
ˆˆ ˆG fG=

∆̂
f̂

M̂

L̂ M̂′
ˆ ˆM L− M̂′

M̂′

â=a+ea*

1 2 3ˆ ˆ ˆ(x ,x ,x )

1 2 3ˆ ˆ ˆ(x ,x ,x ) x̂

1 2 3ˆ ˆ ˆx , x , x x̂
x̂ 1 2 3ˆ ˆ ˆx , x , x ŷ 1 2 3ˆ ˆ ˆ(y , y , y )

1 1 2 2 3 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ<x, y> = x  y  + x y x y+

2 3 3 2 3 1 1 3 1 2 2 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆx y = (x y x  y , x y  x  y , x y x y )× − − −

x̂ 0≠ ˆ||x|| x̂ 1/2ˆ ˆ<x,x> .
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On Rotation Surfaces with Pointwise 1-Type Gauss Map
in the 3-Dimensional Dual Space
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Abstract: In this paper, rotation surfaces with the pointwise 1-type Gauss map are studied in the 3-dimensional
Dual space. By the use of the concept of pointwise finite type Gauss map, a characterisation theorem
concerning rotation surfaces and constancy of the mean curvature of certain open subsets on these surfaces
are obtained.
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INTRODUCTION The Main Goal of this Article Is to Prove the Following

Dual numbers were introduced in the 19 th. century
by Cilliford [1]. Dual quantities, the differential geometry
of dual curves and application to the theoretical space
kinematics were given by Veldkamp [2]. V. Brodsky and
M. Shoham examined dual numbers representation of rigid
body dynamics [3]. A. Park n studied orthogonal matrix
transformations [4] and Yang examined quaternion algebra
and dual numbers [5]. Y.H. Kim and D.W. Yoon studied
ruled  surfaces with the pointwise 1-type Gauss map.
They classified all submanifolds in an m-Euclidean space
E  satisfying the following equation:m

G = f G (1.1)

Where  in the Laplacian of the induced metric and
G the Gauss map for the submanifold, for some function
f on the submanifold [6]. A Niang did studies on rotation
surfaces in the minkowski 3-dimensional space with the
pointwise 1-type Gauss map [7]. M. Choi and Y. H. Kim
examined characterisation of the helicoid as ruled surfaces
with pointwise 1-type Gauss map [8].

In this study, the condition (1.1) will be expressed in
D , i.e,3

(1.2)

Where =  + * is the Laplacian in D , = G + G* is3

dual Gauss map, = f + f* is a dual funcition.

Theorem
Theorem 1.1: Let  be a connected surface of rotation
in  a  3-dimensional  Dual  space,  whose axis of rotation
is .  Let  be any connected component of the
subset . Then  is the pointwise 1-type Gauss
map if and only if  has a constant mean curvature.

Throughout this paper, we assume that all objects are
smooth and all surfaces are connected unless otherwise
mentioned in D .3

Preliminaries: A dual number can be defined as an
ordered pair combining a real part, a and a dual part a*,

(2.1)

Where  is the dual unit with multiplication rule =2

0. An ordered triple of dual numbers  is called
dual vector, we write = . The numbers

 are called the coordinates of .
Let = ( ) and =  be two dual

vector,  then inner product and cross-product of these
two dual vectors are defined as follows;

(2.2)

(2.3)

If  the norm  of  is defined by 

A dual function of a dual space is given by,



ˆ ˆf (t) = f (t, t*) + ef*(t, t*)

t̂ = t + et*

f̂ (t + et*) = f + ef* = f(t) + et*f (t).

f * f .
t * t

∂ ∂
=

∂ ∂

ˆ ˆdf(t) f f *e f +et*f .ˆdt t t
∂ ∂ ′ ′′= + =
∂ ∂

ˆ ˆ ˆ ˆ ˆ ˆ ˆF(u,v)=F(u,v)+eF*(u,v).

û = u + eu* v̂ = v + ev*

u
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆF(u,v) =F(u,v) + eF*(u,v) =F(u,v) + e(u*F (u,v)+v*Fv(u,v))

ˆ ˆ ˆu u u u uu vu
ˆ ˆ ˆ ˆ ˆ ˆ ˆF (u,v)=F (u,v)+eF *(u,v)= F (u,v)+ e(u* F (u,v)+v*F (u,v))

ˆ ˆ ˆv v v u uu vu
ˆ ˆ ˆ ˆ ˆ ˆ ˆF (u,v)=F (u,v)+eF *(u,v)== F (u,v)+ e(u* F (u,v)+v*F (u,v))

ˆ ˆ ˆF(u,v)

ˆ ˆ ˆ ˆF(u,v)
û
∂
∂

ˆ

û
∂
∂

ˆ ˆ ˆ ˆF(u,v)
v̂
∂
∂

ˆ

v̂
∂
∂

M̂

2 3

u v

ˆ ˆX:U D D
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(u,v) X(u,v)=X(u,v)+eX*(u,v)

ˆ ˆ ˆX(u,v)=X(u,v)+e(u*X (u,v)+v*X (u,v)

⊂ →

→

ˆ ˆ(u,v)

Û

Ĝ Û

ˆ ˆu v
u v

ˆ ˆu v

u v

u v

ˆ ˆX ×XĜ= =G+e(u*G +v*G )
ˆ ˆX ×X

X ×XG=
X ×X

Î = I + eI*
ˆII = II + eII*,

2 2
ˆ ˆ ˆ ˆ ˆ ˆu u u v v v

u v
2 2

u u u v v v

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆI=<X ,X >(u ) +2<X ,X >u v +<X ,X >(v )

Î=I+e(u*I +v*I )

I=<X ,X >(u ) +2<X ,X >u v +<X ,X >(v )

′ ′ ′ ′

′ ′ ′ ′

2 2
ˆ ˆ ˆ ˆ ˆ ˆuu uv vv

u v
2 2

uu uv vv

ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆII=<G,X >(u ) +2<G,X >u v +<G,X >(v )
ˆII=II+e(u*II +v*II )

II=<G,X >(u ) +2<G,X >u v +<G,X >(v )

′ ′ ′ ′

′ ′ ′ ′

Ĥ=H+eH* Û
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(2.4) = sin(u+ u*) cos(v+ v*)=sinu cosv +

Where  is a dual variable, f and f* are two,
generally different, functions of the two variables. This
type of function is referred to simply as the dual functions
throughout the paper.

Properties of dual functions were thoroughly
investigated by H. Hac saliho lu [9]. He derived the
general expression for dual analytic (differentiable)
function as follows;

(2.5)

The analytic condition for a dual functions is 

(2.6)

The derivative of such a dual function with respect to
a dual variable is

(2.7)

A dual function of two dual parameters is given by

(2.9)

Where  and  are two dual
variables F and F* are two functions of two dual
parameters. A dual analytic function of two dual
parameters expressed as follows;

(2.10)
The partial derivatives of Eq. (2.10) are given by

(2.11)

(2.11)

From this definition we are given some examples as
follows;

(u*cosu cosv - v*sinu sinv)

= (sin(u+ u*)cos(v + v*))=cosu cosv +

(-u*sinucosv - v*cosu sinv)

= (sin (u+ u*)cos (v + v*))=-cosu sinv

+ (-u*cosusinv - v*sinucosv)

The Surface in D :3

The surface  in D  is described locally by3

(3.1)

Where  are local coordinates on the open set
 of D .2

The Gauss map  = G + G* on  is given by the
following formulae:

(3.2)

The first and second fundamental forms
and  respectively, are obtained by

(3.3)

(3.4)

The mean curvature on  is given by the
following formulae:



ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆuu u u uv u v vv v v
2

ˆ ˆ ˆ ˆ ˆ ˆu u v v u v

u v

uu u u uv u v vv v v

u u

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ<G,X > <X ,X >  2<G,X > <X ,X > + <G,X > <X ,X >ˆ2H= ˆ ˆ ˆ ˆ ˆ ˆ<X ,X > <X ,X > (<X ,X >)
ˆ2H=2H+2e(u*H +v*H )

<G,X > <X ,X > 2<G,X > <X ,X > + <G,X > <X ,X >2H=
<X ,X >

−

−

−
2

v v u v<X ,X > (<X ,X >)−

1 2ˆ ˆ(x ,x )

Û

ij
ij

i jij

ˆ ˆ1ˆ ˆ ˆ( det(g )g )
ˆ ˆˆ x xdet(g )
∂ ∂

∆ = −
∂ ∂∑

ijˆ( )g
i jˆ ˆij x x

ˆ ˆĝ = <X ,X >,

ijˆ(g ) ijˆ( ).g

ẑ

ˆ ˆcos? sin? 0
ˆ ˆ ˆsin? cos? 0 , ?  = ? + e?*

0 0 1

 −
 
 
 
  

L̂, M̂′

ˆ ˆM L.−

L̂ M̂′

ˆˆ ˆx̂ = r(s) coc?, ˆˆ ˆŷ = r(s) sin?, ˆ ˆẑ = h(s);

?̂ = ? + e?*, ŝ = s + es*,

2 2 2 2 2ˆ ˆˆ ˆ ˆ ˆI = (r +h )ds +r d?′ ′

ˆ ˆr(s) ˆ ˆh(s)
ŝ 2 2ˆr̂ + h =1′ ′ ˆ ˆr(s) 0≠

ŝ

ˆˆ ˆ ˆ ˆˆ ˆs x = r(s), z = h(s),→ ŝ

2 2ˆr̂ +h 1′ ′ =

ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆX(s, ) (r(s)cos , r(s)sin ,h(s))=

2 2

2 2

ˆˆ ˆ ˆI=ds +rd?
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆII=(r h -h r )ds +h rd?′ ′′ ′ ′′ ′

Ĥ

ĥˆ ˆˆ ˆ ˆ2H=(-r h +h r )+
r̂

ĥˆ ˆˆ ˆ ˆ2H =(-r h +h r )+( )
r̂

′
′′ ′ ′′ ′

′
′ ′′′ ′ ′′′ ′ ′

2 2

2 2 2

ˆ ˆ ˆr̂ 1ˆ [ ]ˆˆ ˆr ˆˆ r ?ss
′∂ ∂ ∂

∆ = − + +
∂∂ ∂

M̂′ M̂′
ˆ ˆM L.−

ˆˆ ˆˆ  G = fG∆ M̂′
ˆ ˆˆ ˆ ˆ ˆG = ( h cos?, h sin ?, r ).′ ′ ′− −

Ĝ

ŝ

ˆˆss

ˆ ˆ??

ˆ ˆˆ ˆ ˆ ˆG =( h cos?, h sin?,r )
ˆ ˆˆ ˆ ˆ ˆG =( h cos?, h sin?,r )

ˆ ˆˆ ˆ ˆG =(h cos?,h sin?,0)

′′ ′′ ′′− −

′′′ ′′′ ′′′− −

′ ′
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(3.5)

Laplacian with respect to local coordinates (4.3)
on  for surface M is obtained as follows:

(3.6)

Where  is a dual matrix and  the

dual matrix  is the inverse matrix of 

Rotation Surfaces in D :3

The subgroup of rotations around the -axis consist of

(4.1)

A surface is called a surface of revolution if its image
is stable under a 1-parameter subgroup of isometries
which leaves a line pointwise fixed.

This general definition will be related to the ordinary
one in terms of rotating a profile curve which lies in a
certain plane containing the axis of rotation.

For  a  surface  of  revolution corresponding to an
axis  let  be any connected component of the
subset  We have the following lemma.

Lemma 4.1: If  is a rotation axis, then  is expressed

in the form
 with metric

(4.2)

Where  and  are dual smooth functions of

the  parameter   such  that  and  for
all .

Conversely, a surface given in the above form is a
surface of revolution, the profile curve is

 where  is an arc parameter and 

In addition to above lemma we have the followings
results.

Lemma 4.2: For the surface of revolution given in the
Lemma 3.1 and expressed in the form 

(4.4)

We have the following results.
The first and second fundamental forms are given by 

(4.5)

The mean curvature  satisfies

(4.6)

The Laplacian is given by

(4.7)

The Proof of the Theorem: We consider a surface of
revolution  in lemma 4.2. Then  is a connected
component  of  the set  Let’s express the condition

on  for the Gauss map

We get from  the following three vectors

(5.1)

Then the Laplacian of the Gauss map by applying the
formula (4.7) is the vector;



ˆˆ ˆ ˆ ˆss s ??2
r̂ 1ˆ ˆ ˆ ˆ ˆ? G = [G + G + G ]
r̂ r̂
′

−

2 2

ˆ ˆˆ ˆ ˆr h r h rˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆG (( h )cos?,(h h )sin?, r r )
ˆ ˆ ˆr r rˆ ˆr r

E
′ ′ ′ ′ ′
′′ ′′′ ′′ ′′′ ′′∆ = + − + − − −

2

ˆr̂ hˆ ˆÂ = (h + h )
r̂ r̂
′ ′

′′′ ′′ −

r̂ˆ ˆ ˆB r r .
r̂
′

′′′ ′′= − −

ˆ ˆ ˆ ˆ ˆ ˆ ˆ? G = (Acos?, Asin?, B)

ˆˆ ˆ ˆ ˆ ˆ ˆ<? G,G> =  Ah +Br′ ′−

ˆˆ ˆ ˆ? G = fG

ˆ ˆ ˆ ˆ ˆ ˆ? G  <? G, G > G = 0−

ˆ ˆˆ ˆ ˆˆ ˆ[A+h ( Ah + Br )] cos? = 0
ˆ ˆˆ ˆ ˆˆ ˆ[A+h ( Ah + Br )] sin? = 0

ˆˆˆ ˆˆ ˆ          B r ( Ah + Br ) = 0

′ ′ ′−

′ ′ ′−

′ ′ ′− −

2

2

ˆ ˆˆ ˆ ˆA(1 h ) + Brh = 0
ˆˆˆ ˆ ˆB(1 r ) + Ah  r  = 0

′ ′−

′ ′ ′−

ˆˆ ˆˆ ˆr (Ar + Bh ) = 0
ˆ ˆˆ ˆˆh (Ar + Bh ) = 0

′ ′ ′

′ ′ ′

ĥˆ ˆˆ ˆˆ ˆ ˆAr + Bh ( r h + h r ) + ( )
r̂
′

′ ′ ′′′ ′ ′′′ ′ ′= −

Ĥ

ĥˆ ˆ ˆˆ ˆr h r h 2H ( ) .
r̂
′

′′′ ′ ′ ′′′ ′ ′+ = −

ˆˆ ˆ ˆˆAr + Bh = 2H .′ ′ ′

ˆr̂ H = 0
ˆ ˆh H = 0.

′ ′

′

Ĥ′
Ĥ′ M̂′
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(5.2) (5.11)

So we get easily that Thus, from Eq. (5.10) and Eq. (5.11) we have 

(5.12)

(5.3)

From this formula it is convenient to introduce the

following functions. Let  and

 Then we can write that

(5.4)

So we have

(5.5)

Since the condition  is equivalent to the
condition

(5.6)

This condition is then equivalent to following three
equations:

(5.7)

These are equivalent to the two equations 

(5.8)

Hence we obtain

(5.9)

By (4.1), we get 

(5.10)

On the other hand, for the derivative of mean
curvature  from the second formula in (4.6) we get

Now the condition (5.9) becomes

(5.13)

s From this, we get with the Eq. (4.1) that  is zero,
therefore  is identically zero on . This proves the
theorem.

Consequently 5.1: The surface of revolution with
constant mean curvature in D  has screw motion.3
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