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Inverse Nodal Problem for Dirac Operator

Etibar 8. Panakhov, Emrah Yilmaz and Hikmet Koyunbakan

Department of Mathematics, Firat Unmiversity, 23119, Elazg, Turkey

Abstract: Inverse nodal problems comsist in constructing operators from the given zeros of their

eigenfunctions. In this study, we have estimated nodal points and nodal lengths for Dirac operator.
Furthermore, by using nodal points (zeros of eigenfunctions), we have shown that the potential functions of

Dirac operator can be established uniquely.
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INTRODUCTION

Inverse problems are studied for certamn special
classes of ordinary differential operators. Typically, in
inverse eigenvalue problems, one measures the
frequencies of a vibrating system and tries to mfer some
physical properties of the system. An early important
result in this direction, which gave vital impetus for the
further development of inverse problem theory, was
obtained i [1-5]. In later years, mverse Sturm-Liouville
problems were solved by using some new methods [6-9].

The Dirac equation is a modern presentation of the
relativistic quantum mechanics of electrons intended to
make new mathematical results accessible to a wider
audience. Tt treats in some depth the relativistic invariance
of a quantum theory, self-adjointness and spectral theory,
qualitative features of relativistic bound and scattering
states and the external field problem in quantum
electrodynamics, without neglecting the interpretational
difficulties and limitations of the theory.

Inverse problems for Dirac system had been
mvestigated by Moses [10], Prats and Toll [11], Verde
[12], Gasymov and Levitan [13] and Panakhov [14]. Tt1s
well known [15] that two spectra uniquely determine the
matrix-valued potential function. In particular, in work [16],
eigenfunction expansions for one dimensional Dirac
operators describing the motion of a particle m quantum
mechanics are investigated.

In some recent interesting works, I. R. Mclaughlin
[17], Hald and McLaughlin [18] and Browne and Sleeman

[19] have taken a new approach to inverse spectral theory

for the Sturm-Liouville problem. The novelty of this work
lies 1n the use of nodal pomts as the given spectral data.
In later years, mverse nodal problems were studied by
several authors [20-22].

In this work, we are concerned with the inverse
problem for Dirac operator, using a new kind of spectral
data, known as nodal pomts.

Let L denote a matrix operator

- {Pu(x) Pralx)

P2(x) Pzz(x)j’ p2(x) = py(x),

Where p(x)(ik = 1,2) are real functions which are
defined and continuous on the mterval [0, 7] Further, let
@(x,A) denotes a two components vector function.

%@MJ

LA) =
o 20

Then the equation
d
BY WL Al lp=0,
( s }D

Where A is a parameter and

0 1 00
B= L= ,
[1 0} {0 1J

1s equivalent to a system of two simultaneous first-order
ordmnary differential equations
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d
s e+ mae; = Ao,

d
7%+ P {X)P + pas (x)py = Aoy (1.1)

For the case in which

Puix) = pu(x) =0,

puix) = Vix) +m,
Puix) = Vix) —m

Where (x) 1s a potential function and m 1s the mass
of a particle, the system (1.1) 18 known in relativistic
quantum theory as a stationary one-dimensional Dirac
system. In case of p,(x) = p,(x) = 0, we obtain the
following system called first canomc form of Dirac
operator.

@y~ A+ p(x)}p =0

@ — A+ ()b, = 0, (1.2)
With the following boundary conditions

@,(0. )cosa + (0. Dsing =0

@, Acosf+ @ (0,D)sinff =0, (1.3)

Where

o= cos{%_";[ P+ r(z)]dz}

1 J
B =sin Ejo [p(0)+ (@] 1'}
Let us denote by ¢(x,A) the solution of the system
(1.2) satisfying the wutial conditions
¢,(0,4) = coser, @,)0,4) = sin (1.5)

The function ¢ix,y) obviously satisfies the following
condition

@,(0, Aycosa + (0, A)sina = 0. (1.6)

We will assume that the functions p(x) and #x) are
continuous on the interval [077] and A is an eigenvalue of
this problem.

It is well known [13], for |A] =< the following estimates
hold uniformly with respect to x,0<x< .

o (x, Ay =cos{&{x, A)— o} + 0{;]

@y (x, A)=sin{E(x, A)—a} + 0{%}

Where

E(x, M) = Ax— %j;[p(T)Jr r()]dT

and the sequence {4} satisfies the classical asymptotic
form [13]

8 (1
ﬁn—n++0(},n—0,il,i2,..., 1.7

T ]

Where ¢ is defined by

S=B-a- %J‘:[p(%’)-&- r(olde.

Let A,, # ~ o be the eigenvalues of Dirac operator and

0 <x,1(j) <. <x5’f1) <7,(0 <x1(f§) <. <x§,72 <)

7 -12,..nrn—1nr€N be the nodal pomts of the nth
eigenfunctions.

Main Results: In this section, our purpose 1s to develop
asymptotic expressions for the xf,”) and IJ(,”), j=12,.n

— 1, n eN at which ¢, & = 1,2, the eigenfunction
corresponding to the eigenvalue A4, of the problem
(1.2)-(1.3) that

'x_(:fll)= ( xﬁng) and 15?1) ( lf:?z)) are the nodal pomnts and nodal

vanishes. Suppose

lengths of the functions @, (x,A) @,(x,4)) respectively.

Theorem 2.1: We consider the equations

@ — A+ plx)ie =0,

@ — ot (0} = 0, @D

With the followmg boundary conditions

907



World Appl. Sci. J, 11 (8): 906-911, 2010

@,{0, Dycosa + (0, Aysine = 0
@, AcosB+ @ (m,A)sin = 0, (2.2)

Where p(x) and r(x) are real and continuous
functions on [0,7]. Then, the nodal points of the problem

(2.1)-(2.2) are
. 1}
—— |t
AN

+i J’OH [p(e)+r(x)]de+ OUJ

NOM e EN N PN
. , oo
7.2 % i Oj,z [p(T)Jrr(T)J dTJrO{i}

(2.3)

4 1 "‘5’?1),1 1
{n) _ ngfl) Z EJ-O [plr)+r(t]] dTJrO{ZJ
i xS”z T 1 xgﬂ)z[ ( ) ( )Jd 0{ IJ
’ PREYE )+ r(T) |dT+0 —
A, 24,70 P %
(2.4)
Where ne W

Proof: The asymptotic expression for the eigenvalues

[13]is
[1}”— 0.+1,42,..,
#

Where ¢ is defined by (1.8). Initially, we will develop
asymptotic expressions of x(_nl) and l(_ﬂl) for solution
sl fA

ﬂ%:n+ﬁ+0 (2.5)

T

© (x.A).

We use the classical estimate for || - =

@ (x, A)=cos{E(x, Ay — b + O(;J

@y (A — cos{Ex,A) — ) \%,

Where M is a constant. Thence, @,(x,4) will vanish in
the intervals whose end points are solutions to.

A
=+

iglx Alat =2

908

This equation is equivalent to

1

E(xA)—a= arccos{i%j = (j _E}r T

j=12..n-1

Where the last estimate has been obtained from the

+%] Thus, we get

A

Taylor expansion for arccos (

1= o1 M 1
lxzj.o[p(T)Jrr(T)]dT(Z_E]2]ﬁ+l+0{;{13]
and

() g
(n) _ 2 1 xj,l 1 (2.6)
x”’l_T+EL [p(’c)+r(“€)]d1’+0{ﬁ%}
Wheren=1,2,..,

Hence, we obtain the nodal lenght for the function
@ (x,A) as

T 1 552%,1

() L
;{‘n 2;{’!1 xﬁ)

RSN

1)

) o)
s

71

[pEY+rT)]dT + O[éj

2.7)

Now, we will develop asymptotic expressions of x(ﬂz)
7

and l(_ﬂz) for the function @,(x,4). Similarly, we use another
I

3

ol ) —sinfE s ) - ad<

classical estumate

@y (x, Ay =sin{€(x, A)— o} + O[

Where N is a constant. Thence, @,(x,4) will vanish in
the intervals whose end points are solutions to

sin{€(x,A)—a}= i%

This equation 1s equivalent to

= ﬂri%+0{%}j =12..1n-1

Where this last estimate has been obtamed from the
Taylor expansion for [i EJ . Thus, we get
A

E(x,A)— o = arcsin (i%)
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x,,J‘ [px)+r(z)dr—a= J?T+]i+0(;3}

and

RONY.N j g;fg[ (T)+r(r)]dr+0[ 1} (2.8)
2T o b P A

1.rn=12

Where;j =1.2,...n—

N S

Hence, we obtain the nodal lenghts for the function
,(c4) as

() _ (n) ) _ s 1
£ = ) = %_f . [p(T)Jrr(T)]dTJrO{)%}
(2.9
Therefore, we obtain the asymptotic expresssions
e @)
A . /m _| 7| at which @(x)z[(ﬂl(ﬂ»)} i=12.,
L I A 92(:,0)
52 52

n—1,n=172,. as following

(f‘l] 1
L, mf (ﬂd”o[ﬂ
R ww(ﬂ

and
1),
15”): - ﬂfj %IM (ﬂd”o[ﬂlj
%jf” o )JdTJrO[;nJ

This completes the proof.

Uniqueness Theorems: Now, we will give two uniqueness
theorems for Dirac operator. We mentioned that this
theorem was given for regular Sturm-Liouville problems
by TR. McLaughlin [17], Hald and McLaughlin [18],
Browne and Sleeman [19].

Theorem 3.1: Assume that we have two Dirac problems

of the type (2.1) with pr.a,d and 5 7 g 4 Let xf,”) and
J;f:f) be the nodes and xf,”) :JE.(/'H) for a dense set of

nodes. Then, & 1s umquely determined by any dense
subset of the nodes on [0, 7].

909

Proof:Let consider the following equations,

Py — A+ p(x)ip =0
O+ 1A+ r(x)Ipy = 0
and

B — A+ P} =0
B+ {1+ ()M, = 0

Wth the initial conditions

@ (0,4) = coset,p,(0, 1) =—sinex

@#(0,A4) = cos@,@,(0, 1) = —sind

Multiplying ~ these  equations by @ (x4),
~@y(x, ), ~@(x.A) and @,(x.4) respectively and adding,
we obtain

d . .
a{%(x,l)% (2, A) = @ (x, A)y (x5, A)} = O
Integrating this relation from O to x5”k)’ k=12 and

using initial conditions, we yield that
sinfle—a)=0=a=a
This completes the proof.

Theorem 3.2: Suppose that p and r are mtegrable
functions on [0,7]. Then, A, pf"‘ﬂp and r?j”r are
0 0

uniquely determined by any dense set of nodal points.

Proof: Assume that we have two problems of the type
21-22)withpredand 5 7 6, X - Letthenodal pomits x(”)

and %(:n) satisfying x5 (ﬂ)(x(ﬂ) — ~(ﬂ) and (ﬂg (fﬁ))

form a dense set on [0,7]. We take solutions of (2.1)-(2.2)

as (P—(%J for (p,r,af,)b) and @_[%J for (p.F.G0 i)
¢y Py

We'llshowthat 3 = f, 7= pand r=#. Let consider the

following equations,
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03— {A+ p(x)ipy = 0 G.D
@~ A+ plx)py =0 32
and

G (At PG =0 (33
@ — A+ A}y = 0 G4

With boundary conditions
@ (0, A) = cosor, p,(0, 1) = —sinax

(0, A) = cose,§,(0, 1) = —sinc

and

QDI(TE,A,): COSB:GDZOLA') :7S].I1B

@ (7, Ay = cos B,&,(m, L) =—sin B

Firstly, let take into account the equations (3.1) and
(3.3). Multiplying these equations ¢ (x,4), @(m4)
respectively and substracting, we get

Py (o0, APy (6, A) — i (2. ey (0, A) =

fA- A+ p - P (A (x,A) (3.5)

Recall that @y¢p is uniformly bounded and x € (0, ).

We choose a subsequence of nodes from the dense set.
To show that 3 — ] we integrate both sides of (3.5)

from x(_"l{c)( x(_"lfzc)) to 7 and choose a subsequence that
PR R
tends to 7 to obtain

(A—A(sin(2f)
20+ A4) B

(A= A+ p— pighy(x, Ay (x, A)dx
From this results, we can conclude that 3 — 7
Let () _ +m) and integrate both sides of (3.5)
7 7

from O to xf,.”{‘) - (gﬁﬂg))’ k=12, neN, wefind

() (9]

[ @ -Gapute= [ 3= p= B D A

and

e N
0= " {p- Be Dy Ay
We take a sequence x(.”{f) - ( x(”izc)) accumulating at
7 nz )

an arbitrary x € (0,7). Hence
x X
0= jo [P —P- J.(ﬁ - P)dS}qﬁl(x, Ay (x, A)dx
0

and this holds for all x. We can therefore conclude
P J‘ﬂp(s)ds 13 uniquely determined by a dense set of
0

nodes by using Riemann-Lebesque theorem.
Analogously, if we use the equations (3.2)-(3.4) and
by above procees, we get

()

0= [ 1 Ppatee Doy )
0
We take a sequence xj(,_ﬂg) (g=12) accumulating at

an arbitrary x € (0,7). Hence

X
0= jo [r i I(Fr)ds}ﬁz (, L)y (3, M)l
0
holds for all x. By using Riemann-Lebesque theorem, we
conclude that ,._ J'” ris)ds 15 uniquely determined by a
0

dense set of nodes.
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