘1}’1‘2 *|‘V2

Substituting (3.29) into (3.34), we have (3.31)-(3.33).
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Corollary 3.8:

3] a &
%COSS+£SHIS -9 (3.35)

0z &

Theorem 3.9: Let ® and & be complex-valued functions
defined in a simply connected domain G < C. Then the

map KJ:G%(R%gSg:)’ defined by
s (v = Re[(e_ﬁiﬁcos S)dz],

2y (u,v) = Re“z (ex3iﬁsin5)dz
“

} (3.36)

s u,) =R{J’Z (sa)dzJ

9@

is a conformal nrinimal inwnersion.
Proof: Using (3.10) and (3.32), we get
@ =e 3RcoeI.¢ =e 3Rsin o =R

Using Theorem 3.2 ;. (R3 =§50I) 1s a conformal minimal

immersion.
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